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Abstract Microarray gene expression data can provide

insights into biological processes at a system-wide level

and is commonly used for reverse engineering gene regu-

latory networks (GRN). Due to the amalgamation of noise

from different sources, microarray expression profiles

become inherently noisy leading to significant impact on

the GRN reconstruction process. Microarray replicates

(both biological and technical), generated to increase the

reliability of data obtained under noisy conditions, have

limited influence in enhancing the accuracy of recon-

struction. Therefore, instead of the conventional GRN

modeling approaches which are deterministic, stochastic

techniques are becoming increasingly necessary for infer-

ring GRN from noisy microarray data. In this paper, we

propose a new stochastic GRN model by investigating

incorporation of various standard noise measurements in

the deterministic S-system model. Experimental evalua-

tions performed for varying sizes of synthetic network,

representing different stochastic processes, demonstrate the

effect of noise on the accuracy of genetic network

modeling and the significance of stochastic modeling for

GRN reconstruction. The proposed stochastic model is

subsequently applied to infer the regulations among genes

in two real life networks: (1) the well-studied IRMA net-

work, a real-life in-vivo synthetic network constructed

within the Saccharomyces cerevisiae yeast, and (2) the

SOS DNA repair network in Escherichia coli.

Keywords Stochastic model � Deterministic model �
S-system

Introduction

Recent advancements in microarray technology have gener-

ated a huge amount of gene expression data allowing analysis

of genetic interactions during different cellular processes.

Although expression profiles are being applied in various

applications, e.g., drug design, its application for recon-

struction of gene regulatory network (GRN) is still consid-

ered as a critical and challenging problem in systems biology

(de Jong 2002). Although GRN modeling considers gene

expression and regulation as deterministic, a number of

experimental substantiations (Arkin et al. 1998; Bennett

1983;Walters et al. 1995) point out the presence of stochastic

fluctuations in these processes in both prokaryotic and

eukaroyotic cells. The microarray data shows unpredictable

variations, which are often ascribed to causes that are either

biological or technical, or both. While the biological varia-

tions mainly reflect the changes in mRNA levels, the key

reasons for technical variations include sampling, labeling,

and hybridization (Tian 2010). According to Rocke and

Durbin (2001), the variations can be in the range 20–30 % of

the original expression value. Hence, it is imperative to

account for this noise for accurate inference of GRNs.
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As it is well known, in any biological network, there are

two sources of noise, internal and external, which are also

commonly known as intrinsic and extrinsic noise, respec-

tively (Climescu-Haulica and Quirk 2007; EI Samad et al.

2005). The internal noise occurs from the biological reac-

tions in the system, which is due to small copy number of a

few key molecular species. The noise propagation from

biological pathways or environmental fluctuations leads to

external noise. Apart from these two sources of noise,

measurement errors are also treated as noise (Tu et al.

2002). Signal processing techniques (Walleczek 2000),

often applied for analyzing biological systems, are very

sensitive to environmental fluctuations and/or the unpre-

dictable intrinsic noise occurring in certain time periods.

During the modeling, we have considered three different

types of noise (in five different ways) in the proposed

Stochastic S-system Modeling. Although, the first and the

simplistic noise, namely the additive noise, have no phys-

ical meaning with respect to GRNs, it essentially mimics

the effect of nature’s random processes. The multiplicative

noise, on the other hand, is models the external noise that

gets imposed on GRN. Since noise is widely used to test

the concentration of a gene product, we have evaluated the

performance of Stochastic S-system modeling with multi-

plicative noise both in genes’ production and degradation.

Finally, Langevin noise is used to model the internal noise

of a network, where this noise can occur because of small

copy number of a few key molecular species. Similar to

testing the proposed stochastic model with multiplicative

noise, the model is also studied with Langevin noise in

both production and degradation mode. After careful

observation of the impact of these five types of noises, we

propose a new modeling approach having composite noise

terms in it, which is capable of dealing both internal and

external noise of a GRN.

The GRN models, based on current state-of-the-art

deterministic approaches, are unable to cater to the inherent

stochasticity present in microarray data, thereby under-

scoring the need for a suitable stochastic model incorpo-

rating the randomness in the process. Such models have

additional term(s) of noise or probability distribution along

with the regular deterministic term. For GRN modeling,

probabilistic Boolean network (Shmulevich et al. 2002) is

considered as a common example of a discrete stochastic

model. Recently, stochastic modeling of GRN was also

carried out using Boolean models (Gillespie 2007; Gille-

spie and Petzold 2003), Petri nets (Golding et al. 2005;

Gonze et al. 2002) or other modeling techniques (Tian and

Burrage 2001, 2006; Wahde and Hertz 2000; Wilkinson

2009). Further, probabilistic hybrid approaches (Goldbeter

1995) and multi-scale hybrid models (Goss and Peccoud

1998; Poovathingal and Gunawan 2010), that include both

stochastic and deterministic dynamics, have also been

proposed. Recent GRN approaches deal with either sta-

bility of the network or stochastic delayed regulations or

both (He and Cao 2008; Luo et al. 2010; Wang et al.

2009). However, the aforementioned methods, due to using

non-differential equation models, fail to completely cap-

ture the changing behavior of expression profiles. Hence,

ordinary differential equations (ODEs) are essential when

continuously varying quantities and their changing char-

acteristics over time must be captured. The ODE models

show promise in reconstructing GRNs from continuous

time-expression profiles (Chowdhury and Chetty 2011;

Chowdhury et al. 2012, 2013a, b; Kikuchi et al. 2003;

Savageau 1976). Recently, stochastic differential equations

(Tian and Burrage 2001, 2006) have been applied for

capturing system dynamics. Tian and Burrage (2001,

(2006) developed a stochastic modeling technique based on

the following ordinary differential equation describing the

dynamics of gene transcript:

dI

dT
¼ aþ bf ðtÞ � KI ð1Þ

The above stochastic modeling emphasizes the regulations

only in production and fails to capture regulation in the

degradation. Using the non-linear S-system model, we can

represent regulations both in the production and degrada-

tion phases. However, the traditional S-system model is

deterministic and fails to cope with noisy microarray data.

This paper proposes new stochastic S-system model and

investigates the effect of different types of noise, e.g.,

additive, multiplicative, Langevin, in a widely used deter-

ministic S-system model. Both synthetic and real life net-

works are considered.

The reminder of this paper is organized as follows:

‘‘Stochastic modeling of gene regulatory network’’ section

highlights the proposed stochastic S-system models along

with the modified numerical integration. In ‘‘Experimental

results and discussions’’ section, the performance of the

proposed model is evaluated using various synthetic and

real networks. ‘‘Conclusion’’ section concludes the paper.

Stochastic modeling of gene regulatory network

The model

GRN modeling is considered as a non-linear identification

problem with the presence of numerous interacting genes

in the network (Cantone et al. 2009; Kim et al. 2007). A

promising non-linear model, the S-system model (Sav-

ageau 1976) is capable of capturing the dynamics of vari-

ous complex regulations. While the S-system is able to

represent both the production and the degradation phases, it

is still a deterministic model and unable to capture the
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stochasticity of a real GRN. In this paper, we propose a

novel stochastic S-system model capable of realistically

modeling the noisy variations observed in measured time

series data.

Before introducing the stochastic S-system model, we

briefly discuss the deterministic S-system model. The S-

system approach, proposed by Savageau (1976), is well-

known for modeling biochemical networks and has

attracted significant attention in the past decade (Kikuchi

et al. 2003; Maki et al. 2002; Voit and Radivoyevitch

2000). Considering N as the number of genes in a network,

the S-system model can be described by the following

equation:

d

dt
Xi ¼ ai

YN

j¼1

X
gij
j � bi

YN

j¼1

X
hij
j ; i ¼ 1. . .N ð2Þ

where, Xi is the expression level of the ith gene. Two non-

negative parameters ai, bi are called rate constants and

real-valued exponents gij, hij are referred to as kinetic

orders. The typical values of rate constants and kinetic

order parameters range from 0 to 20 and �3:00 to 3.00,

respectively. The term ai
Q

X
gij
j models the process of RNA

production, while the term bi
Q

X
hij
j models the process of

RNA degradation. In production, a positive value of gij
implies the activation from Gene-j to Gene-i, while a

negative value of gij indicates the inhibition from Gene-j to

Gene-i. On the other hand, in the degradation phase, sup-

pression and inhibition on Gene-i from Gene-j are indi-

cated with negative and positive values of hij, respectively.

If gij ¼ 0 (hij ¼ 0), it implies that there is no activation

(inhibition) from Gene-j to Gene-i. For the canonical S-

system model, as shown in Eq. (2), where all N genes are

considered at the same time for modeling, the set of

parameters that defines the model is given by h = fa, b, g,
hg. Thus, to infer a GRN of N genes using the S-system

model, 2�NðN þ 1Þ parameters must be estimated. How-

ever, Maki et al. (2002) proposed the following de-coupled

S-system model by decomposing the canonical system into

smaller problems:

d

dt
Xi ¼ ai

YN

j¼1

Y
gij
j � bi

YN

j¼1

Y
hij
j ; i ¼ 1. . .N ð3Þ

For solving Eq. (3), Yi¼j is obtained by numerical inte-

gration, whereas Yi!¼j is obtained by pre-calculations

directly via observed times-series data. Although the

accuracy may decrease due to direct estimation rather than

numerical calculation, decoupling greatly reduces the

computational burden. In the rest of this paper, we denote

this model [Eq. (3)] as DSS (deterministic S-system).

We now write the stochastic differential equations with

generalized term (Shmulevich and Aitchison 2009) in the

following equation:

d

dt
Xi ¼ fiðX; u; tÞ þ lgðXiÞfiðtÞ ð4Þ

Here, fi represents the deterministic differential equations to

model genetic interactions and lgðXiÞfiðtÞ represents its

stochastic part. The stochastic part contains three terms: l
represents noise strength, gðXiÞ is the contribution of signal

fluctuation, and fiðtÞ is Gaussian white noise with zero mean

and unit variance. Tian (2011) considered f as a Weiner

process W(t) with increment 4WðtÞ = Wðt þ4Þ
�WðtÞ�Nð0; tÞ as a Gaussian random variable. We con-

sider Eq. (2) as the deterministic function for Eq. (4) and

form the generalized Stochastic S-systemModel as follows:

d

dt
Xi ¼ ai

YN

j¼1

X
gij
j � bi

YN

j¼1

X
hij
j

" #
þ lgðXiÞfiðtÞ; i ¼ 1. . .N

ð5Þ

While considering only the additive noise, the stochastic

model, denoted by SSSa, is as follows

d

dt
Xi ¼ ai

YN

j¼1

X
gij
j � bi

YN

j¼1

X
hij
j

" #
þ lfiðtÞ; i ¼ 1. . .N

ð6Þ

where, gðXiÞ = 1 in Eq. (4). We note that, integral of a

white noise is Brownian motion that produces Brownian

noise. The key reason of selecting the additive noise

(Wiener process) in the new modeling approach is to

imitate the effect of nature’s random processes. However,

we also evaluated the stochasticity with multiplicative

noise and Langevin noise, and later, proposed stochastic

S-system model having hybrid noise terms with deter-

ministic S-system equation.

It may be noted that, both the production and degrada-

tion processes can contribute towards noise and gðXiÞ can
be considered as originating from either production or

degradation, or both. For ease of understanding, we define

qðXiÞ and .ðXiÞ as the noise contributions in production

and degradation, respectively:

qðXiÞ ¼ ai
YN

j¼1

X
gij
j

.ðXiÞ ¼ bi
YN

j¼1

X
hij
j

ð7Þ

The stochastic S-system model with multiplicative noise

and Langevin noise in production, denoted as SSSmT and
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SSSLT, can be expressed by the following Eqs. (8) and (9),

respectively:

d

dt
Xi ¼ ai

YN

j¼1

X
gij
j �bi

YN

j¼1

X
hij
j

" #
þlqðXiÞfiðtÞ; i¼ 1. . .N

ð8Þ

d

dt
Xi ¼ ai

YN

j¼1

X
gij
j �bi

YN

j¼1

X
hij
j

" #
þl

ffiffiffiffiffiffiffiffiffiffiffi
qðXiÞ

p
fiðtÞ; i¼ 1. . .N

ð9Þ

In most of the existing approaches for GRN modeling,

stochastic components are usually additive noise or

degradation process. Here, we consider the stochastic S-

system model with transcription process in terms of mul-

tiplicative and Langevin noise:

d

dt
Xi ¼ ai

YN

j¼1

X
gij
j �bi

YN

j¼1

X
hij
j

" #
þl.ðXiÞfiðtÞ; i¼ 1. . .N

ð10Þ

d

dt
Xi¼ ai

YN

j¼1

X
gij
j �bi

YN

j¼1

X
hij
j

" #
þl

ffiffiffiffiffiffiffiffiffiffiffi
.ðXiÞ

p
fiðtÞ; i¼1. . .N

ð11Þ

We denote the above two models as SSSmD and SSSmTþLD,

respectively. The aforementioned five stochastic S-system

equations incorporate the noise either from production or

from degradation or none. Similar to Tian (2010), we also

consider the stochastic S-system model with multiple (two)

noise terms, denoted SSSmTþLD, according to the following

equation:

d

dt
Xi ¼ ai

YN

j¼1

X
gij
j � bi

YN

j¼1

X
hij
j

" #
þ l1.ðXiÞfiðtÞ

þ l2
ffiffiffiffiffiffiffiffiffiffiffi
qðXiÞ

p
fiðtÞ; i ¼ 1. . .N

ð12Þ

The above equation takes account of noise from both

production and degradation. However, the choice of mul-

tiplicative noise in production and Langevin noise in

degradation is based on the empirical experimental obser-

vation that we performed on various GRNs.

Numerical integration with stochastic S-system

model

Due to the additional stochastic term in the model equa-

tions [Eqs. (6), (8)–(11)], the stochastic S-system (SSS)

model defined in the previous section requires additional

parameters to be inferred compared to the traditional S-

system model due to the additional stochastic term in the

model equations. In order to understand the enhancements

necessary for numerical integration for the SSS model, let

us first consider the generalized equation of the SSS

[Eq. (4)]. Although Eq. (4) can be solved by numerical

integration using any standard techniques, such as Runge–

Kutta fourth order equation (RK4), it requires multiple

Gaussian white noise to be generated for single t. To

illustrate, let us consider the four component equations of

standard RK4 to calculate numerical integration at the tth

time:

k1 ¼ f ðt;XÞ

k2 ¼ f ðt þ h

2
;X þ h

2
k1Þ

k3 ¼ f ðt þ h

2
;X þ h

2
k2Þ

k4 ¼ f ðt þ h;X þ hk3Þ

ð13Þ

where h[ 0 is the step size. We observe that, evaluation of

the function f(t, X) is required at three different internal

time-stamps (i.e., t, ðt þ h
2
Þ, and ðt þ hÞ) between two

consecutive t values (i.e., tn and tnþ1). Since, tnþ1 ¼ tn þ h,

we can safely assume two different internal time-stamps,

i.e., t and t þ h
2
, other than the final t (i.e., tT ). Hence, the

numerical integration requires two different noise values

for each t. However, since a typical h value is extremely

small, our proposed model can safely assume that the noise

at t and t þ h
2
are the same. To keep the simulation simple,

we also consider, in a particular time-stamp t, the same

noise value will have an effect on the concentrations of all

N genes.

Although noise affects on certain time-samples, the

genes’ concentration in the subsequent time-stamps will

continue to carry forward the effect of noise affected

concentrations. Rather than considering the occurrences of

random noise, we assume that the noise appears in a par-

ticular window frame of single dimension ½ts; te� with

t0 � ts � te � tT , where ts and te, respectively represent the

start and end time-stamp of the noise window, while t0 and

tT represent the start and end time-stamp of the microarray.

The situation, for a single time-series data, is shown in

Fig. 1. Since, the biological noise can appear only in

Fig. 1 Noisy microarray
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certain samples, we assume that ðte � tsÞ�maxt, where

maxt is the maximum size of the window.

However, any meaningful conclusion about complex

dynamics cannot be derived using a single set of time-

course data; multiple time-course data set are often con-

sidered. Hence, for K different data sets, we consider K

different single dimensional window frames for noise to

appear. Thus, we define the following noise matrix:

NS ¼

NS1;ts NS1;tsþ1
� � � NS1;te

NS2;ts NS2;tsþ1
� � � NS2;te

..

. ..
. . .

. ..
.

NSK;ts NSK;tsþ1
� � � NSK;te

0
BBB@

1
CCCA ð14Þ

where NSp;q is Gaussian white noise with zero mean and

unit variance at the qth time-stamp in the pth data set.

Inference mechanism

In order to evaluate the performance of the proposed

Stochastic S-system model, we have used our previously

developed optimization technique REGARD (Reverse

Engineering GRN with Adaptive Regulatory-genes-cardi-

nality) (Chowdhury et al. 2012). Both the stochastic and

deterministic S-system models are tested with this

REGARD algorithm. REGARD was developed in

Chowdhury et al. (2012) based on Trigonometric Differ-

ential Evolution algorithm incorporating various sub-

modules for appropriate inference of the GRNs. It starts

with an improved initialization algorithm that includes the

knowledge of cardinality in the initial seeds. After that,

evolution is performed with trigonometric mutation and

cross-over operations. During the evolution, our proposed

cardinality-based fitness criteria is invoked along with the

Adaptive-regulatory-Genes Cardinality (ARGC) algorithm

that adapts the cardinality values based on a probabilistic

criteria. We also used a local-search search technique that

fine-tunes best 10 % solutions in every iteration. When

maximum number of iterations are completed, the candi-

date solutions go through our proposed multi-stage

refinement algorithm that further fine-tunes the candidate

solutions and finds single candidate solution. The steps of

the REGARD algorithm is shown in Fig. 2.

Initialize population 
with Improved_PI

Set Ii=MaxI, Ji=0, G=0 

Perform Mutation, 
Crossover and Selection 
using TDE, and select fit 

individuals for next 
generation 

Apply Hill Climbing Local 
Search (HCLS) over best 

10% individuals

G%L
=0? 

Update Ii and 
Ji using 
 ARGC

algorithm

Stage 1: Apply Refinement 
Algorithm (RA) 

Stage 2: Apply RA again by 
taking the input from Stage 1 

Report individual with lowest 
fitness value as candidate 

solution 

G=G+1 

Yes

G= 
MaxGen  

or terminal 
condition 

met? 

No

Yes

Phase 1 Phase 2

No

Fig. 2 Flow-chart of our

previously proposed

optimization algorithm ‘Reverse

Engineering GRN with

Adaptive-regulatory-Genes

Cardinality (REGARD)’ (L in

the flow-chart denotes the

update interval for Ii=Ji with
ARGC algorithm)

Cogn Neurodyn (2015) 9:535–547 539

123



Experimental results and discussions

The evaluation of various stochastic S-system models pro-

posed has been performed on GRNs of different sizes: both

synthetic and real-life networks. For synthetic networks, we

have considered two network sizes and for real life networks

we again consider two networks: IRMA network in yeast and

SOS DNA repair network in E. coli. First, we generate

expression profiles using the newly proposed stochastic

S-system model for the well-studied 5-gene and 20-gene

(a)

5

43

2

1

(b)

Fig. 3 a A GRN of 5 genes.

b Corresponding graphical

representation of the GRN

(black and grey colored

regulations represent

interactions in production phase

and degradation phase,

respectively, arrow and block

ended regulations represent

activation and supression,

respectively)

Table 1 S-system parameters

for 5-gene synthetic network
i ai gi;1 gi;2 gi;3 gi;4 gi;5 bi hi;1 hi;2 hi;3 hi;4 hi;5

1 5.00 0.00 0.00 1.00 0.00 -1.00 10.00 2.00 0.00 0.00 0.00 0.00

2 10.00 2.00 0.00 0.00 0.00 0.00 10.00 0.00 2.00 0.00 0.00 0.00

3 10.00 0.00 -1.00 0.00 0.00 0.00 10.00 0.00 -1.00 2.00 0.00 0.00

4 8.00 0.00 0.00 2.00 0.00 -1.00 10.00 0.00 0.00 0.00 2.00 0.00

5 10.00 0.00 0.00 0.00 2.00 0.00 10.00 0.00 0.00 0.00 0.00 2.00

No noise
Generated by SSSa

Generated by SSSmT

Generated by SSSmD

Generated by SSSLT

Generated by SSSLD

Generated by SSSmT+LD

(a)

No noise
Generated by SSSa

Generated by SSSmT

Generated by SSSmD

Generated by SSSLT

Generated by SSSLD

Generated by SSSmT+LD

(b)

No noise
Generated by SSSa

Generated by SSSmT

Generated by SSSmD

Generated by SSSLT

Generated by SSSLD

Generated by SSSmT+LD

(c)

Fig. 4 Expression profiles of gene-1 for different noise strenght values a l = 10, b l = 15 and c l = 20

540 Cogn Neurodyn (2015) 9:535–547
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SSSa

SSSmT

SSSmD

SSSLT

SSSLD

DSS

(a)

SSSa

SSSmT

SSSmD

SSSLT

SSSLD

DSS

(b)

Fig. 5 a ROC points. b Precision and F-score for the proposed stochastic models and existing DSS

SSSmT+LD

DSS

(a)

SSSmT+LD

DSS

(b)

SSSmT+LD

DSS

(c)

Fig. 6 Error for a a values, b b values and c average errors calculated for inferred parameters with SSSmTþLD

(a) (b)

(c) (d)

Fig. 7 Error at various time-stamps. a Error at t = 3. b Error at t = 5. c Error at t = 8. d Error at t = 10
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networks (Kikuchi et al. 2003; Noman 2007). Then, the two

synthetic networks and two other real-life GRNs are inferred

with the proposed SSS model.

For our experiments, we consider a 5-gene synthetic

network, first used by Kikuchi et al. (2003) and commonly

employed for many S-system model based reverse engi-

neering of GRNs. The schematic diagram is shown in

Fig. 3a. Based on the network Fig. 3a, Kikuchi et al.

designed a GRN with 13 regulations, shown in Fig. 3b,

with the corresponding S-system parameters of Table 1.

According to Kikuchi et al. (2003), this is a typical regu-

latory system with gene interaction centering on two genes

(genes 1 and 4). X1 is the mRNA produced from gene 1, X2

is an enzyme protein gene 2 produces, and X3 is an inducer

protein catalyzed by X2. X4 is an mRNA produced from

gene 4 and X5 is a regulator protein produced by gene 5.

Positive feedback from the inducer protein X3 and negative

feedback from the regulator protein X5 are assumed in the

mRNA production processes of genes 1 and 4. This model

has been developed to analyze the interaction of regulator

and effector genes.

From the S-system parameters of the network (Table 1),

we generated ten datasets from ten random initial condi-

tions using deterministic S-system model [i.e., DSS or

Eq. (2)] and proposed Stochastic S-system models (SSS) of

various types of noises [Eqs. (6), (8)–(12)]. In addition, we

have analyzed the effect of noise terms in the expression

profiles for different levels of noise strengths (i.e.,

l ¼ 10; 15; 20). The expression profiles for a randomly

selected gene (gene-1) of single data set for all three noise

strength values are shown in Fig. 4. While analyzing the

effect of various noises, we observe that effects of additive

noise in the expression profiles are very small for any noise

strength. On the other hand, an abrupt effect in expression

profiles is observed for multiplicative noise in degradation,

while significant regular changes are observed for the

Langevin noise in production. The remaining noise types

cause irregular changes in the expression profiles. Fur-

thermore, we note that their expression profiles exhibit

little or no variation and remain close to the original values

for l ¼ 10, whereas massive fluctuations are noted for

l ¼ 20. Thus, the parameter for noise strength is set to 15

(i.e., l ¼ 15) in all the experiments.

For inferring a network from microarray time-series

data, our previously proposed REGARD (Reverse Engi-

neering GRN with Adaptive Regulatory Genes’ Cardinal-

ity) method (Chowdhury et al. 2012) is used for learning

the parameters of the stochastic model, i.e., SSS. The start

19

16

20

17 18

1

5

2

6 74 8

3

13

11

1514

10

12

9

Fig. 8 20-Gene network adapted from Noman (2007). Arrow and

block ended arcs represent activation and suppression, respectively.

Black and grey colored arcs indicate instantaneous activation/supres-

sion in production and degradation phases, respectively

Table 2 Evaluation of SSSmTþLD for inferring 20-gene network

Method Sn Sp Pr F�score

SSSmTþLD 0.53 0.94 0.39 0.45

DSS 0.29 0.95 0.47 0.36

SSSmT+LD

DSS

(a)

SSSmT+LD

DSS

(b)

SSSmT+LD

DSS

(c)

Fig. 9 Error at different time-stamps for three randomly selected genes. a Error for gene 5. b Error for gene 16. c Error for gene 19
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and end point of noise window is implemented from 3rd till

6th time-stamp for all experiments. The noise matrix is

initialized prior to the inference using zero mean unit

variance Gaussian white noise.

5-Gene synthetic network

As mentioned earlier, for the 5-gene network, we used the

expression profiles generated using the proposed stochastic

S-system model with multiplicative noise in production

[Eq. (10)]. However, for validation all the proposed

stochastic models are applied separately to the data. The

sensitivity-specificity plots are shown in Fig. 5a in terms of

ROC plots. Since the data is generated with SSSmT model,

inference with SSSmT model exhibits the best performance

among all models, other than SSSmTþLD. The proposed

stochastic model SSSmTþLD is also robust and able to cope

with the data generated with a different model (i.e.,

SSSmT). Further, we observe that the precision and F-score

for SSSmTþLD and SSSmT are best among all SSS models.

Figure 6 shows the plot of absolute error between two rate

constant values (i.e., a and b) calculated using the equation

jRcT ;i � RcI;ij, where RcT ;i/ RcI;i indicate the ith rate con-

stant in target network and inferred network, respectively.

Furthermore, average error is calculated as follows:

AE ¼ 1

jParamsj
XjParamsj

i¼1

jdT ;i � dI;ij ð15Þ

Here, dT ;i/ dI;i are the ith parameter values for Target/

Inferred network, |Params| indicates the total number of

parameter of a particular category. For example, while cal-

culating the average error for rate constant values,

jParamsj ¼ 2� N, for kinetic orders values

jParamsj ¼ 2� N � N, and jParamsj ¼ 2� NðN þ 1Þ
while all S-system parameters are considered. A comparison

of errors for inferring model parameters between determin-

istic S-system model and proposed SSSmTþLD, shown in

Fig. 6, clearly indicates the superiority of the proposed

stochastic modeling over the deterministic models.

Finally, the error between inferred and target expression

profile in Fig. 7 shows that the magnitude of the error bars to

be very small indicating near-overlap of the two expression

profiles. The performance of the proposed SSSmTþLD is on a

par with the SSSmT model while inferring the 5-gene net-

work and robust enough to withstand the presence of noise

in the expression profiles generated by SSSmT model.

20-Gene network

The effectiveness of the proposed stochastic model is fur-

ther evaluated with a 20-gene synthetic network. This 20-

gene network, shown in Fig. 8, is a as medium-scale net-

work and has been frequently used to test model perfor-

mance (Chowdhury et al. 2012, 2013b; Noman 2007). For

this network, we again generate ten data sets from ten

different initial conditions using SSSmT [Eq. (10)]. The

evaluation of SSSmTþLD for inferring the 20-gene network,

using the existing REGARD (Chowdhury et al. 2012), is

shown in Table 2, and indicates that the proposed method

with SSSmTþLD is successful in inferring more regulations

and non-regulations than the deterministic S-system model.

The absolute errors with target expression profiles for

proposed and existing methods are shown in Fig. 9 for

three randomly selected genes. We observe that, although

SWI5

CBF1

GAL80 ASH1

GAL4

(a)

(b) (c)

(d) (e)

CBF1

SWI5

ASH1GAL80

GAL4

ASH1

SWI5

CBF1

GAL4

GAL80

SWI5

GAL80

CBF1

ASH1

GAL4

ASH1GAL80

GAL4

CBF1

SWI5

Fig. 10 IRMA network a Target, b inferred with proposed SSSmTþLD

from ON data set, c inferred with DSS from ON data set, d inferred

with proposed SSSmTþLD from OFF data set, e inferred with DSS

from OFF data set. Arrow ended black lines and block ended grey

lines indicate instantaneous activation and suppression, respectively
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the errors for the proposed SSSmTþLD are a little higher in

the early stages of introducing noise at t3, the errors for the

proposed method are much smaller compared with the

traditional model in the later time-stamp. This indicates

that SSSmTþLD has the ability to rapidly adjust with the

noise during the optimization process.

SSSmT+LD

DSS

(a)

SSSmT+LD

DSS

(b)

SSSmT+LD

DSS

(c)

SSSmT+LD

DSS

(d)

SSSmT+LD

DSS

(e)

SSSmT+LD

DSS

Fig. 11 Error at different time-stamps in IRMA ON dataset

SSSmT+LD

DSS

(a)

SSSmT+LD

DSS

(b)

SSSmT+LD

DSS

(c)

SSSmT+LD

DSS

(d)

SSSmT+LD

DSS

(e)

Fig. 12 Error at different time-stamps in IRMA OFF dataset
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IRMA network in yeast

The proposed stochastic S-system model is next applied to a

real-life biological data of Saccharomyces cerevisiae (yeast)

called IRMA (Cantone et al. 2009). This is a 5-gene network

with the genesCBF1,GAL4, SWI5,GAL80,ASH1, regulating

each other. Cantone et al. (2009) provided two sets of gene

expression profiles, namely Switch ON and Switch OFF data

having 16 and 21 time series data points, respectively. TheON

dataset corresponds to the shifting of the growthmedium from

glucose to galactose, while the OFF data set corresponds to

shifting from galactose to glucose. In addition to the true 8

regulations, we also consider N (=5) self-regulations as true

positives (Chowdhury et al. 2012, 2013a). Figure 10 shows

the ratget IRMA network (Cantone et al. 2009) and also the

networks inferred by the proposed SSSmTþLD and current

deterministic S-system model. Although the true network is

not inferred by the the proposed method, the number of

inferred true regulations andnon-regulations aremore than the

existing model (Chowdhury et al. 2012). Further, the errors

for the proposed method are found to be generally lower than

the existing methods, as shown in Figs. 11 and 12.

SOS DNA repair network in Escherichia coli

Next, we consider the well-studied SOS DNA repair net-

work within Escherichia coli (E. coli). While the entire

DNA repair system of E. coli involves more than 100 genes

(Perrin et al. 2003), only 30 of its genes contribute towards

key regulations at the transcription level. We use the

expression data set from Ronen et al. (2002), which con-

tains information about eight genes, namely uvrD, lexA,

umuD, recA, uvrA, uvrY, ruvA, and polB. The data sets are

obtained from four different experiments under various UV

light conditions, with the gene expression levels being

measured at 50 instants evenly spaced at 6-min interval.

Following Noman (2007), we normalize the input data by

dividing the expression profile of each gene by its maxi-

mum value.

We calculate the four performance metrics, i.e., sensi-

tivity, specificity, precision and F-score, according to (1)

the functional description of each gene in the original paper

(Ronen et al. 2002) and (2) the novel regulations inferred

by Perrin et al. (2003). Based on the two above criteria, we

reconstruct the target network for SOS DNA repair net-

work as shown in E. coli in Fig. 13. The evaluation of the

proposed SSSmTþLD and existing deterministic S-system

modeling approach is shown in Table 3. We observe that in

all the four performance metrics, the proposed SSSmTþLD

outperformed the existing method. Since, the expression

data contains noise, the experimental result is the suc-

cessful application of the stochastic modeling approach

over the deterministic model.

umuD

ruvA

uvrA

uvrD

recA

lexA

uvrY

polB

Fig. 13 Target SOS network

Table 3 Evaluation of SSSmTþLD for inferring E. coli network

Method Sn Sp Pr F�score

SSSmTþLD 0.40 0.95 0.62 0.43

DSS 0.25 0.93 0.50 0.33

Fig. 14 Error at different time-

stamps in SOS dataset
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We also show the absolute error in all the time-stamps

with all the eight genes for a single data set in Fig. 14. The

bar graph indicates that, despite slightly higher errors in the

early stages of the expression profiles, the magnitude of

errors reduces and are near-zero in the subsequent time-

stamps. This error bars shows the ability of the proposed

stochastic S-system model to adapt for inferring real-life

gene regulatory network.

Conclusion

Noise is an inherent characteristics of all biological net-

works. S-system modeling is specially tailored to model

biological process. While there have been efforts to

incorporate stochastic terms in GRN models, the S-system

model in its current form is unable to include stochasticity.

In this paper, we have developed a stochastic S-system

modeling approach to cope with the inherent noise present

in the microarray data. In order to identify the most suitable

stochastic model, we have tested the performance of the

stochastic S-system (SSS) model with various types of

noise including hybrid noise factors. Experimental results

show that the proposed SSS is effective in reconstructing

the expressions profiles as well as inferring higher number

of regulations than deterministic modeling. Currently,

studies are being performed to extend and evaluate the

technique to large scale real-life GRNs.
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