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Abstract In the field of brain research, attention as one of

the main issues in cognitive neuroscience is an important

mechanism to be studied. The complicated structure of the

brain cannot process all the information it receives at any

moment. Attention, in fact, is considered as a possible

useful mechanism in which brain concentrates on the

processing of important information which is required at

any certain moment. The main goal of this study is de-

coding the location of visual attention from local field

potential signals recorded from medial temporal (MT) area

of a macaque monkey. To this end, feature extraction and

feature selection are applied in both the time and the fre-

quency domains. After applying feature extraction methods

such as the short time Fourier transform, continuous

wavelet transform (CWT), and wavelet energy (scalo-

gram), feature selection methods are evaluated. Feature

selection methods used here are T-test, Entropy, receiver

operating characteristic, and Bhattacharyya. Subsequently,

different classifiers are utilized in order to decode the lo-

cation of visual attention. At last, the performances of the

employed classifiers are compared. The results show that

the maximum information about the visual attention in area

MT exists in the low frequency features. Interestingly, low

frequency features over all the time-axis and all of the

frequency features at the initial time interval in the spec-

trogram domain contain the most valuable information

related to the decoding of spatial attention. In the CWT and

scalogram domains, this information exists in the low

frequency features at the initial time interval. Furthermore,

high performances are obtained for these features in both

the time and the frequency domains. Among different

employed classifiers, the best achieved performance which

is about 84.5 % belongs to the K-nearest neighbor classifier

combined with the T-test method for feature selection in

the time domain. Additionally, the best achieved result

(82.9 %) is related to the spectrogram with the least

number of selected features as large as 200 features using

the T-test method and SVM classifier in the time-fre-

quency domain.

Keywords Local field potential � Decoding of visual

attention � Extracellular recording � Feature extraction and

feature selection

Introduction

Visual attention is one of the most important issues in cog-

nitive science. Brain has limited capacity in the processing of

information and it cannot process all the information re-

ceives at any moment. Attention is a mechanism in which

brain concentrates on processing of the necessary informa-

tion provided at any certain moment (Carrasco 2011). At-

tentional mechanism appears in different forms in the brain,

namely: spatial-based, feature-based, and object-based at-

tention. Spatial attention is the selection of a stimulus based

on its location that occurswhen attention focuses on a special

place in the scene. The effect of spatial-based attention is that
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the received information from the attended location is being

more processed compared to other areas (Carrasco 2011;

Vecera and Rizzo 2003; Bisley 2011). Furthermore, two

mechanisms, namely: bottom-up and top-down, control

spatial attention. In summary, bottom-up processing is dri-

ven by focusing on properties of the stimulus, especially its

salient properties while top-down mechanism is goal driven

and is under the control of the subject attending to the task

(Shipp 2004; Gu and Liljenström 2007).

As an effect of the attention mechanism, neural re-

sponses are modulated by attention in specific regions of

brain (Carrasco 2011; Bisley 2011; Gu and Liljenström

2007; Treue and Maunsell 1999; Sundberg et al. 2009;

Seidemann and Newsome 1999; Herrington and Assad

2009; Martinez-Trujillo and Treue 2004). Previous studies

have shown that in different brain regions, an increase in

neural response occurs when attention focuses on a sti-

mulus that falls within a cell’s receptive field (RF). When a

stimulus outside the RF is attended, neural response de-

creases (Carrasco 2011; Bisley 2011; Gu and Liljenström

2007; Treue and Maunsell 1999; Sundberg et al. 2009).

In order to investigate this valuable mechanism in the

brain, it is necessary to measure brain activity by different

techniques. The most common form of brain activity

measurement in awake animals is extracellular recording.

Two main categories of information are processed in the

extracellular signal recording, i.e., local field potential

(LFP) signals and spikes. Local field potential signals are

low frequency components below 250 Hz while the spikes

(action potentials) are high frequency events (Engel et al.

2005; Belitski et al. 2008, 2010; Rasch et al. 2009; Ka-

jikawa and Schroeder 2011).

There is not enough knowledge about the origin of the

local field potential signals. Findings revealed that local

processing takes place around the recording electrode tip.

This signal is influenced by the potentials with the distance

of a few millimeters (Engel et al. 2005; Rasch et al. 2009;

Kajikawa and Schroeder 2011). It has been shown that

LFPs are related to the dendritic activities, and they have

local properties. They are specified with low amplitudes

where they are recorded far away from tips of the elec-

trodes. Furthermore, Mitzdorf (1987) has shown that the

local signals are the inputs of specific areas of the brain,

while the spikes represent the output of the corresponding

areas.

Local field potential signals contain useful information

for cognitive processing. The LFP is the sum of synaptic

oscillation currents in the brain’s network of neurons.

These oscillations are gathered from the local volume of

neural tissues (Rasch et al. 2009; Katzner et al. 2009). The

mentioned signals can be employed to decode cognitive

activities such as visual attention. They are modulated by

changing the visual stimulus. Investigations on LFP signals

have been developed in different fields such as memory,

decision-making, and attention (Katzner et al. 2009; Cotic

et al. 2011).

LFP signals analysis has been performed in many ap-

plications in recent decades. These analyses provide valu-

able information to study brain structures and functions in a

more precise manner. As cases in point, it has been em-

ployed in the following studies: (1) decoding spoken words

using LFP in cortical surface (Kellis et al. 2010), (2)

modulation of LFP by contrast, and the direction of motion

in medial temporal (MT) (Khayat et al. 2010), (3) tuning

LFP for speed, direction and observation of high correla-

tion in certain frequencies, especially the gamma band in

the MT area (Liu and Newsome 2006), (4) decoding dex-

terous finger movements using LFP in M1 (Mollazadeh

et al. 2008), (5) decoding hand movement using LFP in

motor cortex (Mehring et al. 2003), and (6) application of

LFP in decoding of stimulus–reward pairing in V4 of

monkeys (Manyakov et al. 2010).

After data recording, signals must be processed to be

interpreted into useful data. There are different domains in

which properties of neuronal signals are processed. In order

to evaluate the information related to visual attention, two

main practical domains are used to analyze obtained data;

namely, the time domain and the frequency domain. Sev-

eral approaches are employed for signal analysis, i.e., Short

time Fourier transform (STFT), CWT, and wavelet energy

(scalogram).

Feature selection is the next step to find the least number

of useful features. This technique is in fact the selection of

a subset of the features to reduce data size. Finally, these

selected features are classified by different classifiers such

as SVM, K-nearest neighbor (KNN) , Naive Bayes, LDA

and QDA. Classification is performed to evaluate data for

systematic grouping of signals. In this paper, LFP signals

are analyzed during a spatial attention task in the MT area

of the monkey’s brain in two above-mentioned domains.

Moreover, feature extraction and feature selection methods

are applied to LFP signals. Feature extraction is performed

by STFT, CWT, and wavelet energy. Then feature selec-

tion is applied using four criteria, i.e., T-test, Entropy,

ROC, and Bhattacharyya. Subsequently, the classification

accuracy is evaluated by the above-mentioned classifiers in

two different domains. At last, the achieved results are

verified by statistical analysis.

This paper has been organized in the following form: the

next section reviews some of the related works on the

subject. Feature extraction is given in ‘‘Feature extraction

methods’’ section where STFT, CWT, and wavelet energy

are described. Feature selection methods (T-test, Entropy,

ROC, and Bhattacharyya) are explained in ‘‘Feature se-

lection methods’’ section while in ‘‘Classification’’ section,

the classification by different classifiers is discussed. In
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‘‘Data and preprocessing’’ and ‘‘Task’’ sections, respec-

tively, the description of the obtained data and the ex-

perimental task are explained. Results are presented in

‘‘Results’’ section which contain signal decoding in dif-

ferent domains, i.e., time, STFT, CWT, and energy

wavelet, and at last, discussion and conclusions are given

in ‘‘Discussion and conclusions’’ section.

Related works

Most of the studies on LFP signal decoding during dif-

ferent tasks have shown the power and high accuracy of

LFPs. In a recent work (Ince et al. 2010), it is shown that

LFP signals can be utilized for decoding movement target

direction in the dorsal premotor and primary motor cortex

of non-human primates. Results show that the accuracy of

information extracted from LFP is similar or slightly better

than single unit activity (SUA) and LFPs are stable over

time. In recent years, much attention has been given to this

kind of signal due to its high efficiency in decoding.

One of the important applications of the LFPs is precise

decoding of reaching movements. The results of a related

study have shown that LFPs retain useful information of

movement in primary motor cortex (Flint et al. 2012).

Moreover, in Flint et al. (2012) the performance of the LFP

signals and spikes were compared. It has been demon-

strated that LFPs are more robust and durable than spikes

and they can be used as an accurate source for brain–ma-

chine interfaces (BMI). In addition, epidural field potential

(EFP) signals were also studied and the effect and perfor-

mance of the field potentials were assessed.

In another work by Kaliukhovich and Vogels (2013),

LFPs were used for decoding the repeated objects in

macaque inferior temporal cortex. The effect of stimulus

was studied on the accuracy of the classification. In this

study, decoding the stimulus from signal power was per-

formed in different frequency bands and subsequently, the

obtained results have verified the accuracy of the classifi-

cation of the spectral frequency. This accuracy decreased

in gamma band and increased in other bands (alpha and

beta).

Manyakov et al. (2010) carried out another investigation

on decoding of stimulus–reward pairing from LFP in V4 of

monkeys. Time-frequency features (wavelet based fea-

tures) and spatial features were selected by feature selec-

tion methods and good performance was obtained by LDA

classifier. Results showed that stimulus–reward association

has more effect rather than unrewarded stimuli on LFP in

V4.

In signal processing field, other studies have been done

using time-frequency methods for feature extraction in

EEG signal (Taghizadeh-Sarabi et al. 2015). This useful

method applied in this paper too, (see ‘‘Feature selection by

using windowing method in time’’ section). For instance, in

Coyle et al. (2005) these signals have been recorded during

task of left and right hand movement’s imagination.

Time-frequency window with the best size has been used

in feature extraction and finally, good performance has

been obtained in classification. Results in Coyle et al.

(2005) have shown that this method is suitable for online

systems.

Esghaei and Daliri (2014) used a linear SVM classifier

to find out how data decoding could be varied by changing

the number of training samples, although; the main goal

was not obtaining high performance of decoding by using

sophisticated approached. This approach was tested in

different frequency bands. In this paper, the optimization of

features to gain the best results has been studied using

different approaches with the aim of obtaining high per-

formances of decoding. We utilized minimum features to

decode visual attention using different time-frequency

methods such as wavelet, CWT, STFT. With the aim of

feature selection approaches, then we found the best fea-

tures in different time-frequency domains. The results can

be useful in both understanding the mechanism of attention

in the brain and also in application of brain-computer in-

terfaces systems.

Feature extraction methods

Feature extraction as the first and main step of the

processing procedure is necessary for pattern recognition

and machine learning approaches. Sometimes it is

needed to have information in different forms. Hence, it

is fundamental to analyze signals in both time and fre-

quency domains. In addition to the time domain, three

methods are applied in this work in the data analysis

stage, namely, STFT, CWT and wavelet energy. It can

be conceived that Fourier transform (FT) does not work

properly for non-stationary signals. Properties of non-s-

tationary brain signals, especially LFP signals cause to

seek for new approaches. In STFT, a window with the

specified size is shifted over the signal and FT is applied

to the selected part of the signal. The time and frequency

resolutions depend on the size of the window. In STFT,

there is either time resolution or frequency resolution at

a moment. This problem is solved by variable-length

windows in wavelet (Coyle et al. 2005; Wang et al.

2009).

Short time Fourier transform (STFT)

STFT is a modified FT method. This approach is accom-

plished by moving a window over the original signal so
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that the desired signal is divided into a set of segments.

Each part of the signal is processed by FT in the pertinent

window in a specified time interval. The STFT formula is

given by:

STFT t;Xð Þ ¼ 1
ffiffiffiffiffiffi

2p
p

Z

f sð Þw s� tð Þe�jXsds ð1Þ

in which f(t) and w(t) are desired signal and window

function in the time domain, respectively. Subsequently,

spectrogram calculates the squared amplitude of the signal

STFT using the following equation:

spect t;Xð Þ ¼ STFT t;Xð Þj j2 ð2Þ

Continuous wavelet transform (CWT) and wavelet

energy

The time-frequency representation, wavelet is based on

the Fourier analysis. Wavelet technique is developed as a

short wave which gives a powerful tool for the analysis of

transient, non-stationary, or time-varying signals (Dastidar

et al. 2007). In wavelet, using variable size of window

gives both time and frequency resolution in a certain mo-

ment simultaneously. In this study, CWT is applied to the

data in feature extraction part. The relation corresponding

to CWT is given by the following equation (Wang et al.

2009; Xu and Song 2008):

Wf a; sð Þ ¼ 1
ffiffiffi

a
p

Z

R

f tð Þw� t � s
a

� �

dt ð3Þ

where f(t), w sð Þ, a and s are the input function, mother

wavelet, scale parameter, and shift parameter, respectively

(Xu and Song 2008; Nakatani et al. 2011). Then, the

wavelet energy as a function of the frequency is the

squared absolute of CWT.

Feature selection methods

Feature selection method is used in pattern recognition and

machine learning for optimizing the feature sets. This

method is considered as the most important step in pro-

cessing the data and chooses a subset of features and elim-

inates the others which have little or no information.

Therefore, the best subset of features contains the least

number of features. It reduces the dimension of the data and

improves the results obtained by the classifiers (Wang et al.

2008). In other words, the main goal of this step is finding a

subset of features which result on higher classification per-

formance in the feature space. In the present work, four

different feature selection methods are employed as follows:

T-test

In feature selection, it is worth noting that the obtained

features should contain useful information. In this step, if

the feature is not informative, it must be excluded from the

analysis. For this purpose, statistical tests such as T-test are

used. It determines whether statistical means of quantities

differ significantly or not.

Entropy

The relative entropy is useful to know the difference

between the actual and desired probabilities indicated by

P(a) and Q(a), respectively. This method calculates the

difference between the distributions related to different

classes (Theodoridis and Koutroumbas 2006; Duda et al.

2000; Zhen et al. 2011). It is calculated by the relation as

follows:

DKL Q að Þ;P að Þð Þ ¼
X

a

Q að Þ logQ að Þ
p að Þ : ð4Þ

Receiver operating characteristic (ROC)

ROC method gives information about the overlap between

different classes. As a comprehensive view, the obtained

information is displayed in ROC curve which indicates

how size and power trade off take place with changing the

threshold. In this comparison, appropriate curves locate

nearest to the top left corner. Thoroughly, the area under

the ROC-curve gives a criterion for measuring the perfor-

mance (Choi and Lee 2003).

Bhattacharyya

This method is done in Bhattacharyya space; in fact,

this space is created by calculating Bhattacharyya dis-

tance related to the paring of categories. This distance

is necessary for measuring separation between two

classes and is useful for feature selection. Let us as-

sume that there is a Gaussian distribution; hence, the

Bhattacharyya is given by the following equation (Chen

et al. 2008):

B ¼ 1

8
li � lj
� �T Ri þ Rj

2

� ��1

li � lj
� �

þ 1

2
ln

RiþRj

2

	

	

	

	

	

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rij j Rj

	

	

	

	

q

ð5Þ

where, li and lj are the mean, Ri and Rj are the covariance

matrices of the two classes.
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Classification

Classification is useful to predict and to decode the atten-

tional state of the monkey. This method utilizes a learning

function which attributes label of the classes to new pat-

terns. It is important that results of the classifiers are to be

compared with each other. In this way, the kind of the data

set and evaluation criteria are important in each classifier.

Moreover, it is essential that data set is divided into two

distinct groups, i.e., training set and test set. In this paper,

there are two classes of signals, namely, attention inside the

RF and attention outside the RF. Trials are classified into

one of these two classes using each of the classification

methods. The classifiers tested are SVM, KNN, naive

Bayes, LDA and QDA and the best classification results

have been reported in the ‘‘Results’’ section.

In SVM classifier, points in the feature space are

separated by planes in which margin between classes are

maximized based on similar categories. When the data set

has a lot of attributes, this classifier is the best choice

among all of the classifiers. However, it should not be

forgotten that the kernel function can influence the results

(Wang et al. 2008; Choi and Lee 2003; Kotsiantis 2007). In

the present study, SVM classifier with different kernels

(linear, RBF, and polynomial) have been evaluated.

In KNN algorithm, features are classified based on the

closest training data in the feature space. KNN classifier is

implemented with changing the number of nearest neighbors

(K), different measurement distances, and different rules.

Finally, the new sample is classified by majority vote (Kot-

siantis 2007; Song et al. 2007; Starzacher and Rinner 2008).

One of the statistical classifiers is Bayesian classifier that

computes class membership probabilities. Naı̈ve Bayes clas-

sifier is originally testedwithdifferent distributions and priors.

Naı̈veBayes classifiers are one of the supervised learningones

and use the method of the maximum likelihood in most of the

time. Furthermore, they need few training data to estimate

parameters (Theodoridis and Koutroumbas 2006).

LDA maps samples of the data to features in low dimen-

sional space without loss of information. QDA is similar to

LDA, but it takes the advantages of quadratic distance im-

plemented between classes. These two classifiers maximize

the ratio of between-class variance to the within-class vari-

ance. This relationship guarantees the maximal separability

for any data (Starzacher and Rinner 2008).

Data and preprocessing

In this paper, decoding of visual attention is analyzed. The

data are the local field potential signals that would restrict

the analysis to lower frequencies (below 250 Hz). These

signals were collected from neuronal activities of the MT

brain area of a macaque monkey using extracellular

recording method while the monkey’s attention shifted

between two stimulus locations. MT neurons are respon-

sible for motion processing in the visual system. The MT

area has been located in the dorsal visual pathway near the

V1 (primary visual cortex).

The data have been recorded from MT area of one

monkey using Multichannel Acquisition Processor (MAP)

data acquisition system (Plexon, USA) and 5-channel

Mini-matrix driver (Thomas Recording, Germany). The

data have been collected in 31 recording sessions and in an

interleaved manner for each session for the two attentional

conditions. The overall number of successful recordings

has been collected from 42 electrodes in 31 sessions of

recordings. These data have been recorded in two atten-

tional conditions including the attention inside the recep-

tive field (RF) and attention outside RF for any session.

This has been specified based on the multi-unit activities of

each electrode. After data recording, continuous signals

were sampled at 1 kHz. Also, amplifying, filtering and

digitizing have been performed. Data preprocessing as an

important step has been applied to digital signals. Avail-

able signals are gathered and data processing is carried out

by MATLAB.

Figure 1 shows a single raw data before cutting. Each

trial includes 682 features in time domain from the sti-

mulus onset time for the analysis.

In addition to anatomical position, physiological char-

acteristics must also be considered for specifying the cor-

rect area for recording. The high percentage of neurons in

MT area is characterized by a direction selectivity of a

moving visual stimulus (Martinez-Trujillo and Treue 2004;

Albright 1984). Therefore, one of the specified properties

to ensure that the electrodes are placed in MT area is di-

rectional selectivity of neurons in this area.

According to this observation, most of the neurons in

MT area can be fitted well with a bell-shaped tuning curve;

therefore, fitting the neuronal response tuning curves with

Gaussian functions is a strong statistical quantitative ana-

lysis. The Gaussian function provides an estimation of the

tuning curves in MT area (Albright 1984). In this study,

directional tuning curve for eight movement directions of

random dot patterns (RDPs) at 45 degree intervals were

fitted with Gaussian curve with the mean of h0 (the pre-

ferred direction), and standard deviation Dh (the curve

width) by the given information about selectivity of neu-

rons in any recording trial. The monkey was trained to

attend to a moving RDP which was moved in one of the

possible eight directions (0�, 45�, 90�, 135�, 180�, 225�,
270�, 315�). Then, the data were recorded in two atten-

tional conditions while each condition contained 8 direc-

tions. In the present study, the tuning curve of firing rates

along eight directions was used and the channels that fitted
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well with Gaussian function were selected in order to be

sure that the electrode has been placed in MT area.

The goodness of fitting the curves was assessed using

r-square (coefficient of determination for evaluating

goodness of fitting). It has been found that all of the

channels do not always coincide with the Gaussian func-

tion. Here in, the channels were selected such that their

r-square remained above 0.75.

In total 6610 trials were divided into two equal groups,

the training set and the test set. The random sub-sampling

method has been used for validation of the methods. The

6610 trials permuted across both of training and test sets in

any run. It is worth mentioning that the problems of

overfitting are noticed, however, the idea of using different

methods for classification and obtaining similar results

verifies the reliability of the obtained results. In addition

we have checked for the cases of overfittings (like the

number of SVs in SVM etc). Since the overfitting could

provide unreliable results among different runs, a valida-

tion strategy over each 15 runs has been utilized to prevent

any inaccurate outcome. Furthermore, to have enough

number of observations per parameter, we limited the

maximum number of selected features to 200.

Task

All trials started with presentation of a fixation-point in the

middle of the screen for the duration of 130 ms. A cue was

appeared for the duration of 455 ms indicating the position

of the stimulus that the monkey had to attend. After that,

two moving RDPs were presented in the screen, one inside

the receptive field (RF) and one outside the RF of the

population neurons placing near the electrode tips (both

RDPs moved in the same direction among 8 possible di-

rections). Using the cue at the beginning of each trial, the

monkey was pushed to focus his attention to the cued RDP.

The monkey had to report the change (the direction

change) of the cued pattern by pushing a lever and ignore

the change in the other pattern. The direction change could

happen in a random time between 650 and 3250 ms after

the two RDPs appeared. Indeed, the monkey was trained to

discern attention to inside RF or outside RF according to

the position of the cue.

The task has been shown graphically in Fig. 2.

Results

Here, we have evaluated the possibility of decoding of the

attended position of the stimuli from the LFP signals

recorded from area MT of a macaque monkey using ma-

chine learning approaches. We extracted and identified

specific features in different time-frequency domains

which one is carrying information on spatial attention of

the monkey. This prediction has an important role in un-

derstanding of the physiological mechanisms underlying

cognitive brain functions.

For the analysis, we cut the part of the raw LFP

signals which was related to exact time of the monkey’s

attention in spatial attention task. These signals contain

682 sample points (features) in time (the sampling rate

of recording was at 1 kHz, so the duration of the LFP

signals was 682 ms). There were 6610 trials available for

Fig. 1 A sample of raw local field potential recorded during the experiment. Point of stimulus onset is in 1085 ms and the number of features is

selected as 682 ms in time domain from the time of stimulus presentation onset
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the processing in two attentional conditions: attention

inside RF and attention outside RF. We divided these

trials to equal two groups, training set and test set. 3305

trials in the training set and 3305 trials in the test set

were analyzed. To evaluate the decoding accuracies, the

sequence of training and test trials was randomly per-

muted 15 times before classification. The results of

classification are the average of 15 different runs with

different training/test sets. In different time-frequency

domains, the feature vectors and the related labels in the

training set were used to train the different classifiers

and the performance of decoding was evaluated in the

test set.

Feature extraction was done in spectrogram, CWT, and

energy wavelet domains. Also, analysis was implemented

for time domain. Feature selection was applied using four

criteria (T-test, Entropy, ROC, and Bhattacharyya) for

different classifiers such as SVM, KNN, naı̈ve Bayes,

LDA, QDA with their different options. Finally, after

feature extraction, the number of the features were 682,

1161, 21,824, 21,824, from time, spectrogram, CWT, and

energy wavelet, respectively. The best results were ob-

tained using the T-test in time and spectrogram (as can be

seen from the results reported in the next sections). Dif-

ferent classifiers were applied to find the best efficiency

and accuracy in the time and frequency domains. As can be

seen the results of some feature selection methods are

better for some classifiers than for others. Feature selection

methods are independent of the classifiers, so different

accuracies obtained from different classifiers are due to the

power of the classifiers themselves.

Decoding in time

Table 1 represents the results for the best classifier in time

domain. The following classifiers have been evaluated in

this experiment repeatedly: SVM classifier with its kernels

(linear, RBF, and polynomial with different sigma and

order factors), KNN with different distances and rules,

naı̈ve Bayes with different distributions and priors, LDA,

and QDA.

The best classifier was KNN (K = 1, the rule: nearest,

and the distance: Euclidean) in the time domain.

The results indicate that a high classification accuracy

was achieved in this case ([84.5 % correct for classifying

the LFP signals in time domain).

The features were selected by four criteria (T-test, En-

tropy, ROC, and Bhattacharyya). The best criterion was T-

test with 200 features and above 84.5 % performance for

KNN (K = 1, the rule: nearest, and the distance: Eu-

clidean), as shown in Fig. 3.

The experimental results of classification present the

feasibility of selecting a feature set for discriminating the

location of attention (inside and outside RF). Generally, if

we select the more features, the better accuracy is

achieved. But it is observed that this increasing is saturated

in the certain point and we neglected from one or two

percent of accuracy for having the less number of selected

features (lower complexity). We preferred to select the less

number of features rather than a little better performance.

The goal of showing performance as a function of the

number of features is finding the highest performance for

the minimum number of selected features. The trend of

Fig. 2 Task of the data recording. All of the experimental runs were

begun with fixation-point. For two classes (attention inside RF and

attention outside RF), RDPs were displayed inside RF and outside RF,

respectively. After the presentation of the cue, RDPs were displayed

in two places. The monkey had to report the direction change of the

cued pattern and ignore the change in the other one

Table 1 Results of the evaluation of the best classifier in time domain

Classifier Selected criterion Performance TP rate TN rate FP rate FN rate Precision

KNN (k = 1, distance = Euclidean, rule = nearest) T-test 0.845 0.8265 0.8658 0.1342 0.1735 0.8732
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performance versus the number of selected features has

been shown in Fig. 3 for the time domain features.

Decoding in time2frequency domain by using

spectrogram features

Different experiments were performed and the best clas-

sifier was selected with the highest accuracy in time-fre-

quency domain. The SVM classifier with its kernels (linear,

RBF and polynomial) was used and its sigma and other

factors were changed in both RBF and polynomial kernels.

KNN classifier with different number of the nearest

neighbors (K), different measurement distances, and the

rules was also provided. Bayesian classifier with different

distributions and priors, and LDA and QDA were also

tested. Finally, SVM (kernel: polynomial, order = 3, and

method: LS) was selected as the best classifier in spectro-

gram, as indicated in Table 2.

Feature selection was done by four criteria (T-test, En-

tropy, ROC, and Bhattacharyya) for the selected classifier.

The best criterion was T-test with 200 features and 82.9 %

performance for the selection of the least number of fea-

tures (Fig. 4).

Also, the map of selected features has been shown for

the best criterion (T-test), in Fig. 5. The number of the

selected features is 200 with feature selection method.

Results show that the maximum information is in low

frequency features during the whole time period. Also, the

figure shows that many frequency features are informative

in the initial time interval.

The size of each time bin was 128 ms in this ana-

lysis. The number of overlap was about half of selected

window length, 64 ms. The overlap is used to measure

each part of the signal twice, when it is in the middle

of the window and at the ends of the window. There

were 9 time windows. The sampling frequency was

normalized.

The present results showed that the selective visual at-

tention revealed an increase of oscillations in the frequency

band below approximately 95 Hz at initial time period and
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Fig. 3 The trend of

performances versus the number

of selected features using four

criteria (T-test, Entropy, ROC,

and Bhattacharyya) for KNN

(K = 1, the distance: Euclidean,

and the rule: nearest) for the

time-domain features. The best

criterion is T-test with 200

features and above 84.5 %

performance

Table 2 Results of the evaluation of the best classifier for the spectrogram

Classifier Selected

criterion

Performance TP

rate

TN

rate

FP

rate

FN

rate

Precision

SVM (Kernel function = polynomial, Method = LS,

order = 3)

T-test 0.8297 0.8191 0.8413 0.1587 0.1809 0.8461
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below about 35 Hz for thewhole time period in population of

visual cortical neurons. This indicated that oscillations of

specified area help to optimize processing under attention.

Decoding in time2frequency domain by using CWT

features

We examined how the attention to one of the two separate

positions of stimuli in the visual field, attention inside RF

and attention outside RF, could be decoded from the LFP

signals. To find out whether two classes of spatial selective

attention can be significantly distinguished in individual

trials, we classified the recorded data by different classi-

fiers. For this indication, information about the perfor-

mance of classifiers is useful. Furthermore, we

demonstrated relation between performance and the num-

ber of features used for classification. The features were

extracted using CWT method and were evaluated in this

subsection.

Similar to previous subsection, the different classifiers

with their options were tested which are the SVM classifier

with its kernels (linear, RBF, and polynomial), different

sigma, and order factors; KNN classifier with different

number of the nearest neighbors (K), different distances,

and the rules; Bayesian classifier with the different distri-

butions and the priors; LDA, and QDA for the CWT fea-

tures. The best selected classifier was SVM (kernel: RBF

and sigma = 36) in time-frequency domain with CWT

features based on the performance of the classifier. The

results have been summarized in Table 3.
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Fig. 4 The trend of

performances versus the number

of selected features using four

criteria (T-test, Entropy, ROC,

and Bhattacharyya) for SVM

(kernel: polynomial, order = 3)

for the spectrogram. The best

criterion is T-test with 200

features and 82.9 %

performance

selected features for SVM (polynomial) 
by ttest in spectrogram domain
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Fig. 5 The selected features with SVM (kernel: polynomial and

order = 3) in time-frequency domain (spectrogram). 200 features

were selected by T-test. Each time bin is about 128 ms for this plot.

Low frequency features in the whole time period and most of the

frequency features at the initial time interval are informative
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Different criteria were tested to select the least number

of the features in this case too (Fig. 6). Best criterion was

Bhattacharyya with 200 features and 70.7 % performance

in CWT. Feature selection curves were increased by the

number of features, so that they were saturated in a certain

number of features.

Figure 7 shows the selected features by Bhattacharyya

for SVM (kernel: RBF, sigma = 36) in time-frequency

domain (CWT). The results indicate that the maximum

information is mainly in low frequency features at initial

time interval.

Decoding in time2frequency domain by using

energy wavelet features

In this section, scalogram features were classified by the

following classifiers: SVM, KNN, naı̈ve Bayes, LDA and

QDA. The mentioned classifiers and their different options

were tested. Finally, KNN (k = 1, the distance: correlation,

and the rule: nearest) was obtained the highest accuracy as

shown in Table 4.

Table 3 Results of the evaluation of the best classifier in CWT

Classifier Selected

criterion

Performance TP rate TN

rate

FP rate FN rate Precision

SVM (Kernel function = RBF, method = LS,

Sigma = 36

Bhattacharyya 0.7074 0.7057 0.7093 0.2907 0.2943 0.7124
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Fig. 6 The trend of

performances versus the number

of selected features using four

criteria (T-test, Entropy, ROC,

and Bhattacharyya) for SVM

(kernel: RBF, sigma = 36) for

the wavelet coefficient features.

The best criterion is

Bhattacharyya with 200 features

and 70.7 % performance

selected features for SVM (RBF) 
by bhattacharyya in CWT domain
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Fig. 7 The selected features in time-frequency domain (CWT) with

SVM (kernel: RBF, sigma = 36). 200 features selected with Bhat-

tacharyya criterion. Low frequency features have useful information

regarding the visual attention at initial time interval
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Four criteria (T-test, Entropy, ROC, and Bhattacharyya)

were assessed to choose the highest accuracy of classifi-

cation in time-frequency domain (scalogram) for KNN

(K = 1, the distance: correlation, and the rule: nearest).

The best criterion was T-test with 200 features and 66.3 %

performance, as shown in Fig. 8.

The selected features were presented in time-frequency

domain (energy wavelet) in Fig. 9. 200 features were se-

lected by T-test criterion. The results revealed that the low

frequency features at the initial time interval have higher

information for the decoding of attention in this case.

Feature selection by using windowing method

in time

We explored the decoding of switching attention of a

monkey from the inside to the outside RF. The results

indicated a modulation in the early time intervals. This

result was observed by the available high performance of

selected features for the classification by using windowing

method in time domain.

In this part, different lengths and overlaps were tested to

select a proper window size in order to create high

Table 4 Results of the evaluation of the best classifiers in energy wavelet

Classifier Selected criterion Performance TP rate TN rate FP rate FN rate Precision

KNN (k = 1, distance = correlation, rule = nearest) T-test 0.6636 0.6671 0.6603 0.3397 0.3329 0.6588
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Fig. 8 The trend of

performances versus the number

of selected features using four

criteria (T-test, Entropy, ROC,

and Bhattacharyya) for KNN

(K = 1, the distribution:

correlation, and the rule:

nearest) for the wavelet energy

features. The best criterion is T-

test with 200 features and

66.3 % performance

selected features for KNN(K=1, dist=correlation) by ttest 
in wavelet energy domain
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Fig. 9 The selected features in time-frequency domain (energy

wavelet) with KNN (K = 1, the distribution: correlation, and the rule:

nearest). 200 features were selected by T-test criterion. The low

frequency features at the initial time interval have higher information

about the decoding of spatial attention
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accuracy of classification in time domain. Indeed, the data

size was reduced and speed of processing was increased by

this method. In this section, windowing represents con-

tinuous feature selection for SVM (kernel: RBF, Sig-

ma = 7, and method: LS). Results showed performance is

high at initial time period of the task (Fig. 10a).

Also, feature selection by windowing is shown for KNN

(K = 1, the distribution: Euclidean, and the rule: nearest).

Similarly, initial time interval has high performance

(Fig. 10b).

In windowing method, the choice of different pa-

rameters to slide signal including the number of windows,

the length of the windows, and the size of overlap between

selected-windows has extraordinary importance on the

performance of the data processing. We used three win-

dows for data sliding. The number of features in any

window was 40, 80, and 100, respectively. In the three

windowing analysis, overlaps of 20, 40, and 50 were

considered respectively. For example, in the first win-

dowing, the size of selected window included 40 features in

time and each window with its adjacent window had 20

time points overlap. According to the 682 features in time

and overlaps, the number of windows was 13, 17, and 34,

respectively for three experiments.

Discussion and conclusions

The local field potentials are interesting source of brain

activities which have been used in many decoding appli-

cations. In this study, we have studied and evaluated the

LFP signals from the visual system to decode of attention.

In this work, available data including LFPs recorded from

MT of a monkey’s brain were analyzed. Informative re-

gions and features have been shown by feature extraction

and feature selection in both time and frequency domains.

In other words, decoding has been executed by these

techniques. Feature extraction was performed using STFT,

CWT, and wavelet energy. Feature selection was applied

using four different criteria (T-test, Entropy, ROC, and

Bhattacharyya). The least number of features were selected

for classification. The results show that the best perfor-

mance would be obtained in time and spectrogram domain.

It is possible to decode the devotion of attention to one

of two places in visual field by LFP signals over MT area

of monkey. Single trials are classified in two classes, at-

tention inside RF and outside RF. Finally, features sup-

ported the high accuracy of classification including 84.5 %

performance for KNN in time, 82.9 % performance for

SVM in spectrogram, 70.7 % performance for SVM in

CWT, and 60.3 % performance for KNN in wavelet

energy.

The number of the features were 682, 1161, 21,824,

21,824, in time, spectrogram, CWT, and energy wavelet

domains, respectively. The number of the features refers to

the total number of available features after feature extrac-

tion methods. Then we selected the minimum features (200

features) for having the best performance using different

feature selection approaches. The optimal number of fea-

tures was selected based on four criteria (T-test, Entropy,

ROC, and Bhattacharyya). Finally, 200 of 682 features in

time, 200 of 1161 features in spectrogram, 200 of 21,824

features in CWT, and 200 of 21,824 features in wavelet

energy was selected during these methods.

In summary, T-test with 84.5 % performance in time, T-

test with 82.9 % performance in spectrogram, Bhat-

tacharyya with 70.7 % performance in CWT, and T-test

with 66.3 % performance in wavelet energy were as the

best criteria and the least number of features. In different

domains, the best choices of classifiers were: KNN (K = 1,

distance: Euclidean) in time, SVM (kernel: polynomial,

order = 3) in spectrogram, SVM (kernel: RBF, sig-

ma = 36) in CWT, KNN (K = 1, distance: correlation) in

wavelet energy.

Also, feature selection was investigated by data win-

dowing in time domain. It is concluded that the data are
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(a) (b)Fig. 10 a feature selection by

windowing for SVM (kernel:

RBF, Sigma = 7, and method:

LS). Results are shown for the

three window size choices.

Performance is high at initial

time period. b Feature selection

by windowing for KNN (K = 1,

the distribution: Euclidean, and

the rule: nearest). Results are

shown for the three window size

choices. Initial time interval has

high performance
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informative for the decoding of spatial attention. Maximum

information is located at initial time intervals. Feature se-

lection was used by windowing and SVM (kernel: RBF,

Sigma = 7, and method: LS) and KNN (K = 1, distance:

Euclidean). High performance has been obtained in the

mentioned interval.

Using just one method of classification could provide

similar results in terms of the selected features in different

domains. We wanted to be sure that the selected features

are not based on the tuning of a special method. Therefore

the results are reliable. We used signals in different time-

frequency domains and selected the best classifier with the

higher performance. Then we selected the least number of

features (200 features) with selected classifier and four

criteria in any domain. Finally, we mapped the least fea-

tures (200 features). Totally, the same results of maps

obtained in spectrogram, CWT, and energy wavelet. The

best performances have been summarized in the following

Table 5.

The best results are related to spectrogram (82.9 %) and

time domain (84.5 %) for having the highest performance.

We have studied the best performance and the least

number of features for any criterion; as it is expected, the

selected criteria based on the best performance would be

different. Finally, the selected criteria are T-test in time,

spectrogram, and energy wavelet and Bhattacharyya in

CWT. Overall, different time-frequency domains have

similar results in the specified area of feature selection, at

low frequency components at initial time intervals of the

trials.

Furthermore, the informative frequency ranges are be-

low 35 Hz at the whole time period and below 95 Hz at

initial time period in spectrogram, below 100 Hz in CWT,

and below 40 Hz in scalogram. The other frequency bands

carry relatively less information about spatial attention.

Our approach was to build a neural decoding from visual

attention, and to evaluate whether this method could pre-

dict the attentional focus of the monkey at a level of ac-

curacy higher than expected by chance. The informative

areas in Figs. 5, 7 and 9 provide the most conclusive part of

the results. Indeed, we found the least number of features

by selection features to discriminate attentional focus of the

monkey for the test trials. The specified features have the

strongest contribution to the decoding performance and to

predict the locus of attention. This would indicate that there

is some helpful information about two positions (attention

inside and attention outside of RF) in the selected features.

The influence of work on the selected features in different

time-frequencies domains would suggest LFPs to decode

attentional state.

In summary, results showed that the maximum infor-

mation was located at low frequency features at initial

time interval in different domains. It was shown that

LFP signals can be informative about visual attention in

the MT of the monkey. This signal can be used to de-

code of spatial attention. The current study provides

general discussion of the classification of LFP signals. It

determined features which contain useful information

about spatial attention. In the other word, these signals

were evaluated from the classification point of view to

connect brain reaction and accuracy. This study also

gave insight into the importance mechanisms of neuronal

computation.

Our approach of decoding the locus of attention using

windowing in spectrogram, CWT, and scalogram indicates

the dynamics of attentional modulation in LFP signals

across the time course of the trials.

Figures 5, 7 and 9 show the dynamics of the selected

features in time. The information has been concentrated in

specified area of different domains in different time bins

(mainly the low frequency features at the initial time in-

terval have higher information about the decoding of spa-

tial attention).

According to the previous suggestions in other papers,

valuable methods can be performed on signals of brain for

future works. For example, the windowing method in the

frequency domains of feature selection can be proposed. As

another suggestion, Autoregressive (AR) and discrete

wavelet transform (DWT) techniques can be used for fea-

ture extraction. Also, combination of neural networks and

different classifiers can be helpful for classification to im-

prove the results.

Table 5 Evaluation results of the best classifiers using the least number of selected features (200) for different methods

Domain Classifier The number of selected

features

Criterion Performance

%

Time KNN (k = 1, distance = Euclidean, rule = nearest) 200 T-test 84.5

Spectrogram SVM (Kernel function = polynomial, Method = LS,

order = 3)

200 T-test 82.9

CWT SVM (Kernel function = RBF, method = LS, Sigma = 36) 200 Bhattacharyya 70.7

Energy

wavelet

KNN (k = 1,distance = correlation, rule = nearest) 200 T-test 66.3
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