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Precision medicine, taking account of human individuality in genes,
environment, and lifestyle for early disease diagnosis and individ-
ualized therapy, has shown great promise to transform medical
care. Nontargeted metabolomics, with the ability to detect broad
classes of biochemicals, can provide a comprehensive functional
phenotype integrating clinical phenotypes with genetic and non-
genetic factors. To test the application of metabolomics in individual
diagnosis, we conducted a metabolomics analysis on plasma sam-
ples collected from 80 volunteers of normal health with complete
medical records and three-generation pedigrees. Using a broad-
spectrum metabolomics platform consisting of liquid chromatogra-
phy and GC coupled with MS, we profiled nearly 600 metabolites
covering 72 biochemical pathways in all major branches of bio-
synthesis, catabolism, gut microbiome activities, and xenobiotics.
Statistical analysis revealed a considerable range of variation and
potential metabolic abnormalities across the individuals in this
cohort. Examination of the convergence of metabolomics profiles
with whole-exon sequences (WESs) provided an effective approach
to assess and interpret clinical significance of genetic mutations, as
shown in a number of cases, including fructose intolerance, xanthi-
nuria, and carnitine deficiency. Metabolic abnormalities consistent
with early indications of diabetes, liver dysfunction, and disruption
of gut microbiome homeostasis were identified in several volun-
teers. Additionally, diverse metabolic responses to medications
among the volunteers may assist to identify therapeutic effects
and sensitivity to toxicity. The results of this study demonstrate that
metabolomics could be an effective approach to complement next
generation sequencing (NGS) for disease risk analysis, disease mon-
itoring, and drug management in our goal toward precision care.
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The rapid progression of next generation sequencing (NGS)
technology in recent years has significantly reduced the cost

and time required to query a patient’s genome accurately. The
ability to comprehensively survey genetic variations and their as-
sociations with diseases is currently central to personalized
medicine and can potentially transform clinical diagnosis and
disease management. Indeed, whole-genome sequencing and
whole-exome sequencing (WES) have been used successfully to
investigate both common and rare diseases (1–7), as well as to
provide guidance for drug treatment (8). Despite these successes,
significant limitations remain on applying NGS in clinical settings
for patient care (9–11). One of the key challenges is the proper
interpretation of NGS data. It is known that human exome se-
quencing identifies ∼10,000 nonsynonymous single-nucleotide
variants (12). The computational algorithms and databases for
predicting and prioritizing functional pathogenic variants are not
yet fully effective. More importantly, the impact of nongenetic
factors, such as environment, diet, lifestyle, epigenetics, and
microbiome in the disease process needs to be taken into account
for clinicians to make an informed diagnosis. These nongenetic

factors are particularly important as we apply genomic information
for disease risk identification to adults.
Metabolomics is a rapidly evolving field that aims to measure all

small molecular metabolites in biological samples. Metabo-
lites represent an intermediate biological process that bridges
gene function, nongenetic factors, and phenotypic end points (13,
14). Numerous studies have shown that metabolic phenotypes can
provide novel insights into gene function, mechanisms of disease
pathogenesis, and biomarkers for disease diagnosis and prognosis
(13, 15–21). MS, in combination with liquid chromatography (LC)
and GC, has become the main platform for metabolomic analysis.
It offers great sensitivity and selectivity to detect a broad range of
metabolites that differ significantly in both concentrations and
chemical properties (22, 23). In a previous study, we evaluated the
application of WES for genetic risk assessment on a healthy adult
cohort of 80 volunteers of normal health conditions. We detected
various risk alleles, linked personal disease histories with potential
causative disease genes in a number of cases, and identified several
heritable diseases (24). We envisioned that metabolomics may
further extend our understanding of the WES data and improve
clinical assessment of these volunteers. Using a broad-spectrum
metabolomics platform consisting of three independent LC/MS
and GC/MS methods, we profiled 575 metabolites in the plas-
ma samples of the volunteers. We have previously reported the
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features of the cohort, analytical methods used to identify sequence
variants, and their relevance with personal and three-generation
medical family history. The databases and bioinformatics analyses
used to predict damaging allelic variations were also described
(24). In an effort to link predicated damaging alleles to function,
we have now studied the cohort’s plasma metabolic profile.
The metabolomics data were cross-referenced with WES and
clinical data, and also served to identify metabolic abnormalities
associated with potential disease conditions. To our knowledge,
this study is the first to apply nontargeted metabolomics with NGS
for individual diagnosis. The results presented here demon-
strate that metabolomics can generate significant insights with
clinical importance in health status assessment and disease man-
agement. We find that WES and metabolomics data are comple-
mentary and provide value for enhancing precision care.

Results
Patient Cohort and Metabolomic Profiling. The cohort used in this
study consisted of 80 of the 81 volunteers previously described (24).
Briefly, there were 45 men and 35 women, with an average age of
54 y. The cohort was considered to be in normal health because
there were no serious diseases reported at the time of plasma
sample collection. A detailed medical history, three-generation
medical pedigree, and WES were acquired on each volunteer.
The plasma samples were analyzed using a metabolomics plat-

form consisting of three independent methods: ultrahigh perfor-
mance liquid chromatography (UHLC)/tandem mass spectrometry
(MS/MS2) optimized for basic species, UHLC/MS/MS2 optimized
for acidic species, and GC/MS. The metabolites were identified
by comparison of the ion features in the experimental samples to
a reference library of chemical standards. A total of 575 metabo-
lites of known structures were identified and profiled (Dataset S1).
The metabolites covered 72 biochemical pathways and compound
classes, including amino acids, lipids, carbohydrates, nucleotides,
peptides, dietary compounds, and xenobiotics (Fig. 1A). Interest-
ingly, the plasma metabolomic profiles also contained significant
contributions from gut microbiome activities (Fig. 1B and Dataset
S1). For example, the levels of various aromatic amino acid catab-
olites, secondary bile acids, and xenobiotic metabolites are known
to be primarily regulated by bacterial metabolism. In addition, many
lipid metabolites and energy metabolites are jointly modulated by
mammalian and bacterial metabolism (25).
It was found that the individual metabolite levels exhibited a

substantial range of variation across the 80 volunteers (Fig. 2). To
identify metabolic abnormalities associated with each individual, we
calculated z-scores and statistical significances for all the metabo-
lites (Dataset S2). Metabolites with levels significantly (P < 0.05)
deviating from the population mean may indicate metabolic ab-
normalities that warrant further investigation. Additionally, we ex-
amined the metabolites within the context of their biochemical
pathways and biological functions for patterns consistent with
known disease conditions. In our whole-exome analysis, we typically
detected ∼20,000 variants per exome. From those variants, ∼11,000
were nonsynonymous. After filtering common variants and evalu-
ating each variant for pathogenicity, we finished with ∼1,700 rare
variants with potential damaging effects (24). As shown in Fig. 3, we
searched this fraction of exon data for any possible gene allele/
metabolomics convergence. By this approach, we gained insights for
a number of volunteers through the correlations of their metab-
olomics profile with their clinical conditions and genetic data, in-
dications of early disease conditions, and pharmacologic effects.

Clinical, Genetic, and Metabolic Correlations. Table 1 summarizes
the results correlating clinical condition and metabolic pathway
abnormalities within the predicted metabolic pathways. We
used the metabolomics pathway program to prioritize the genes
for bioinformatics examination of sequence variants, prediction
of damaging mutations, and their frequency. The number of genes

analyzed for pathways ranged from 17 (carnitine metabolism) to 89
(glycolysis), as summarized in Table 1. The total number of variants
of unknown significance for each individual’s pathway ranged from
four to 33. By restricting possible disease-causative variants to
those variants that were rare and predicted damaging by the char-
acter of the mutation or by two bioinformatics predictive programs,
the number of candidate mutations was reduced, ranging from one
to two. Thus, the combination of clinical features, metabolomics,
and exon sequence provides a genetic and functional analytic ap-
proach to disease understanding.
Case 3923 had early onset renal stones and a mutation in the

xanthine dehydrogenase gene (XDH p.R1296W) in the purine
degradation pathway, which was reported to be causative of xan-
thinuria (26). We considered that the xanthine dehydrogenase
mutation was a possible cause for this volunteer’s history of early
onset of renal stones (24). Clinically, the plasma biochemical fea-
tures for patients with xanthinuria are xanthine accumulation (>10-
fold of normal), urate depletion (<2% of normal), and elevated
hypoxanthine in certain cases (27, 28). Close examination of the
metabolic profiles for volunteer 3923 indicated that xanthine was
only slightly elevated and that hypoxanthine and urate levels were
normal (Fig. 4A). Given the normal metabolomics purine pathway
values, we interpreted the gene mutation as not disease-causative,
as well as excluding another nine common gene variants.
Case 3905 had no significant history of metabolic disease but was

found to have a striking alteration in fructose metabolism. The
levels of fructose and sorbitol were substantially elevated to greater
than fourfold and >34-fold of the cohort medians, respectively
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Fig. 1. Classification of the plasma metabolites detected in this study. (A) Total
number of metabolites based on their biochemical classes. (B) Metabolites
modulated by gut bacteria activities. Nonitalicized metabolites are exclu-
sively or mainly contributed by bacteria metabolism, and italicized metabolites
are jointly contributed by both mammalian cells and bacteria.
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(Fig. 4B). We examined 89 candidate pathway genes and identified
32 gene sequence variants. Only one, in the aldolase gene (ALDOB
p.I177L), was rare, predicted to be damaging, and reported to cause
fructose intolerance (29). The ALDOB gene encodes fructose-
1,6-bisphosphate aldolase, an enzyme catalyzing the conversion
of fructose-1-phosphate to glyceraldehyde and dihydroxyacetone
phosphate (Fig. 4B). We interpreted the data as the patient being an
asymptomatic carrier for autosomal recessive fructose intolerance,
and in this particular case, the patient did not complain of any
manifestation of fructose intolerance. However, due to the observed
metabolomic phenotype, we recommended careful dietary planning
for volunteer 3905, because persistent fructose intolerance can lead
to adverse symptoms, including damage to the liver and kidneys.
Case 3890 was found to have low levels of carnitine and long-chain

fatty acids (Fig. 5). Carnitine plays a central role in moving long-

chain fatty acids into mitochondria for β-oxidation. Its deficiency
impairs fatty acid metabolism, leading to various clinical condi-
tions, such as cardiomyopathy and muscle weakness. Interestingly,
volunteer 3890 also had an elevated level of 3-methylhistidine (Fig.
5). Elevated 3-methylhistidine has been known to associate with
cardiomyopathy (30) and is considered to be a marker for muscle
degradation (31). These metabolic findings were suggestive of
carnitine deficiency. We examined 17 pathway genes identifying
four sequence variants. Only one mutation, in an organic cation/
carnitine transporter gene (SLC22A5 p.V488I), had features of
rarity and predicted damaging for a carnitine transporter. We inter-
preted the findings as the subject being a carrier for the autosomal
recessive carnitine deficiency caused by mutations in SLC22A5. The
patient was without symptoms.
Cases 3917 and 3952 had elevations of primary bile acids (Fig.

6). The primary bile acids (glycocholate, glycochenodeoxycholate,
taurocholate, and taurochenodeoxycholate) are synthesized in the
liver, stored in the gallbladder, and subsequently released into the
gut for digestion (Fig. 6). In the ileum, the bile acids are actively
transported by enterohepatic circulation to be reabsorbed by the
liver (32). In healthy conditions, the liver is very efficient in removing
bile acids from the circulation (33), but liver diseases, including
nonalcoholic fatty liver disease and nonalcoholic steatohepatitis,
have been known to elevate total bile acid levels in the general
circulation (34–36). Because neither subject had evidence of liver
disease, we searched 79 pathway candidate genes, identifying 33
gene variants. Only one variant was found to be rare and predicted
damaging (TTC37 p.LI505S) in patient 3917. No mutations were
identified for patient 3952, who had a negative history of hepato-
toxic medications. Mutations in TTC37 are reported to cause en-
terohepatic circulatory deficiency, among other features (37).
Diabetes mellitus was reported for case 3926 (type 1), case 3923

(type 2), and case 3891 (type 2). Case 3902 (type 2 risk) had a
brother and father with diabetes (type 2) but was clinically not
diagnosed with disease at the time of our study. One of the early
hallmarks of metabolic diseases is mitochondrial dysfunction
(38). A number of biochemical pathways originating from key
mitochondrial functions, such as energy homeostasis and redox
balance, can be readily observed in the metabolomics data.
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Fig. 2. Metabolomics diversity of the cohort illustrated by the heat map of the metabolomic profiles of the volunteers. Red and blue indicate high and low
levels, respectively, relative to the median value for all samples (median = 1.0). The workflow to generate new candidate genes from metabolomics data is
shown in Fig. 3. The vCard files are annotated using spnEff and ANNOVAR. Nonsynonymous coding variants are identified. A list of genes corresponding to an
abnormal metabolic pathway is generated, and nonsynonymous coding variants are isolated. Variants are filtered using frequency and functional effect filters. Details
of the process and methods are provided in Materials and Methods.

Fig. 3. Work flow for searching WES data and metabolomics convergence.
MAF, minor allele frequency.
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Additionally, metabolites with known associations to insulin re-
sistance and type II diabetes, including α-hydroxybutyrate (α-HB)
(39), 1,5-anhydroglucitol (1,5-AG) (40), branched chain amino
acids (BCAAs) (41), and glycine (42), may provide insights on the
disease condition. We examined the metabolomics data for signa-
tures consistent with diabetes-associated metabolic alterations.
Subject 3902 exhibited elevated α-HB, decreased 1,5-AG, de-
creased glycine, and slightly elevated BCAAs (Fig. 7 and Table 1).
In addition, increased glucose and 3-hydroxybutyrate (a product of
fatty acid β-oxidation and BCAA catabolism) suggested altered
energy metabolism consistent with disrupted glycolysis and in-
creased lipolysis (Fig. 7). Collectively, these biochemical sig-
natures suggested early indications of diabetes. Volunteers 3926
and 3923 displayed similar signatures, albeit more subtle (Fig. 7
and Table 1). Examination of clinical information and WES data
on these volunteers reveled potential risk alleles consistent with

their metabolic phenotypes. Volunteer 3902 had a family
history of diabetes II (father and brother), and genetic studies
revealed mutations of genes with known associations to type II
diabetes, CLPS (43), and THADA (44). Volunteer 3926 had
type I diabetes. Volunteer 3923’s most recent metabolic panel
showed fasting blood glucose in the prediabetic range, and the
subject carried mutations on two diabetes risk alleles: MAPK81P1
(45) and MC4R (46). Whether these mutations were causative for
the phenotypes would need further testing. Nonetheless, the con-
vergence of the metabolomics and genomics data found here may
provide new insights on the risks on these volunteers.

Responses to Medications. MS analysis is a conventional approach
to determining drug dosage schedules, as well as toxicity in clinical
trials, for drug approvals. Dosage schedules that achieve effi-
cacy with safety are developed from these studies for the general

Table 1. Summary of illustrated samples

Sample Pathway Genes Variants Rare and damaging

3905 Glycolysis/gluconeogenesis 89 32 ALDOB p.I177L
3923 Purine metabolism 21 9 XDH p.R1296W
3890 Fatty acid beta oxidation 17 4 SLC22A5 p.V488I
3952 Bile acid 79 33 None
3926 BCAA metabolism, fatty acid, glycolysis 60 22 None
3923 BCAA metabolism, fatty acid, glycolysis 60 21 MAPK8IP1 p.D386E, MC4R p.I1251L
3891 BCAA metabolism, fatty acid 60 26 None
3902 BCAA metabolism, fatty acid, glycolysis 60 7 THADA p.E1741K, CLPS p.R55H
3917 Bile acid 79 33 TTC37 p.L1505S
3937 BCAA metabolism, fatty acid, glycolysis 60 26 LDLR p.P526H, FN3K p.H146R, PASK p.P1249L

The column labeled “Pathway” represents the metabolic pathway identified by the nontargeted metabolomics. The column labeled
“Genes” represents the number of genes belonging to the metabolic pathway. The column labeled “Variants” represents the number
of nonsynonymous coding variants identified by the bioinformatics analysis within the genes selected for the pathway. The column
labeled “Rare and damaging” represent variants with a minor allele frequency (MAF) <0.5 and considered damaging by two of three
functional predication programs (SIFT, PolyPhen-2, and MutationTaster).

A

B

Fig. 4. Assessment of the metabolic perturbations defined biochemical pathways. (A) Purine degradation pathway and dot plots showing data distribution in
the cohort for xanthine, urate, and hypoxanthine. The red dots show the metabolite level for volunteer 3923. The open dots show the data distribution for the rest
of the cohort (n = 80). (B) Sorbitol degradation pathway and dot plots showing data distribution in the cohort for fructose and sorbitol. The red dots show
the metabolite level for volunteer 3905. The open dots show the data distribution for the rest of the cohort (n = 80). The box represents the middle 50% of the
distribution, and left and right ‘‘whiskers’’ represent the entire spread of the data. The vertical line refers to themedian, and the plus symbol refers to themean. The
first and second numbers within the parentheses are the z-score and P value, respectively.
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population. Following US Food and Drug Administration approval,
individual drug blood measurements are generally not made. The
metabolomics program provides individual blood levels, as well as
indicating drug responsiveness. It has been suggested that detection
of genetic variations, particularly in P450 genes, could improve
individual drug dosage schedules. The utility of such genetic
measurements is in question (47). In our metabolomics analysis,
various drugs and drug metabolites were detected, including sa-
licylate, cold and antiinflammatory medications (acetaminophen,
ibuprofen, fexofenadine, pseudoephedrine naproxen, and cele-
coxib), heartburn medications (omeprazole and pantoprazole),
antidiabetic medications (metformin and pioglitazone), hyperten-
sion medications (furosemide, hydrochlorothiazide, and metopro-
lol), antidepressants (escitalopram and desvenlafaxine), antibiotics
(ofloxacin), gout medication (oxypurinl), atorvastatin, and warfarin

(Dataset S1). Interestingly, many of the medications were not re-
ported by the volunteers in their health survey forms. However, this
finding presented an opportunity to examine each individual’s
metabolomics profile for the impact of his/her medications. We
selected several examples where the metabolomics study iden-
tified toxicity effects, as well as highly variant drug levels.
It was found that the antidiabetic medications metformin and

pioglitazone were exclusively detected in volunteers 3891 and 3937,
respectively. Both subjects were under well-controlled diabetes care
at the time of this metabolomics study. Volunteer 3937 was known
to carry mutations for LDL receptor (LDLR p.P526H) and diabetes
risk genes for fructosamine-3-kinase (FN3K p.H146R) and Per-
Arnt-Sim domain-containing serine/threonine kinase (PASK
p.P1256L) (24) (Table 1). In volunteer 3891, all of the metabolites
and biochemical pathways with known diabetes associations
(as described in the section above) were in the normal range of the
cohort (Fig. 8). Similarly, the metabolites of volunteer 3937 were
also in the normal range, with the exception of significantly de-
pleted 1,5-AG and Gly and slightly elevated glucose (Fig. 8). The
metabolomics data obtained in this study suggested that the med-
ications were likely effective in at least partially restoring dysregu-
lated metabolic perturbation caused by diabetes in both volunteers.
However, this effect was more apparent in volunteer 3891.
We observed acetaminophen and its metabolites in 48 of the 80

volunteers. Acetaminophen overdose is a leading cause of acute
liver failure (48). In the liver, acetaminophen is converted to a
reactive metabolite that depletes cellular glutathione (GSH), thus
leading to oxidative stress and cell death (49). Due to acetamino-
phen’s frequent and chronic use for pain and fever, the identifi-
cation of at-risk populations could improve therapeutic options for
individual patients and prevent adverse clinical outcomes. In this
cohort, the highest levels of acetaminophen metabolites were
detected in volunteers 3958 and 3976 (Fig. 9). Neither volunteer
disclosed the use of acetaminophen in his/her drug history.
Volunteer 3976 also displayed a clear trend of elevated levels of
all four primary bile acids (Fig. 9), suggesting impaired liver
function. The elevated plasma primary bile acids have been
found to be early biomarkers for drug-induced liver injury (50).
Coincidently, volunteer 3976 also exhibited the lowest level of
GSH in this cohort (Fig. 8). In contrast, volunteer 3958 showed
normal bile acid levels, with the exception of elevated taur-
ocholate. Volunteer 3958 also had elevated GSH (Fig. 9). We

3-methylhistidine (2.85; 0.004)

oleoylcarnitine (-1.40; 0.161)

palmitoylcarnitine (-1.34; 0.181)

stearoylcarnitine (-1.02; 0.301)

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5 3

0 1 2 3 4 5 6

Fig. 5. Data distribution for long-chain fatty acid carnitines and 3-methyl-
histidine in the cohort (n = 80). The red dots show the metabolite level for vol-
unteer 3890. The open dots show the data distribution for the rest of the cohort.
An explanation of the plots is provided in the legend for Fig. 4. The first and
second numbers within the parentheses are the z-score and P value, respectively.

Fig. 6. Bile acid circulation and dot plots showing data distribution in the cohort (n = 80) for the four primary bile acids. The red dots show the metabolite
level for either volunteer 3917 or volunteer 3952. The open dots show the data distribution for the rest of the cohort. The box represents the middle 50% of the
distribution, and left and right ‘‘whiskers’’ represent the entire spread of the data. The vertical line refers to the median, and the plus refers to the mean. An
explanation of the plots is provided in the legend for Fig. 4. The first and second numbers within the parentheses are the z-score and P value, respectively.
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observed that volunteer 3958 had higher levels of acetaminophen
metabolites than volunteer 3976 (Fig. 9). Collectively, these obser-
vations may suggest that volunteer 3976 was sensitive to acetamin-
ophen-induced liver injury, whereas volunteer 3958 could tolerate
acetaminophen well. This difference may relate to their cellular
capability to maintain GSH levels in response to acetaminophen.
We searched for a genetic basis of this variation in acetaminophen
degradation/toxic metabolism without success.
There were 10 volunteers taking Lipitor, whose levels are

reported in Fig. 10, together with their use dosage. Statin exposure
has been reported to cause muscle myopathy (51). Volunteer 3927
was found to have a marked elevation of serum atorvastatin among
the 10 volunteers taking Lipitor, even compared with subjects with
higher daily doses (Fig. 10). Genetic analysis on this volunteer
failed to identify any known variants associated with statin-induced
muscle toxicity in the transporter genes that play significant roles
in modulating systemic exposure of statins (52). Coincidently, this
volunteer was taking ginkgo biloba. The substances in ginkgo biloba
are known to inhibit CYP3A (53), which may potentially interfere
with drug metabolism. The volunteer’s cardiologist was informed of
this observation to monitor possible drug interaction or toxicity.

Discussion
To control escalating health care costs and maintain life quality
in our current aging society, there are increased emphases to
incorporate more advanced and informative technologies in
clinical practices to guide disease prevention and early diagnosis.
As the cost to obtain genome sequences continues to decline,
NGS will be increasingly adopted by clinicians and patients.
However, reduction of large genomics datasets and proper in-
terpretation of gene variances, especially the ones with uncertain
functional consequences, remain major challenges in the appli-
cation of NGS for patient care (54). Because the current data-
bases [Online Mendelian Inheritance in Man (OMIM), Clinvar,
and Human Gene Mutation Database] are small, there are only

between 3,000 and 4,000 genes that are associated with human
disorders (∼140,000 variants). The vast majority of diseases do
not have a gene association, as recently demonstrated by the
25% success rate among patients referred for clinical WES (55).
New approaches to increase the success rate and the identifica-
tion of disease-causative genes are therefore essential. Further-
more, high allelic variation, polygenicity of traits of interest (56),
and influences from the microbiome, epigenetics, and the envi-
ronment add significant complexities. There has been growing
appreciation that complex diseases, such as diabetes, cancer, and
cardiovascular and neurological diseases, are caused by a com-
bination of genetic and nongenetic factors.
Due to rapid technological improvement, metabolomics has

emerged as a new and powerful technology for dissecting un-
derlying disease processes, and this advance sets the stage for new
ways to diagnose, monitor, and provide guidance for treatment.
Combining metabolomics with genomics has been shown to be a
valuable approach to gain new understanding of genetic variance
and disease risks in large population studies, such as genome-wide
association analyses (57). This study was our first attempt in in-
tegrating genomic and metabolomics data toward the improved
medical interpretation of an individual’s disease risk in a small
clinical cohort. As the examples presented here demonstrate, the
functional impact of certain gene variances, especially genes
encoding metabolic pathways, can potentially be assessed from the
metabolic phenotypes. In the case of volunteer 3923, the projected
damaging mutation on xanthine dehydrogenase was found to have
no impact on the purine degradation pathway, and thus may not
be the cause of renal stone history in this individual. In the case of
volunteer 3905, the metabolic phenotype suggested that the
ALDOB mutation resulted in perturbation of the fructose
catabolic pathway and fructose intolerance risk. These un-
derstandings led to more insightful diagnoses and clinical rec-
ommendations for these volunteers. More importantly, metabolic
phenotypes can help to guide our genetic screening by identifying

acetyl CoA

fatty acid
β-oxidation

leucine    isoleucine    valine

free 
fatty acidslipid pool

lipolysis

TCA cycle

pyruvateglucose
glycolysis

3-hydroxybutyrate

glycine
amino acids

amino acids methionine
threonine

2-ketobutyrate

2-hydroxybutyrate

1,5-anhydroglucitol (1,5-AG)

0 0.5 1 1.5 2 2.5

3902                                                        (-1.36; 0.173)   
3923                                                        (0.03; 0.976)
3926                                                        (-3.58; 3E-04)

2-hydroxybutyrate (AHB)

0 1 2 3 4 5 6

3902                                                         (2.65; 0.008)
3923                                                         (1.00; 0.308)
3926                                                         (1.17; 0.244)

3-hydroxybutyrate 

0 2 4 6 8 10 12 14

3902                                                         (1.49; 0.136)
3923                                                         (-0.39; 0.699)
3926                                                         (1.46; 0.144)

glucose

0 1 2 3 4 5

3902                                                          (0.81; 0.417)
3923                                                          (1.03; 0.302)
3926                                                          (1.27; 0.209)

glycine

0 0.5 1 1.5 2 2.5

3902  (-1.96; 0.050)
3923  (-2.23; 0.026)
3926  (-0.11; 0.910)

isoleucine

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

3902  (1.11; 0.269)
3923  (0.91; 0.363)
3926  (-0.63; 0.530)

leucine

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

3902  (1.00; 0.317)
3923  (0.64; 0.523)
3926  (-0.73; 0.465)

valine

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

3902   (1.52; 0.127)
3923   (1.02; 0.310)
3926   (-0.69; 0.489)
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preclinical abnormalities. For example, in three volunteers (3902,
3923, and 3926), we found abnormal metabolic phenotypes asso-
ciated with early indications of diabetes. With this valuable in-
formation, we further identified that these subjects carried
potentially damaging mutations on genes with known association to
diabetes. These data provide gene targets for testing whether these
mutations were causative for the metabolic perturbation and dis-
ease phenotypes observed in these individuals. In addition, metab-
olomics can add another dimension to NGS by providing real-time
assessments and potential biomarkers on health status and the ef-
fects of drug treatment. The identification of disease signatures
could lead to better clinical recommendations for early intervention,
such as lifestyle changes or drug treatments. The detection of a
broad range of xenobiotics, including various medications and their
metabolites, and their impacts on metabolic homeostasis may fur-
ther enable clinicians to optimize individualized treatment options.
We also note that the metabolomics platform used in this analysis
did not provide comprehensive coverage of complex lipid species.
The inclusion of these metabolites in the future may bring addi-
tional biological insights.
A limitation of this study was that the identification of ab-

normal metabolic signatures was restricted by the relatively small
number of subjects in the cohort. The cases presented here are
the metabolic phenotypes that can be readily used for cross-
reference with genetic or clinical data, or with disease signatures
that have been well established in literature. The metabolomic
dataset contains a wealth of information that could be further
explored as we gain more knowledge about its biological signifi-
cance. For example, elevated levels of gut bacteria-derived
metabolites were observed in volunteer 3930, suggesting that this
individual had altered gut microbiota balance. Interestingly, vol-
unteer 3930 has tics and a positive family history of Tourette
syndrome (TS), including her three offspring and her mother.
Gastrointestinal disorders and increased intestinal permeabil-
ity have been known to have close associations with neurological
diseases, such as autism spectrum disorder (ASD) (58–60), which
is a frequent comorbidity with TS (61). Recently, gut bacteria

metabolites, particularly 4-ethylphenylsulfate (4EPS), were found
to cause ASD behavioral traits directly in an ASD mouse model.
Probiotic treatment was able to restore the serum metabolites and
to alleviate ASD behaviors (62). In volunteer 3930, 4EPS was also
among the elevated metabolites (Fig. S1). It would be of interest
to continue to monitor volunteer 3930 for the association of gut
bacteria metabolites with TS symptoms. Volunteer 3930’s three
offspring are under genomic and metabolomics analysis at this time.
The results of our study demonstrate that metabolomics can

effectively enhance the interpretation of NGS data and improve
the overall disease diagnosis and risk assessment for patient care.
As similar studies are commissioned in the future, we can develop
a better understanding of the plasticity and composition of the
healthy human metabolome, as well as metabolic signatures for
diseases. Moreover, the metabolomics technology used in this study
is an efficient and cost-effective approach to obtain a compre-
hensive metabolic phenotype. Metabolomic analysis, as a routine
monitoring tool or in conjunction with NGS, is worthy of consid-
eration as a potentially productive tool in individual diagnosis.

Materials and Methods
Cohort, Sample Collection, and Whole-Exome Sequencing. The cohort, over-
night fasted plasma sample collection, and WES procedures are described by
Gonzalez-Garay et al. (24). Informed consent was obtained from all subjects
used in this study. This research was overseen by the Institutional Review
Board (HSC-IMM-08-0641) of the University of Texas Health Science Center at
Houston.

Metabolomic Profiling. The metabolomic platforms consisted of three in-
dependent methods: UHLC/MS/MS2 optimized for basic species, UHLC/MS/
MS2 optimized for acidic species, and GC/MS.
Sample preparation. The plasma samples were stored at −80 °C until needed and
then thawed on ice just before extraction. Extraction was executed using an
automated liquid-handling robot (MicroLab Star; Hamilton Robotics), where
450 μL of methanol was added to 100 μL of each sample to precipitate proteins.
The methanol contained four recovery standards to allow confirmation of ex-
traction efficiency. Each solution was then mixed on a Geno/Grinder 2000 (Glen
Mills, Inc.) at 675 strokes per minute and then centrifuged for 5 min at 700 × g.
Four 110-μL aliquots of the supernatant of each sample were taken and dried
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Fig. 8. Distribution of key metabolites with known association with diabetes in the cohort (n = 80). The red dots show the metabolite level for either
volunteer 3891 or volunteer 3837. The open dots show the data distribution for the rest of the cohort. An explanation of the plots is provided in the legend
for Fig. 4. The first and second numbers within the parenthesis are the z-score and P value, respectively.
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under nitrogen and then under vacuum overnight. The following day, one al-
iquot was reconstituted in 50 μL of 6.5 mM ammonium bicarbonate in water at
pH 8 and one aliquot was reconstituted using 50 μL of 0.1% formic acid in
water. Both reconstitution solvents contained sets of instrument internal stan-
dards (23) for marking an LC retention index (RI) and evaluating LC/MS in-
strument performance. A third 110-μL aliquot was derivatized by treatment
with 50 μL of a mixture of N,O-bis trimethylsilyltrifluoroacetamide and 1%
trimethylchlorosilane in cyclohexane/dichloromethane/acetonitrile (5:4:1) plus
5% (vol/vol) triethylamine, with internal standards added for marking a GC RI
and for assessment of recovery from the derivatization process. This mixture
was dried overnight under vacuum, and the dried extracts were then capped,
shaken for 5 min, and heated at 60 °C for 1 h. The samples were allowed to cool
and were spun briefly to pellet any residue before being analyzed by GC/MS.

The remaining aliquot was sealed after drying and stored at −80 °C to be used
as backup samples, if necessary. The extracts were analyzed on three separate
mass spectrometers: one UPLC/MS system comprising a UPLC-OrbiElite in-
strument (Thermo Scientific) detecting positive ions, one UPLC/MS system com-
prising a UPLC-OrbiElite system detecting negative ions (Thermo Scientific),
and one Trace GC Ultra Gas Chromatograph-Dual Stage Quadrapole (DSQ)
GC/MS system (Thermo Scientific).
UPLC method. All reconstituted aliquots analyzed by LC/MS were separated
using a Waters Acquity UPLC system (Waters Corp.). The aliquots recon-
stituted in 0.1% formic acid used mobile phase solvents consisting of 0.1%
formic acid in water (A) and 0.1% formic acid in methanol (B). Aliquots
reconstituted in 6.5 mM ammonium bicarbonate used mobile phase solvents
consisting of 6.5mMammonium bicarbonate in water at pH 8 (A) and 6.5mM
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Fig. 9. Dot plots showing data distribution in the cohort (n = 80) for the acetaminophen metabolites, four primary bile acids, and GSH. The red dots show the
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ammonium bicarbonate in 95:5 methanol/water. The gradient profile used
for both the formic acid-reconstituted extracts and the ammonium
bicarbonate-reconstituted extracts was from 0.5% B to 70% B in 4 min, from
70%B to 98%B in 0.5 min, and holding at 98%B for 0.9min before returning
to 0.5% B in 0.2 min. The flow rate was 350 μL·min−1. The sample injection
volume was 5 μL, and 2× needle loop overfill was used. LC separations were
made at 40 °C on separate acid- or base-dedicated 2.1-mm × 100-mm Waters
BEH C18 1.7-μm particle size columns.
UPLC/MS methods. The OrbiElite system used a heated-electrospray ionization
(HESI-II) source with sheath gas set to 80, auxiliary gas set to 12, and voltage set
to 4.2 kV for the positive mode. Settings for the negative mode had sheath gas
set to 75, auxiliary gas set to 15, and voltage set to 2.75 kV. The source heater
temperature for both modes was 430 °C, and the capillary temperature was
350 °C. The mass range was 99–1,000 m/z, with a scan speed of 4.6 total scans
per second, also alternating one full scan and one MS/MS2 scan, and the res-
olution was set to 30,000. The Fourier transformmass spectrometry (FTMS) full-
scan automatic gain control (AGC) target was set to 5 × 105 with a cutoff time
of 500 ms. The AGC target for the ion trap MS/MS2 was 3 × 103, with a max-
imum fill time of 100 ms. Normalized collision energy for the positive mode
was set to 32 arbitrary units, and normalized collision energy for the negative
mode was set to 30 arbitrary units. For both methods, activation Q was 0.35
and activation time was 30 ms, again with a 3-m/z isolation mass window. The
dynamic exclusion setting with a 3.5-s duration was enabled for the OrbiElite.
Calibration was performed weekly using an infusion of Pierce LTQ Velos ESI
Positive Ion Calibration Solution or Pierce ESI Negative Ion Calibration Solution.
GC/MS method. Derivatized samples were analyzed by GC/MS. A sample volume
of 1.0 μL was injected in split mode with a 20:1 split ratio onto a diphenyl
dimethyl polysiloxane stationary phase, thin film fused silica column, Cross-
bond RTX-5Sil, 0.18-mm i.d. × 20 mwith a film thickness of 20 μm (Restek). The
compounds were eluted with helium as the carrier gas and a temperature
gradient that consisted of the initial temperature held at 60 °C for 1 min and
then increased to 220 °C at a rate of 17.1 °C·min−1, followed by an increase to
340 °C at a rate of 30 °C·min−1, and then held at this temperature for 3.67 min.
The temperature was then allowed to decrease and stabilize to 60 °C for a
subsequent injection. The mass spectrometer was operated using electron
impact ionization with a scan range of 50–750 atomic mass units (amu) at four
scans per second, 3,077 amu·s−1. The DSQ was set with an ion source tem-
perature of 290 °C and a multiplier voltage of 1865 V. The MS transfer line was
held at 300 °C. Tuning and calibration of the DSQ were performed daily to
ensure optimal performance.
Data processing and analysis. For each biological matrix dataset on each in-
strument, relative SDs of peak areawere calculated for each internal standard
to confirm extraction efficiency, instrument performance, column integrity,
chromatography, and mass calibration. Several of these internal standards
serve as RI markers and were checked for retention time and alignment. For
peak detection and integration, in-house software was used. The output
from this processing generates a list of m/z ratios, retention times, and area
under the curve values. Software-specified criteria for peak detection in-
clude thresholds for signal-to-noise ratio, height, and width.

The biological datasets, including quality control (QC) samples, were chro-
matographically aligned based on an RI that uses internal standards assigned a
fixed RI value (23). The RI of the experimental peak is determined by assuming
a linear fit between flanking RI markers whose values do not change. The
benefit of the RI is that it corrects for retention time drifts that are caused by
systematic errors, such as sample pH and column age. Each compound’s RI was
designated based on the elution relationship with its two lateral retention
markers. Using a proprietary software package, integrated and aligned peaks
were matched against the in-house library of authentic standards and rou-
tinely detected unknown compounds and were specific to the positive, neg-
ative, or GC/MS data collection method. Matches were based on RI values
within 150 RI units of the prospective identification and experimental pre-
cursor mass match to the library authentic standard within 0.005 m/z for the
OrbiElite data and within 0.4 m/z for the DSQ data. The experimental MS/MS2

was compared with the library spectra for the authentic standard and was
assigned forward and reverse scores. A perfect forward score would indicate
that all ions in the experimental spectra were found in the library for the
authentic standard at the correct ratios, and a perfect reverse score would
indicate that all authentic standard library ions were present in the experi-
mental spectra and at the correct ratios. The forward and reverse scores were
compared, and a MS/MS2 fragmentation spectral score was given for the
proposed match. All matches were then manually reviewed by an analyst who
approved or rejected each call based on the above criteria.
QC. From the samples of plasma, aliquots of each of the individual samples were
combined to make technical replicates, which were extracted as described
above. Extracts of this pooled plasma sample were injected six times for each

dataset on each instrument to assess process variability. As an additional QC,
five water aliquots were extracted as part of the sample set on each instrument
to serve as process blanks for artifact identification. All QC samples included the
instrument internal standards to assess extraction efficiency and instrument
performance, and to serve as RI markers for ion identification. The standards
were isotopically labeled or, otherwise, exogenousmoleculeswere chosen so as
not to obstruct detection of intrinsic ions (23).

Statistical Analysis. The goal of the statistical analysis was to identify “extreme”
values (outliers) in each of the metabolites detected in this study. The statistical
analysis relied on the subjects being sampled from a normal population. The
data showed consistent log-normality, so the (natural) log-transformation was
applied to each metabolite. The univariate statistical analysis was performed on
modified z-score statistics, where each subject was compared against all of the
others. When sampling from a normal population with a mean μ and SD σ, the
statistic z = (x − μ)/σ, has a N(0,1) distribution. Because μ and σ are unknown,
they were estimated by the statistics m and s, respectively, and z = (x −m)/s was
instead computed. For each subject i, the statistics m(−i) and s(−i) were esti-
mated from all subjects, except subject i, to form zi = (xi −m(−i))/s(−i). Typically,
the sample mean and SD were used for these statistics. In this case, if we as-
sumed that subject i was sampled from a population with the same SD as the
others, then under the null hypothesis that this observation was sampled from a
population with the same mean, sqrt(n/(n + 1)) * (x − m)/s would have a t dis-
tribution with n − 1 df. For n = 80, the statistic is approximately equal to (x −m)/s
and the N(0,1) was a close approximation to the t distribution for this many
subjects. Because all of the remaining subjects may have outliers (ones who do
not truly belong), we wanted to use more robust estimators than the sample
mean and sample SD, which could be greatly affected by outliers. For a normal
population, the median is equal to the mean, and the SD is equal to the inter-
quartile range (IQR)/1.349, where IQR = (third quartile − first quartile). For the
SD, one could also use (third quartile −median)/0.6745. Thus, m(−i) =median of
all of the values, except subject i; if a metabolite had fewer than 25%
missing values, then s(−i) = IQR(−i)/1.349, and if a metabolite had between
25% and 50% missing values, s(−i) = (third quartile − median)/0.6745,
where the missing values were assumed to be below the limit of detection
(i.e., for 80 observations, if 40 were missing, the median was the lowest
observed value, if those missing observations were assumed to be lower
than those observations observed). If the value of subject i was missing,
then the minimum observed value was used for its estimate. Metabolites
with more than 50% missing values were not used for the significance
testing. Because of the large number of comparisons being performed, the
false discovery rates were also estimated for each comparison (each sub-
ject). The false discovery rates were estimated with the q-value method of
Storey and Tibshirani (63) and computed with the “q-value” package in R.

Finally, for the sparse metabolites (those metabolites in fewer than 50% of
the samples), formal statistical testingwasnotperformed, but visual assessments
were used instead. Many of these sparse metabolites were drug metabolites.

WES Sequencing. Genomic DNA was extracted using a DNA kit (Promega
Wizard Genomic DNA Purification Kit) following the manufacturer’s in-
structions. The cohort was sequenced using Illumina’s HiSeq 2500 system
after enrichment with Agilent SureSelect target enrichment V5 + UTRs
(targeting coding regions plus UTRs) (outsourced to Axeq Technologies).

Sequencing Analysis. Details of the process and literature references for the
database and tools used in this process can be found in our previous publication
(24). Essentially, our analysis pipeline consists of Novoalign, Samtools, Picard,
and Genome Analysis Toolkit (GATK), followed by variant annotation using
multiple databases from UCSC Genome bioinformatics. For each metabolic
pathway identified by the metabolomics experiment, a group of candidate
genes was manually curated using multiple resources (www.wikipathways.org,
www.biocarta.com, www.genome.jp/kegg, pid.nci.nih.gov, and www.reactome.
org). Nonsynonymous coding variants were extracted from the vCard file of a
volunteer. Filtration of common polymorphisms was accomplished using fre-
quencies from the NHLBI Exome Sequencing Project (1,000 genomes and in-
ternally by removing any variant that appeared more than three times in our
cohort). Functional effects of each nonsynonymous coding variant were evalu-
ated using three different functional predication algorithms (Polyphen 2.0, Sift,
and MutationTaster) using the dbNSFP database. Fig. 2 illustrates our pipeline.
We detected known variants associated with human diseases using the ClinVar
database from National Center for Biotechnology Information and genes
known to be associated with human disorders (OMIM database and GeneTests).
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