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We study the geometry of defects in amorphous materials and
their elastic interactions. Defects are defined and characterized by
deviations of the material’s intrinsic metric from a Euclidian metric.
This characterization makes possible the identification of localized
defects in amorphous materials, the formulation of a correspond-
ing elastic problem, and its solution in various cases of physical
interest. We present a multipole expansion that covers a large
family of localized 2D defects. The dipole term, which represents
a dislocation, is studied analytically and experimentally. Quadru-
poles and higher multipoles correspond to fundamental strain-car-
rying entities. The interactions between those entities, as well as
their interaction with external stress fields, are fundamental to the
inelastic behavior of solids. We develop analytical tools to study
those interactions. The model, methods, and results presented in
this work are all relevant to the study of systems that involve a
distribution of localized sources of strain. Examples are plasticity
in amorphous materials and mechanical interactions between cells
on a flexible substrate.
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he characterization of defects in amorphous solids is a fun-

damental problem in material science. In crystalline solids
defects are localized structural deviations of matter from its or-
dered state. The modeling of those defects in the framework of
continuum mechanics is via constraints on the configurations of
the body (1). When trying to develop plasticity theories for
amorphous materials, in which no structural order exists, one
faces the problem of how to define defects as intrinsic geometric
objects (2-4).

The first attempt to classify defects in a continuum description
is due to Volterra (5). In this description, defects are sources of
geometric incompatibility that results in elastic stresses. Volterra
described elementary states of frustration in elastic materials,
using cut-shift-weld protocols. Volterra’s constructions provide
a list of pathways that result in geometrically frustrated states.
However, these constructions cannot be regarded as definitions
of defects, because very different procedures can result in the
same material geometry.

The idea to describe distributions of defects using smooth
geometric fields began with Kondo (6) and Bilby et al. (7) (more
recent works are in refs. 8-10). Inspired by properties of defects
in crystalline materials, they suggested to describe defects in
continuum by geometric fields such as curvature and torsion
tensors. This formalism describes the intrinsic geometry associ-
ated with defects, but it was not integrated into the theory of
elasticity. Moreover, different types of defects involve different
geometric fields, which makes such an approach complicated.

A possibly different approach for the description of defects is
motivated by ref. 11 in the context of flexible membranes with a
hexagonal crystalline order. Studying the stress state of a disc
with a single disclination (a “5” or “7” defect in hexagonal lat-
tice) or dislocation (a “5-7” pair), it was shown that these in-
trinsic structural defects lead to a source term in the elastic stress
equation. Thin discs buckle into 3D configurations, “screening”
the stress sources by the Gaussian curvature of the buckled
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surface. This observation suggests that the perturbation to the
crystalline order associated with topological defects affects the
mechanical state by generating localized intrinsic Gaussian cur-
vature. It is natural to ask, then, whether similar localized dis-
tributions of intrinsic Gaussian curvature can also be found in
amorphous materials that undergo irreversible deformations and,
if so, what the proper field would be to describe it.

A large volume of work has recently been dedicated to the
description of irreversibly deformed amorphous solids, using the
framework of incompatible elasticity (12). In this description an
elastic body is modeled as a 3D Riemannian manifold, equipped
with a reference metric g, which represents local equilibrium
distances between material elements. Every configuration of the
body induces on that manifold a metric, g, which we call the
actual metric. The elastic strain is the deviation of g from g. In
cases where the intrinsic geometry of the body is invariant under
translations along an axis, the reference metric is determined
by its value on a cross section; i.e., it is effectively 2D. Two-
dimensional metrics are characterized by a single scalar field—
the Gaussian curvature (13). For such intrinsic geometries,
incompatibility amounts to a nonzero reference Gaussian curvature
K (the Gaussian curvature associated with the reference metric).

The elastic model is fully determined by a constitutive relation,
which relates the internal stresses to the strain field. In the case
of a hyperelastic material, the constitutive relation can be de-
fined by an energy functional, which is an additive measure of a
local energetic cost of deviations of the actual metric from the
reference metric. In the case of an amorphous solid, we assume
that the microscopic structure of the solid is fully encoded by the
reference metric g, in which case the elastic energy is of the form
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Here dVolj is the volume element, and W is a nonnegative en-
ergy density that vanishes if and only if g(x) =g(x). Incompatibil-
ity manifests in that g cannot equal g everywhere simultaneously.
In this formulation there is a complete separation between the
description of the intrinsic geometry of the material (determin-
ing g) and the description of the elastic problem (finding the
energy minimizing g). The reference metric is an objective mea-
sure that is independent, for example, of the actual configuration
or the elastic energy functional.

Incompatible elasticity was recently used in the analysis of thin
sheets endowed with an imposed global deformation field, which
induces smooth reference Gaussian curvature fields (14-20) (a
discontinuous reference metric was considered in refs. 21 and
22). Smooth reference metrics can describe a wide range of
geometrically frustrated material; however, they are incapable of
describing geometric singularities, such as in localized defects
(23). In this work we perform two main steps: First, we identify a
set of reference metrics associated with 2D defects in a 3D
amorphous material. These defects are expressed by a multipole
expansion of the reference Gaussian curvature field. We show
that the first three multipoles in the hierarchy correspond to
known defects in crystalline materials. We compare our analyt-
ical results to experiments with amorphous materials containing
an isolated curvature dipole. In the second part of the paper the
advantages of the formalism are demonstrated by solving the
elastic problem of interacting curvature quadrupoles. We pro-
vide analytical expressions for interaction energies of curvature
quadrupoles with external stress and with each other. The energy
landscape that results from these expressions indicates an in-
creasing tendency to stress localization, depending on the pa-
rameters of the system.

Defects generate internal stresses resulting from geometric
frustration. It is well known that a crystalline body that contains a
defect is residually stressed—it has no stress-free configuration.
However, every part of it that does not contain the defect is a
perfect crystal. Therefore, once separated from the body, it does
have a stress-free configuration. Similarly, we model a defect-
free amorphous material by a reference metric that can be em-
bedded in Euclidean space without strain, i.e., isometrically. A
body containing a line defect, which in the case of a 2D geometry
implies that the defect is concentrated at a point, is therefore
modeled by a reference metric that is locally Euclidean every-
where, except at that point (which will be taken as the origin).
Local flatness means that every point has a neighborhood that
can be embedded in Euclidean space isometrically. Incompati-
bility manifests in that the entire manifold cannot be isometri-
cally embedded in Euclidean space. The characteristic of such
metrics is that the reference Gaussian curvature vanishes every-
where except for the origin, where it is singular.

We are thus looking for 2D metrics that are locally Euclidean.
Note that we are focusing our attention on the reference metric
of the material. The solution of the resulting elastic problem is
addressed further below.

It is known that every 2D metric is locally conformally flat
(24), which means that it can be expressed as the product of a
Euclidean metric and a positive scalar function. Adopting
polar coordinates (r, 8), a conformally flat reference metric takes

the form
_ 1 0
i = e20(0) ( 0P > . [1]

The function e?*>% can be interpreted as a local expansion fac-
tor. Also, we call ¢(r,8) the conformal factor.
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Using the Brioschi equation (13), the corresponding reference
Gaussian curvature is

K=—e20020(r,0), [2]

where A is the Euclidean Laplacian. It follows that the reference
metric is locally Euclidean if ¢ is harmonic,

Ap(r,0)=0. [3]

Using a multipole expansion, we obtain a large family of locally
Euclidean metrics by setting

o(r,0)=p+alnr+ Z(Anr" +B,r™")cosn(6—6,), [4]

n=1

where a, f§,A,, By, 0, are parameters. Setting 4, =0 amounts to
(r,0) being standard polar Euclidean coordinates as r — co. The
parameter § is a homogeneous scaling factor that globally in-
duces zero reference Gaussian curvature and hence may be set
to zero.

When plugged into Eq. 1, the parameters B, and o determine
a large family of reference metrics, each with a different singu-
larity of K at the origin. Mechanically, these singularities act as
intrinsic localized sources of stress and therefore can be regarded
as defects.

We now study the geometric interpretation of each multipole
term in this expansion by considering an annular domain, which
represents a cross section of a punctured 3D cylinder. The inner
radius serves as a cutoff for the curvature singularity. Consider
first the case where « is the only nonzero coefficient, which
corresponds to a monopole of Gaussian curvature. It can be
shown that such a metric models a disclination with an excess
angle of 2za (SI Text). The same geometry can be obtained via a
Volterra construction (5), by removing/inserting a section 2za
out offinto a dissected annulus. When applied to thin sheets,
these constructions lead to cone and anticone configurations (11,
25). In a hexagonal crystalline material 6 must be an integer
leading, for example, to the well-known 5 or 7 defects (11).

Consider next the case where B; is the only nonzero co-
efficient, which corresponds to a dipole of Gaussian curvature;
without loss of generality we may take 8; =0, which amounts to
setting the x axis parallel to the dipole. The reference metric
takes the form

- so/mr( 1 0
! .

where b=2zB;. A dipole is a far field approximation of a pair of
monopoles of opposite charges. In the present context, a metric
of the form [5] is generated by a cone-anticone pair. In crystals,
cone—anticone pairs (e.g., 5-7 pairs in hexagonal lattices) are
edge dislocations. Thus, the metric [5] represents an edge dislo-
cation in amorphous materials.

Dislocations are classically quantified by a Burgers vector,
which in crystalline solids measures a discontinuity in the dis-
placement field, where the latter is expressed in crystallographic
units (1). Note that the notion of displacement assumes the ex-
istence of a reference configuration; i.e., it is not an intrinsic
quantity. In contrast, the geometric description of dislocation in
crystalline materials relies on a notion of parallelism. One as-
sumes the existence of a parallel frame field, which represents
the crystalline axes (2, 6, 7). The Burgers vector is then associ-
ated with an asymmetric parallel transport.

In an amorphous material, the only structure is a metric. Then,
the only natural notion of parallelism is induced by the Levi—
Civita connection (13), which induces a symmetric parallel
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transport. It is a priori unclear how to obtain a nontrivial Burgers
vector from a parallel transport that is symmetric.

Assume a reference metric of the form [5]. Let TIf be the Levi-
Civita parallel transport operator from point g to point p, in-
duced by [5] (details in SI Text). This operator is well defined
because the total curvature enclosed by any loop is zero, and
hence parallel transport is path independent. We then follow the
classical definition of the Burgers vector by integrating infini-
tesimal displacement vectors along a closed loop y(¢); however,
unlike the classical approach, this integration takes place in the
reference manifold

ater)= [ L, o) a (6

where p is an arbitrary reference point. d(y,p) is a vector at p that
depends on the loop y. It is proportional to the number of times
that the loop surrounds the singularity (23). Moreover, the vec-
tor d(y,p) is independent of the reference point p. Therefore, we
define the Burgers vector b as d(y,p) for loops y that surround
the singularity once. This generalizes the notion of a Burgers
vector for amorphous materials.

A direct calculation shows that for a reference metric of the
form [5] and a reference point p = (ry,0), the Burgers vector is
given by

b=—be /2y, [71

where y is a unit vector along the y axis. As expected, it is per-
pendicular to the axis of the metric dipole. Its magnitude is

b= /(b,b); =b.

Conformally flat metrics, and in particular the metric [5], can
be induced on an originally Euclidean manifold, by differential
swelling. Using this idea, we imposed a reference metric of the
form gp on annulus-shaped discs of a N-isopropylacrylamide
(NIPA) gel, using an experimental technique similar to the one
described in refs. 15 and 18. The local swelling factor is set by the
cross-linking density of the gel, which is determined by the local
exposure of the gel to UV irradiation (SI Text). Note that such a
differential swelling generates bodies that contain a single edge
dislocation, even though the plastic deformation is smooth every-
where (unlike Volterra’s cut-and-weld procedures).

When such annular discs are flattened, mimicking a cross
section of a 3D body, they are stressed. The insertion of a radial
cut allows the locally flat body to relax into a stress-free flat
configuration. Fig. 1 4 and B displays two such annuli cut along
the =0 and 0 = —(x/2) directions. In Fig. 14 the new stress-free
configuration exhibits a constant discontinuous shift along the
cut. In Fig. 1B the new stress-free configuration exhibits a con-
stant discontinuous shift perpendicular to the cut. The plastic
deformations needed to restore the bodies as they were before
the cut coincide with Volterra constructions of an edge dislo-
cation. This proves that differential swelling can yield a stress
field identical to that of a dislocation. Fig. 1 C and D displays
analytical calculations of isometric immersions of cut discs with
metrics of the form [5] for b=5 mm (details in SI Text). The
agreement with experiments is excellent.

Similar to disclinations and dislocations in crystals, the cur-
vature monopole and dipole are “topological defects.” They
cannot be removed, or even altered, by local deformations or by
the removal of a region around the defect. The mathematical
description of topological defects in Riemannian manifolds in-
volves the notion of a monodromy. The monodromy associated
with curvature monopoles and dipoles is nontrivial. In contrast,
the monodromy associated with curvature quadrupoles and

Moshe et al.
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Fig. 1. (A and B) Experiments. NIPA annular gels with a reference metric [5]
for b=5 mm. Sample A is cut along the §=0 axis and sample B is cut along
the 0=—x/2 axis. The slightly lighter band in B is a region of overlap of two
surfaces. Radial cuts allow the gels to adopt a flat stress-free configuration.
In both cases, relaxation is accompanied with a constant shift of about 4 mm.
(C and D) Calculation. Shown is isometric embedding of the same reference
metric with branch cuts along the rays =0 and §=-x/2.

higher-order multipoles is trivial, meaning that by removing the
defect locus all stresses can be relaxed (23).

The lowest multipole that can be generated by localized plastic
deformations is the quadrupole. It can be identified with strain
carriers in phenomenological theories of plasticity (26-29) or
with Eshelby inclusions (30-32). Such localized sources of stress
appear in a biological context as well, when cells that are de-
posited on a flexible substrate contract uniaxially. The strains/
stresses generated by the cells are known to affect their relative
motion and generate collective organization patterns (for a re-
view on this subject see ref. 33 and references therein).

A body that contains a single quadrupole is described by the
reference metric [1] in which the only nonzero coefficient in the
multipole expansion [4] is B,

2(0—
9o(r.0) =W, [9]

where Q =472B, and a=0,.

To understand the geometrical interpretation of defects car-
rying a quadrupole charge, consider an annulus whose initial
reference metric with conformal factor ¢ =0. Change now its
reference metric into one with conformal factor ¢, given by [9].
Both reference metrics are globally flat, and hence they can be
embedded isometrically (i.e., stress-free) in the plane. The com-
parison between the two stress-free configurations reveals the de-
formation inducing the curvature quadruple.

Fig. 24 displays the change in the stress-free configuration for
a=0. The solid lines represent the stress-free configuration for
@ =0, whereas the color-filled shape represents the stress-free
configuration for ¢ = ¢,. In this case the local deformation that
induces the metric is a compression. Fig. 2B displays the change
in the stress-free configuration for a=x/4. In this case the local
deformation that induces the metric is a shear (details in S7 Text).
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Fig. 2. (A and B) An analytical calculation of the planar embedding of annuli endowed with reference metrics with conformal factor [9]. The case (A) a=0
represents a compression-like deformation, whereas the case (B) a = /4 represents a shear-like deformation. (C) An analytic solution of the displacement field
induced by a linear array of seven quadrupoles oriented with z/4 with respect to the external shear direction. (D) A magnification of the region between two

adjacent quadrupoles.

So far we have shown that the reference metric field can de-
scribe localized sources of stress in amorphous materials, which
share many similarities with defects in crystalline materials.
Curvature monopoles and curvature dipoles are equivalent to
disclinations and dislocations, respectively. Curvature quadru-
poles are equivalent to Stone-Wales defects (34) and can be
generated via localized deformations. The description of defects
using a reference metric does not depend on the constitutive
laws of the underlying material and does not involve any line-
arization. In addition, because it is defined in the reference
manifold, it does not depend on the actual configuration of the
body. This property is important when dealing with problems
that contain many defects: Such bodies can be described by a
reference metric (Eq. 1), with

o(x)= ) gi(x—xi), [10]

where ¢;(x —x;) is the conformal factor of a single defect, located
at x;. This superposition property is exact and is crucial for mod-
eling “many body problems” (Fig. 2 C and D). Finally, the re-
sultant (nonlinear) elastic problem can be solved analytically
(35). Given a reference metric, one obtains a partial differential
equation for an incompatible stress function (ISF). The ISF is a
generalization of the classical Airy stress function.

With these tools in hand, we turn to analyze a mechanism
related to strain localization in sheared amorphous solids.

It was recently suggested (31, 32) that the formation of shear
bands during the failure of amorphous solids is initiated by the
appearance of lines of correlated Eshelby-like singularities.
These localized plastic deformations are induced by an external
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load, but their positions and orientations are driven by their
mutual interactions as well as by their interaction with the ex-
ternal load. Thus, to elucidate the formation of shear bands it is
necessary to understand these interactions, which is a notoriously
hard problem. Analytical solutions for the arrangement of mul-
tiple localized plastic deformations were obtained in ref. 31 for
the case of few, weakly interacting Eshelby inclusions (such an
approximation is required due to the nonadditivity of linear
elastic theory with respect to Eshelby inclusions).

Motivated by ref. 31, we proceed to study the mechanical state
of an externally loaded amorphous solid that contains a given
distribution of localized defects. Specifically, we study the mutual
interaction of two curvature quadrupoles in an external stress
field. The superposition property of our formalism and its non-
linearity allow a formulation without the approximations made in
ref. 31. In particular, we can capture the transition from weak to
strong coupling between the quadrupoles. The quadrupoles are
located at (0,0) and R(cos @, sin ®). Their orientations and charges
are a1, 01, and ap, Q,, respectively.

Using the ISF method mentioned above, and assuming that
the two quadrupoles are separated by a distance, r > /Q;, we
obtain the interaction energy of two quadrupoles,

_Y0.10,
0= 16xR?

cos(2(ay + ay —20)), [11]

where Y is the Young modulus. Physically, we expect the inter-
action energy to be large when R is below a core size, R., and
thus we assume Upg to be given by [11] for R >R, and infinite
otherwise.

Moshe et al.
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Fig. 3. The interaction energy landscape as function of a; and a, for R=R. and ® =0 (blue represents low energy). (A) B >> 1: The system is dominated by the
interaction of quadrupoles with the external field. The energy has a single minimum. (B) B < 1: The system is dominated by quadrupole—quadrupole in-
teractions. The minimum of the energy is degenerate. (C) Intermediate value of B: There are “soft” modes of deformations along the a; =7/2 —a; line.

The interaction of a quadrupole with an external stress field is
computed in a similar way. Taking for example an asymptotic
shear stress field, 6 — 6* as |y| — oo, we obtain

1
Uext =— 5 Qoc®sin2a [12]

(detailed calculations in SI Text).

Consider then a body subjected to an asymptotic shear stress
field. Suppose the body contains two quadrupoles of orientations
a1, and a fixed magnitude Q, located at points x1,x;, such that
X3 —x1 =R(cos ©,sin ®). The total interaction energy for R > R, is

2

1 R
Usotal = 3 Qoc® <—sin 201 —sin 2a; +B1T§ cos(2a; +2ay — 4@)) ,

where

()4

B=_=1 _
87R2o%®

is a dimensionless parameter.
Minimizing this energy over aj, az, R and O, the state of

minimal energy is

R=R,,

ap=op = and ©=0.

T
4>
Thus, a state of minimum energy is obtained when the quadru-
poles are close to each other, the line that connects them is
parallel to the direction of the shear, and their orientations are at
an angle of z/4 relative to the direction of the shear. This pre-
diction is consistent with ref. 31 and extends it as it is valid also
for strong quadrupole—quadrupole interactions.

In the above analysis the distance between the quadrupoles is
a variable determined by energetic considerations. In other
models, however, both the positions and the magnitudes of the
localized plastic deformations are predetermined. In these models
the distance R, in the definition of B should be replaced by the
actual distance between the quadrupoles.

The fact that the energy minima of the weakly and strongly
interacting quadrupoles coincide does not imply that materials
behave similarly in these two limits. The difference between the
two cases is significant in the presence of noise. Then, the full

Moshe et al.

energy landscape is important and not just the location of the
minima. For a strong shear field, i.e., for B < 1, the total en-
ergy is dominated by the interaction with the external field,
which implies that a;,a; will not deviate much from their op-
timal value. For a weak shear field, i.c., for B > 1, the total en-
ergy is dominated by the mutual interaction of the quadrupoles,
and hence © will not deviate much from a; + a; — z/2. For fixed
0, a1, a; may fluctuate as long as their sum remains constant.

Fig. 3 shows the interaction energy landscape as function of
a; and a; for R=R. and ®=0. Fig. 34 corresponds to B > 1.
The energy landscape displays a unique global minimum at
a1 =ap =x/4. Fig. 3B corresponds to B < 1. In this case there is
a degeneracy with a global minimum along the line &y = 7/2 — a,.
Fig. 3C corresponds to an intermediate regime. The deviations
from the unique global minimum are shallower along the line
a1 =n/2 — ay, and these are expected to dominate noisy statistics
in realistic materials.

In summary, we presented a geometric approach to 2D defects
in 3D amorphous elastic bodies. In this approach, the defective
body is described by a single geometric field—the reference
metric. The latter is an intrinsic property, independent of the
body’s configuration.

We identified a family of defects associated with multipoles of
the reference Gaussian curvature and demonstrated the corre-
spondence between the various multipoles and known defects in
crystals. The monopole term corresponds to a disclination, and
the dipole term corresponds to an edge dislocation. Both terms
are associated with a topological property of the reference
manifold—the monodromy. It was demonstrated experimentally
that a single dipole defect with a given Burgers vector can be
generated in an amorphous gel by controlling the reference
metric. Curvature quadrupoles are of special interest in the
context of inelastic deformations in amorphous solids and in the
context of the mechanical interaction between living contracting
cells (33). They can be generated via localized deformations and
are qualitatively similar to strain carriers in phenomenological
theories of plasticity (26-30). Applying the method of incom-
patible stress function (35), we obtain the interaction energy
of multiple quadrupoles in an external stress field. We identify a
dimensionless parameter B that governs the energy landscape of
the interaction energy. We show that for intermediate values of
B the energy landscape exhibits “soft” deformation modes.
These modes are expected to be reflected in the statistics of the
orientation and location of defects in amorphous solids under

PNAS | September 1,2015 | vol. 112 | no.35 | 10877

PHYSICS


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1506531112/-/DCSupplemental/pnas.201506531SI.pdf?targetid=nameddest=STXT

L T

/

1\

BN AS  PNAS D)

external stresses. In the present analysis, the magnitude Q of a
quadrupole was taken as a fixed parameter. In addition, the
reference metric before the formation of the quadrupoles was
assumed Euclidean. In reality, Q is determined by the energetics
of a nucleation process, and it is formed on top of an approxi-
mately Euclidean, noisy reference metric. Our analysis can be
extended to include the nucleation of defects by the addition of a
term of nucleation energy. Moreover, the amorphous structure
of the material can be described by a random conformal factor
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with proper statistical measures. We expect the geometric
approach to defective amorphous solids to be generally relevant
to the description of plasticity, in which quadrupoles, as well as
higher multipoles, are the fundamental strain-carrying objects.
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