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Episodic memory performance is the result of distinct mental
processes, such as learning, memory maintenance, and emotional
modulation of memory strength. Such processes can be effectively
dissociated using computational models. Here we performed gene
set enrichment analyses of model parameters estimated from the
episodic memory performance of 1,765 healthy young adults. We
report robust and replicated associations of the amine compound
SLC (solute-carrier) transporters gene set with the learning rate,
of the collagen formation and transmembrane receptor protein
tyrosine kinase activity gene sets with the modulation of memory
strength by negative emotional arousal, and of the L1 cell
adhesion molecule (L1CAM) interactions gene set with the repe-
tition-based memory improvement. Furthermore, in a large func-
tional MRI sample of 795 subjects we found that the association
between L1CAM interactions and memory maintenance revealed
large clusters of differences in brain activity in frontal cortical
areas. Our findings provide converging evidence that distinct
genetic profiles underlie specific mental processes of human
episodic memory. They also provide empirical support to previous
theoretical and neurobiological studies linking specific neuro-
modulators to the learning rate and linking neural cell adhesion
molecules to memory maintenance. Furthermore, our study
suggests additional memory-related genetic pathways, which
may contribute to a better understanding of the neurobiology
of human memory.
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Human memory is a highly heritable and complex trait that is
the outcome of numerous neurocognitive processes (1, 2).

Although many genetic variations associated with human mem-
ory performance have been identified (3–9), most were based on
general memory scores, such as the number of recalled items.
Such scores may serve as good correlates of overall memory
ability, but they offer little insight into the genetic underpinnings
of specific memory-related mental processes, such as encoding,
memory maintenance, modulation by emotional arousal, or guess-
ing strategies. Importantly, neurobiological and molecular profiles
of such processes are known to be partly distinct (10–12). Be-
cause some of the mental processes involved in memory are not
readily amenable to direct observation, computational modeling
can be used to make inferences about them (13, 14). Model-
based analyses provided insights into neurocomputational mech-
anisms of reward-based learning and decision making (15–17),
related model parameters such as the learning rate to genetic
polymorphisms (18, 19), and provided a computational explana-
tion for the inverted-U-shaped relation between stress intensity
and behavioral performance (20). As a relatively recent development,

the model-based analysis approach has largely been missing from
studies of human episodic memory and genome-wide association
studies (GWAS).
GWAS already had identified a number of associations be-

tween single genetic markers and cognitive traits, such as epi-
sodic memory (7–9) and modulation of memory strength by
negative emotional arousal (21). However, because many such
traits are complex and multigenic, it is unlikely that a single
genetic variant will explain a sufficient amount of behavioral
variability. As a statistically more powerful and biologically mean-
ingful alternative, gene set-based methods of linking sets of bi-
ologically related genes with traits of interest have been developed
(22, 23). They test whether a group of genes (gene set) is more
enriched in associations with a studied phenotype than would be
expected by chance. Such studies identified gene sets related to
neuropsychiatric phenotypes (24, 25) and to cognition in healthy
individuals, including working memory (26) and emotionally aver-
sive memory (27).
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In the present study, we performed a gene set enrichment
analyses (GSEA) of specific parameters of episodic memory
performance estimated from a computational model of verbal
memory in young adults (21). We found four distinct gene sets
associated with different computational parameters in indepen-
dent samples, three of which also were linked to related mea-
sures of picture memory in young adults and verbal memory in
elderly individuals. The L1 cell adhesion molecule (L1CAM)
interactions gene set also was associated with differences in
picture recognition-related brain activity in a number of frontal
cortical areas.

Results
The verbal memory task contained neutral, positive, and nega-
tive words, which the participants had to recall freely first after
their presentation and later after an ∼5 min delay. Participants in
the discovery sample (n = 1,239; Table 1) and the replication
sample (n = 526) performed the identical verbal memory task.
Eight performance measures (PM1–8; Table 2) indicated the
number of correctly recalled words in each valence category (i.e.,
neutral, positive, and negative) and confabulative errors (words
not on the learning list) in the immediate and the delayed recall.
Because performance measures were partly correlated, the ef-
fective dimensionality of data was smaller: principal component
analysis (PCA) revealed five major components (Fig. S1).

Computational Modeling. To study specific cognitive processes
relevant for memory performance, we used a simple computa-
tional model of learning in the verbal task (21). Our model had
the following parameters, which we aimed to infer from the
behavioral data: the learning rate α and the Gaussian noise σ, the
repetition-based memory improvement c (related to memory
maintenance) and the forgetting rate γ, the modulation of

memory strength by positive or negative emotional arousal epos
and eneg, the decision threshold β, and the sigmoidal steepness s
(for a detailed description see Materials and Methods). Because
the effective dimensionality of the behavioral data was lower
than the number of model parameters, we empirically selected
five of these parameters (α, β, c, epos, eneg) to be estimated in-
dividually, keeping the three remaining ones fixed. After the
estimation (Fig. S2), more than 99% of the resulting individual
parameter sets passed the χ2 test of goodness-of-fit [mean χ2
(discovery) = 1.5057 and χ2(replication) = 1.4955], indicating
that the model was sufficiently flexible. High correlations [mean
ρSpearman(discovery) = 0.981 and ρSpearman(replication) = 0.986]
among the 10 best parameter sets (hill climbing end points in
stage 2 of the estimation) suggested high estimation reliability,
and the presence of 99.8% of individual parameter sets within
the middle 90% of the value ranges (except the bound of c = 1,
because repetition should not weaken memories) indicated that
parameter estimation bounds did not constrain the results.

GSEA. We first performed a GWAS with the estimated model
parameters (α, β, c, epos, eneg) with 1,239 individuals in the dis-
covery sample (for quality control and statistics, see Materials
and Methods). Based on the resulting P values of association with
these parameters, we performed a GSEA using MAGENTA
(23). Of the 1,411 gene sets used for input, we found false-dis-
covery rate (FDR)-corrected enrichment for seven gene sets
(Table 3). A second GSEA was performed for these gene sets in
an independent sample of 526 individuals (Table 1), again using
GWAS-derived P values of association with the estimated model
parameters. Of the seven gene sets significantly enriched in
the discovery sample, four largely nonoverlapping gene sets
were also enriched in the replication sample (Table 3): amine
compound solute-carrier (SLC) transporters associated with the
learning rate α, L1CAM interactions associated with the repe-
tition-based memory improvement c, and collagen formation and
transmembrane receptor protein tyrosine kinase activity associ-
ated with eneg. Although behavioral measures of verbal memory
were correlated with model parameters (Table S1), none of the
gene sets reported above would have been detected if these be-
havioral measures had served as starting points for GSEA (using
the same multiple testing correction threshold as for the model
parameters); however, five of the seven gene sets identified in
the discovery sample were nominally associated with the relevant
behavioral measures.
We next examined if the four replicated gene sets showed

enrichment in associations with related, albeit less specific, be-
havioral measures in different tasks and in additional pop-
ulations (Table 1). Computational modeling was not practical for
these tasks because of the low dimensionality of the behavioral
data. In the sample of nondemented elderly individuals from the
German Study on Aging, Cognition and Dementia in Primary
Care Patients (AgeCoDe) (n = 743), participants performed a
word-list verbal recall task from the Consortium to Establish a
Registry for Alzheimer’s Disease (CERAD) neuropsychological
test battery (28). In a picture task, performed by two populations
of healthy young adults, participants were presented neutral,
positive, and negative pictures, which they had to recall freely
10 min after presentation. After a longer delay, participants of the

Table 1. Samples and core phenotypes used

Sample name
(location)

Phenotypes of
interest Sample size

Discovery (Zurich
and Basel)

Computational model
parameters

1,239

Replication (Basel) Computational model
parameters

526

Words/pictures*
(Basel)

Free recall of pictures 493

Pictures/fMRI
(Basel)

Free recall of pictures 835

Picture recognition 822
Working memory 825
fMRI data on picture

recognition
795

fMRI data on working
memory

797

AgeCoDe elderly
(Bonn)

Free recall of words 743

*This is a subsample of the Replication sample. All other samples are inde-
pendent.

Table 2. Description of performance measures (PM1–8) in the verbal memory task and their population statistics

Performance measure Discovery sample, mean ± SEM Replication sample, mean ± SEM

PM1: Positive words correctly recalled immediately 7.666 ± 0.042 7.645 ± 0.058
PM2: Negative words correctly recalled immediately 8.318 ± 0.036 8.364 ± 0.050
PM3: Neutral words correctly recalled immediately 7.392 ± 0.047 7.345 ± 0.065
PM4: Mistakes made immediately after encoding 1.302 ± 0.038 1.164 ± 0.050
PM5: Positive words correctly recalled after 5 min 2.948 ± 0.043 3.055 ± 0.061
PM6: Negative words correctly recalled after 5 min 2.645 ± 0.041 2.882 ± 0.059
PM7: Neutral words correctly recalled after 5 min 2.448 ± 0.041 2.618 ± 0.056
PM8: Mistakes made 5 min after encoding 1.681 ± 0.048 1.727 ± 0.071
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Basel pictures/functional MRI (fMRI) sample also were asked
to perform picture recognition: provided with both previously
shown and new pictures, they had to answer whether they had
seen each picture. For all of these tasks, we selected behavioral
measures most closely related to each computational parameter.
For the learning rate α, immediate recall is more appropriate
than delayed recall, because the latter also accounts for forget-
ting. However, because immediate recall was not available in the
picture task, we used free delayed recall (see also Table S1). For
the repetition-based memory improvement c, only delayed recall
was appropriate, because immediate recall did not account for
memory maintenance. In the picture task both free recall and
recognition measured memory over delays; however, because we
also aimed to study the neural correlates of memory mainte-
nance using functional neuroimaging, which were available only
for picture recognition data, we chose the latter phenotype. For
negative emotional modulation factor eneg, only picture data
were available; therefore we chose the difference between freely
recalled negative and neutral pictures as a relevant phenotype.
Based on the GWAS results of these phenotypes (population
statistics are shown in Table 4), we used MAGENTA for testing
the enrichment of the four gene sets associated with different
computational parameters of the (original) verbal task. We
found that amine compound SLC transporters were associated
with immediate recall of words in the elderly sample and with
free recall of pictures in both young samples; L1CAM in-
teractions were associated with delayed recall of words in the
elderly sample and with picture recognition in the pictures/fMRI

sample; collagen formation was associated with free recall of
negative minus neutral pictures in the words/pictures sample;
and there were no significant associations with transmembrane
receptor protein tyrosine kinase activity (Table 5). Because the
arousal of negative pictures [2.36 (mean) ± 0.06 (SEM)] was
higher than that of positive pictures (1.94 ± 0.04; Student t test;
P = 0.000002), the association of collagen formation with picture
recall may be mediated by arousal rather than by negative va-
lence. We also checked if sex was correlated with any of the
significant SNPs (one per gene) in any of the significantly
enriched gene sets (Tables 3 and 5). No significant correlations,
corrected for the number of SNPs per gene set, were found
(Ps > 0.05).

Neural Correlates of the Discovered Gene Sets. Because the amine
compound SLC transporters and L1CAM interactions gene sets
were associated with free recall and recognition of pictures, re-
spectively, in the pictures/fMRI sample, we examined neural
correlates of these associations using functional neuroimaging.
Participants in this sample performed the encoding and recog-
nition parts of the picture task in the fMRI scanner; free recall
was performed outside the scanner. We studied association with
amine compound SLC transporters (related to the learning rate
α) by using two encoding contrasts: all pictures vs. scrambled
controls and the difference due to memory (Dm, i.e., subse-
quently remembered vs. not remembered pictures; 29). Because
neural correlates of memory maintenance may not be apparent
during encoding, we examined the association with L1CAM

Table 3. Associations between computational model parameters for the verbal task and different gene sets

Model parameter Database
Gene set

(number of genes in gene set)

Discovery sample
(n = 1,239) Replication

sample (n = 526)
Pnominal PFDR Pnominal

Learning rate α Reactome Amine compound SLC
transporters (27)

2.0 × 10−4 0.0405 0.0031

Decision threshold β KEGG Axon guidance (129) 4.4 × 10−5 0.0067 0.405
Repetition-based

memory improvement c
Reactome L1CAM interactions (86) 3.0 × 10−6 0.0011 0.0231

Interaction between
L1 and ankyrins (23)

1.0 × 10−3 0.0365 0.176

Modulation by negative
emotional arousal eneg

Reactome Collagen formation (58) 1.0 × 10−4 0.0129 0.0025
Gene Ontology Transmembrane receptor protein

tyrosine kinase activity (43)
4.1 × 10−5 0.0124 0.0212

Transmembrane receptor protein
kinase activity (51)

1.0 × 10−4 0.0398 0.059

Only the gene sets surviving MAGENTA FDR correction in the discovery sample are shown. The replicated gene sets are shown in bold. Interaction between
L1 and ankyrins is a subset of L1CAM interactions, and transmembrane receptor protein tyrosine kinase activity is a subset of transmembrane receptor protein
kinase activity. L1CAM interactions contains four genes [EGFR, FGFR1, and neuropilin 1 and 2 (NRP1, and NRP2)] shared with transmembrane receptor protein
tyrosine kinase activity.

Table 4. Population statistics of relevant phenotypes for the picture task and for the word task used in the German elderly sample

Phenotype Data sample Mean ± SEM

Percentage of correctly remembered pictures in the free recall Words/pictures (n = 493) 39.58 ± 0.49
Percentage of correctly remembered negative pictures minus neutral pictures in the free recall Words/pictures (n = 493) 17.17 ± 0.59
Percentage of correctly remembered pictures in the free recall Pictures/fMRI (n = 835) 42.57 ± 0.39
Percentage of correctly remembered negative pictures minus neutral pictures in the free recall Pictures/fMRI (n = 835) 17.67 ± 0.45
Picture recognition Pictures/fMRI (n = 822)
Percentage of correctly recollected pictures* 80.74 ± 0.55
Percentage of previously seen pictures rated as familiar 15.68 ± 0.49
Percentage of previously seen pictures rated as new 3.57 ± 0.15
Percentage of new pictures rated as known 1.02 ± 0.07
Percentage of new pictures rated as familiar 9.41 ± 0.28
Percentage of new pictures rated as new 89.57 ± 0.31

Number of correctly remembered words in the immediate recall AgeCoDe elderly (n = 743) 19.55 ± 0.13
Number of correctly remembered words in the delayed recall AgeCoDe elderly (n = 743) 5.88 ± 0.07

*Previously seen pictures rated as known.
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interactions (related to the repetition-based memory improve-
ment c) using the recognition contrast of previously seen vs. new
pictures, a task that engages the brain areas involved in memory
maintenance and retrieval, such as prefrontal cortex and medial
temporal lobe (30, 31). To capture multiallelic effects of each
gene set on the differences in brain activity, we generated indi-
vidual multilocus genetic scores (Materials and Methods). For
L1CAM interactions, the score was built using 28 significant
SNPs from the same number of genes (one most significant SNP
per gene; Table S2); the genetic score for amine compound SLC
transporters comprised 14 SNPs.
Genetic score-dependent analysis revealed no whole-brain

familywise error (FWE)-corrected correlations with differences
in brain activity for amine compound SLC transporters. How-
ever, the L1CAM interactions genetic score was negatively cor-
related at the whole-brain FWE-corrected level with differences
in the activity of numerous frontal regions: large clusters in the
left superior frontal cortex and the left inferior frontal gyrus (Fig.
1, A and B and Table 6) and small clusters in the bilateral
orbitofrontal cortices and insulae (Table 6). The results were
very similar if the two most significant SNPs per gene were used
to build a genetic score (Table S3) or if only correctly rated
pictures were included in the contrast (recollected previously
seen pictures vs. new pictures rated as new). We also performed
a genetic score-independent analysis of brain activity, which
revealed substantial differences in activity at all cluster peaks
dependent on the L1CAM interactions genetic score (Fig. 1, C
and D), suggesting that higher values of the genetic score reflect
smaller increases in frontal activity during the recognition of
previously seen pictures as compared with the viewing of new
pictures. To ensure that the observed effect specifically reflected
differences in the episodic memory of previously seen pictures,
we also used the contrast between recollected previously seen
pictures vs. previously seen pictures rated as familiar or new (n =
786). Of the 238 voxels significant in the contrast between pre-
viously seen vs. new pictures, the great majority also passed
small-volume correction (SVC) for the latter contrast [162 voxels
in superior frontal cortex, peak coordinates (0, 17, 48), T =
−4.93; four voxels in left lateral orbitofrontal cortex, peak co-
ordinates (−30, 22, −8), T = −5.07], with the peak voxels also
surviving whole-brain correction.
Because the differences in brain activity at all cluster peaks

dependent on the genetic score of L1CAM interactions also were
negatively associated with recognition performance (Table S4,
n = 795), we performed a mediator analysis to exclude the
possibility that the association between the genetic score and the
differences in brain activity could be explained fully by the cor-
related behavioral phenotype. We examined whether the differences
in activity in these brain regions were mediating the correlation

between the genetic score and picture recognition performance.
We found that all four clusters acted as significant mediators of
the genetic score–behavior relationship (for more details about
mediation, see Materials and Methods and Fig. S3).
As two additional controls, we first extracted average beta

values for the two largest clusters, whose activity was associated
with the picture recognition phenotype at the whole-brain FWE-
corrected level [cluster 1: peak coordinates (0, 28, 40), T =
−12.36, number of voxels = 2,917; cluster 2: peak coordinates
(−47, 41, 16), T = −10.57, number of voxels = 1,541] and sub-
jected them to GSEA using MAGENTA. The L1CAM in-
teractions gene set was significantly enriched in both cases, with

Table 5. Association between the four replicated gene sets and other related phenotypes

Database

Gene set (number of genes in
gene set, associated model

parameter) Relevant phenotype Data sample Association P value

Reactome Amine compound SLC
transporters (27, α)

Percentage of correctly
remembered pictures in
the free recall

Words/pictures 0.0302
Pictures/fMRI 0.0001

Number of correctly remembered
words in the immediate recall

AgeCoDe elderly 0.032

L1CAM interactions (86, c) Percentage of correctly recollected
pictures in picture recognition

Pictures/fMRI 0.0419

Number of correctly remembered
words in the delayed recall

AgeCoDe elderly 0.0068

Collagen formation (58, eneg) Percentage of correctly
remembered negative pictures
minus neutral pictures in the free recall

Words/pictures 0.0206
Pictures/fMRI 0.145

Gene Ontology Transmembrane receptor
protein tyrosine kinase
activity (43, eneg)

Percentage of correctly
remembered negative pictures
minus neutral pictures in the free recall

Words/pictures 0.147
Pictures/fMRI 0.153

Fig. 1. Functional neuroimaging of picture recognition (the contrast be-
tween previously seen vs. new pictures). (A and B) Differences in brain ac-
tivity dependent on the L1CAM interactions genetic score. (C and D)
Genotype-independent differences in brain activity. Color-coded t values are
shown. The maps are centered at (−3, 28, 40) in the left superior frontal
cortex (A and C) and at (−47, 44, −8) in the left inferior frontal gyrus (B and
D). Only voxels surviving whole-brain FWE correction are shown (P whole-
brain FWE-corrected < 0.05; jTj > 4.77; n = 795). Activations are overlaid on
sections of the study-specific group template.
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nominal P = 0.013 for each cluster. Second, we generated 10,000
genetic scores based on randomly selected SNPs (28 SNPs per
genetic score, as for L1CAM interactions) and the picture rec-
ognition phenotype, using the same procedure as for the real
genetic scores. None of the random scores showed statistically
significant, whole-brain-corrected correlation with the neuro-
imaging phenotype (the contrast between previously seen vs. new
pictures) after correction for the number of genetic scores
(threshold Pnominal = 2.2 × 10−10). Based on the null distribution
computed with the 10,000 random scores, we also provide em-
pirical P values for the four clusters, which describe the proba-
bilities of their peak voxel significance being reached for the
most significant voxel across the whole brain using the random
scores (Table 6).
To evaluate the specificity of our imaging genetics finding, we

examined if the correlation between the L1CAM interactions
genetic score and differences in frontal activity also could be
observed during encoding (the subsequent memory contrast,
Dm). No such correlation was found at either the whole-brain
FWE-corrected level or when applying SVC for 238 voxels sig-
nificant in the recognition contrast, suggesting either that the
relation between L1CAM interactions and differences in frontal
activity was not evident during encoding and developed later or
that it was specific to the cognitive demands of the recognition
task. Because the participants in the pictures/fMRI sample also
performed a working memory task (N-back), we examined if the
reported association with L1CAM interactions was related to
working memory. The MAGENTA analysis performed using P
values of GWAS of N-back performance revealed significant
enrichment for L1CAM interactions (P = 0.023, n = 825). The
multilocus genetic score based on N-back performance was
negatively correlated with the one based on picture recognition
performance (ρSpearman = −0.140, P = 5.9 × 10−5, n = 815),
suggesting that, with regard to this gene set, better working
memory was related to worse picture recognition. Because
common frontal mechanisms may mediate both effects, we exam-
ined the neural correlates of working memory using fMRI (2-back
vs. 0-back contrast, n = 797) and found no correlation between
differences in brain activity and the working memory-based
L1CAM interactions genetic score at either the whole-brain or
SVC levels of significance (number of voxels for the latter, 238).
We also examined if the multilocus genetic score based on
N-back performance was related to differences in brain activity
in the recognition of previously seen vs. new pictures. Again no
significant voxels were found at either whole-brain FWE-cor-
rected or SVC thresholds, suggesting that there was no neural
evidence implicating L1CAM interactions in working memory or
common mechanisms with picture recognition.

Discussion
In this study we show robust associations between multiple gene
sets and different computational parameters of verbal memory

as well as other relevant neurobehavioral traits in four samples
of young and elderly individuals (Table 1). Specifically, amine
compound SLC transporters were associated with the learning
rate α in two samples of young individuals performing the verbal
task, with free recall of pictures in two samples of young indiv-
iduals, and with immediate recall of words in an elderly sample.
L1CAM interactions were linked to the repetition-based memory
improvement c (reflecting memory maintenance) in two young
samples, to picture recognition and large clusters of differences in
recognition-related frontal activity in a third young sample, and
to delayed recall of words in the elderly sample. Finally, collagen
formation and transmembrane receptor protein tyrosine kinase
activity were associated with modulation of verbal memory
strength by negative emotional arousal (eneg) in two young
samples, with the former gene set also linked to free recall of
negative minus neutral pictures in young individuals.
At this point, it is important to specify the term replication in

the context of gene set-based association studies. In contrast to
SNP-based studies, in which the object of replication is the sig-
nificant SNP (or variants in high linkage disequilibrium), the
object of replication in gene set-based studies is the significant
gene set. Across different samples, replicated gene sets typically
are composed of different tagging SNPs (32, 33), a phenomenon
related to the allelic and locus heterogeneity of complex traits
(22, 34). In our study we did not observe substantial tagging SNP
overlap between replicated gene sets across samples (Tables S5
and S6).
The correspondence of significant genes between different

samples and phenotypes shows that for amine compound SLC
transporters genes encoding GABA, norepinephrine, choline, and
vesicular amine transporters are significant in multiple samples,
including the discovery sample (Table 7 and Table S5). These
genes have been implicated in epilepsy, substance abuse, attention
deficit hyperactivity disorder, schizophrenia, and neurodegener-
ative disorders (35–37). On a neurocomputational level, acetyl-
choline plays an important role in the encoding of new memories,
may act as a switch between encoding and retrieval (38), and has
been suggested as a neural correlate of the learning rate (39).
Variations in several dopaminergic genes have been linked to the
learning rate in the reinforcement learning framework (18, 19)
and in economic games (40). Therefore, our results support the
notion that the relations between certain neuromodulators and
the learning rate generalize for various types of learning models.
For L1CAM interactions, genes encoding fibroblast growth

factor receptor (FGFR), ankyrin at node of Ranvier (ANK3),
contactins, integrins, and important neural cell adhesion mole-
cules (NRCAM and NCAM1) were significant in multiple sam-
ples including the discovery sample (Table 8 and Table S6).
These molecules have been implicated in neuronal development
and signaling and are essential for synaptic plasticity and its sta-
bility in many different brain regions, spatial learning, and memory
consolidation (41–44), supporting our discovered association with

Table 6. Association between the L1CAM interactions genetic score and brain activity differences during picture recognition

Regional correspondence of
the maximum Left/right No. of voxels

Peak MNI
coordinates Peak statistics

Empirical P valueX Y Z T Pnominal

Superior frontal cortex (79%),
caudal anterior cingulate
cortex (2%)

Left 187 −3 28 40 −6.19 9.4 × 10−10 0.0001

Pars orbitalis cortex (34%),
pars triangularis cortex (28%),
rostral middle frontal cortex (16%)

Left 39 −47 44 −8 −5.70 1.6 × 10−8 0.0021

Lateral orbitofrontal cortex (20%), insula (23%) Right 6 30 22 0 −5.16 3.2 × 10−7 0.018
Lateral orbitofrontal cortex (73%), insula (8%) Left 4 −28 22 −4 −4.87 1.4 × 10−6 0.053

Previously seen vs. new pictures fMRI contrast was used. Only clusters with at least three voxels surviving whole-brain FWE correction are shown (P whole-
brain FWE-corrected < 0.05; jTj > 4.77; n = 795). Region names are in accordance with the FreeSurfer nomenclature; probabilities are in accordance with the
in-house atlas. For each cluster we also provide empirical P values of the peak voxel based on 10,000 randomly generated genetic scores (null distribution).
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a memory maintenance-related computational parameter. Some
of them, e.g., ANK3 and NCAM1, also have been related to neu-
rodevelopmental and psychiatric disorders (45) and to chronic
stress-related cognitive disturbances (41).
Among collagen formation genes significant in both discovery

and replication samples, TLL2 was linked to mouse avoidance
behavior and human bipolar disorder (46), and ADAMTS14 was
linked to multiple sclerosis (47). Collagens are essential for
connective tissue and mobility, but they also have been impli-
cated in anxiety- and fear-related behaviors in humans and mice
(48–50). Interestingly, we found that the collagen formation gene
set was significantly enriched (P = 0.005) in the AgeCoDe elderly
sample with Geriatric Depression Scale score (51) as phenotype.
Finally, for the transmembrane receptor protein tyrosine kinase
activity genes significant in both discovery and replication sam-
ples, we did not find references implicating them in emotional
memory, anxiety, or affective disorders.
Despite the convergence of our results, particularly for amine

compound SLC transporters and L1CAM interactions, the exact
processes and gene systems influencing the learning rate and
memory maintenance cannot be inferred directly, because GSEA
are fundamentally based on gene sets defined in different data-
bases [Reactome, Kyoto Encyclopedia of Genes and Genomes
(KEGG), Gene Ontology, BioCarta] that are in the process of

being refined and extended. Our use of related behavioral phe-
notypes rather than computational model parameters in the
picture task and the AgeCoDe elderly sample also is a notable
limitation. Because a variety of relevant behavioral measures are
necessary for fitting nontrivial computational models, it is es-
sential for modelers and experimentalists to collaborate during
the process of task design. Furthermore, we note that none of
our previously reported GWAS SNPs associated with memory
performance, such as those of KIBRA (7) and CTNNBL1 (9),
was significantly associated with the model parameters. Memory
recall performance and model parameters are not identical
phenotypes; thus SNPs significantly associated with a model
parameter can be missed when a behavioral measure serves as a
starting phenotype, and vice versa.
Functional neuroimaging results revealed a robust negative

correlation between the L1CAM interactions genetic score and
the differences in activity in left superior and inferior frontal gyri,
which have been implicated in the recognition of words and
pictures and in working memory in healthy individuals (31, 52–
54) and Alzheimer’s patients (55, 56). The superior frontal gyrus
has been implicated in cognitive control (57), and the inferior
frontal gyrus has been implicated in retrieval attempt and effort
(58, 59) and depth of memory (60). Reverse inference analysis
using Neurosynth (a database of fMRI coordinates and associated

Table 8. Correspondence of significant L1CAM interactions genes between samples

Gene name Chromosome Description
Discovery
sample

Replication
sample

Pictures/fMRI
sample

AgeCoDe
sample

RPS6KA2 6 Ribosomal S6 kinase 3 0.0005 0.0177 0.0011 0.0020
KCNQ3 8 Potassium channel subunit Kv7.3 0.0017 0.0044 0.0020 0.0048
DPYSL2 8 Collapsin response mediator protein 2 0.0059 0.0062 0.0247 0.0009
ITGA9 3 Integrin alpha-9 0.0027 0.0008 0.0049 0.0858
ANK3 10 Ankyrin 3, node of Ranvier 0.0023 0.0197 0.0235 0.0013
CNTN6 3 Contactin 6 0.0009 0.0131 0.0110 0.0235
SH3GL2 9 Endophilin A1 BAR domain 0.0032 0.0031 0.0130 0.0578
SCN2A 2 Sodium channel, type II, α SUBUNIT 0.0024 0.0072 0.0676 0.0087
FGFR1 8 Fibroblast growth factor receptor 1 0.0125 0.0018 0.0185 0.0260
NRCAM 7 Neuronal cell adhesion molecule 0.0004 0.0409 0.0149 0.0578
ITGA1 5 Integrin, alpha 1 0.0079 0.0345 0.0267 0.0024
LAMA1 18 Laminin, alpha 1 0.0310 0.0879 0.0318 0.0003
EGFR 7 Epidermal growth factor receptor 0.0011 0.0328 0.0281 0.0459
NCAM1 11 Neural cell adhesion molecule 1 0.0144 0.0037 0.0352 0.0840
SPTBN1 2 Beta-II spectrin 0.0273 0.0045 0.1314 0.0162
CSNK2A2 16 Casein kinase II subunit alpha 0.0059 0.0807 0.0318 0.0190
ANK1 8 Ankyrin 1, erythrocytic 0.0152 0.0114 0.0254 0.0788
ITGA2 5 Integrin, alpha 2 0.0161 0.0312 0.0352 0.0247
CNTN1 12 Contactin 1/F3 0.0140 0.0290 0.0632 0.0235
NRP2 2 Neuropilin 2 0.0266 0.0181 0.0335 0.0504
NRP1 10 Neuropilin 1 0.0240 0.0275 0.0407 0.0823

Only genes with significant SNPs in the discovery sample and at least two other samples are shown (the SNP rsIDs and linkage disequilibrium between them
are provided in Table S6). P values of association with relevant phenotypes (Table 5) are provided. Genes are sorted by the product of these values.

Table 7. Correspondence of significant amine compound SLC transporters genes among samples

Gene
name Chromosome Description

Discovery
sample

Replication
sample

Pictures/fMRI
sample

Words/pictures
sample

AgeCoDe
sample

SLC6A11 3 GABA transporter 3 0.0184 0.0167 0.0084 0.0004 0.0707
SLC14A2 18 Urea transporter 2 0.0179 0.0159 0.0141 0.0049 0.0619
SLC6A20 3 X transporter protein 3 0.0059 0.1808 0.0092 0.2848 0.0024
SLC6A2 16 Norepinephrine transporter 0.0491 0.1976 0.0141 0.0097 0.0162
SLC44A3 1 Choline transporter-like protein 3 0.0184 0.0529 0.0235 0.0047 0.2009
SLC6A6 3 Taurine transporter 0.0287 0.0371 0.0437 0.0932 0.0235
SLC6A7 5 Brain-specific L-proline transporter 0.0184 0.0275 0.0295 0.1263 0.1680
SLC6A18 5 Sodium channel-like protein 0.0377 0.0482 0.0417 0.0234 0.1872
SLC18A2 10 Vesicular amine transporter 2 0.0491 0.1651 0.0388 0.0205 0.1940

Only genes with significant SNPs in the discovery sample and at least two other samples are shown (the SNP rsIDs and linkage disequilibrium between them
are provided in Table S5). The P values of association with relevant phenotypes (Table 5) are provided. Genes are sorted by the product of these values.
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keywords automatically extracted from the literature; 61)
showed that peak coordinates of the largest cluster dependent on
the L1CAM interactions genetic score (−3, 28, 40) were related
mostly to the term “response conflict” (Z-score = 5.03, posterior
probability = 0.82). Thus, one explanation for the negative cor-
relation between the differences in the activity in these regions
and the genetic score is that these frontal activity patterns reflect
increased effort or conflict between different options in the case
of poorer recognition performance and less effort/conflict in the
case of good memory. The negative correlation between the
L1CAM interactions genetic score and the differences in activity
in the left superior and inferior frontal gyri also may indicate that
the reported regions code specifically for familiarity rather than
recollection of pictures, as suggested by dual-process models (62,
63). However, because of the ceiling effect in our picture rec-
ognition data (with less than 4% of previously seen pictures rated
as new and more than 80% as recollected), the percentages of
correctly recollected pictures were strongly inversely correlated
with percentages of previously seen pictures rated as familiar
(ρSpearman = −0.96). Therefore, based on our data, it was im-
possible to dissociate recollection and familiarity effectively at
either the behavioral or neural level (where contrasts based on
familiar pictures were significantly underpowered), which re-
mains an important question for future studies.
In conclusion, by computationally dissecting episodic memory

performance into specific components, we were able to identify
distinct genetic profiles that underlie specific mental processes of
human episodic memory.

Materials and Methods
Participants, Data Preprocessing, and GWAS Quality Control. We had three
samples of healthy, young Swiss subjects: the discovery sample (used for
associations withmodel parameters in the verbal task) consisted of the Zurich
subsample (192 males, 514 females, age mean ± SD = 21.92 ± 2.95 y), and the
Basel subsample (261 males, 504 females, age 22.47 ± 3.62 y). The Basel
words/pictures sample (200 males, 410 females, age 22.48 ± 3.51 y) was used
for the direct replication of associations with model parameters in the verbal
task and for testing associations with performance in the picture task; the
Basel pictures/fMRI sample (404 males, 588 females, age 22.47 ± 3.35 y) was
used for testing associations with performance in the picture task and
studying their neural correlates with neuroimaging. Participants’ physical
and mental health was assessed by standard questionnaires and telephone
interviews. Indications for exclusion were the recent use of medications
influencing the central nervous system, pregnancy, visual system disorders,
hormonal irregularities, a body mass index outside the 18.0–35.0 range
(20.0–35.0 for men), recent or regular use of cannabis, excessive use of
alcohol, use of other psychoactive drugs, history of mental illness, cancer,
brain surgery, and for the fMRI sample, the presence of metal implants and
claustrophobia. Written informed consent was obtained from the subjects
after a complete description of the study. The ethics committees of the
Cantons of Zurich and Basel, Switzerland approved the study protocols.

A total of 930,856 SNPs were genotyped. For association testing, markers
with call rate less than 0.95, with minor allele frequency less than 0.05, and
with Hardy–Weinberg equilibrium P < 0.05 were excluded. Population
stratification was assessed by analyzing all genomewide, array-based auto-
somal SNPs passing the quality-control (QC) criteria with EIGENSTRAT (64).
PCA was applied to each population (Zurich words subsample, Basel words
subsample, Basel words/pictures sample, and Basel pictures/fMRI sample) to
reduce genetic variation to a few dimensions. For PCA, default parameters
were used (i.e., definition of 10 principal components in five iterations; the
outlier criterion was 6 SDs). EIGENSTRAT identified a number of individuals
deviating from a large, genetically homogenous population cluster: 112 in
the Zurich words subsample, 68 in the Basel words subsample, 55 in the Basel
words/pictures sample, and 112 in the Basel pictures/fMRI sample. These
outliers were removed from further analyses. Because learning and memory
abilities deteriorate with age (65), we also excluded the outliers (individuals
with age more than 2 SDs from the mean in each population) from further
analyses: 18 in the Zurich words subsample, 44 in the Basel words subsample,
29 in the Basel words/pictures sample, and 47 in the Basel pictures/fMRI
sample. After outliers based on population stratification and age were ex-
cluded, the following numbers of participants remained for the final anal-
ysis: 1,239 in the discovery sample (582 in the Zurich words subsample, 657 in
the Basel words subsample), 526 in the Basel words/pictures sample (picture

data available for 493 subjects), and 835 in the Basel pictures/fMRI sample
[picture recognition data available for 822 subjects and fMRI data for 795
subjects (for the remaining subjects the fMRI data were corrupted); working
memory data were available for 825 subjects, and fMRI data were available
for 797 subjects; picture recognition and working memory data were available
for 815 subjects].

GWAS Statistics and GSEA. All GWAS were run under the assumption of an
additive model and using the Spearman rank correlation test. Sex chromo-
somes were excluded from the analysis. The resulting P values of autosomal
SNPs in the GWAS (one list per sample and phenotype) served as input for
the GSEA, which was performed using MAGENTA (23). Briefly, the method
first maps SNPs to genes (each SNP can be counted toward only one gene)
and then assigns each gene an SNP association score (i.e., the maximum SNP
P value within ± 0 kb of the annotated gene; 26). By applying a stepwise
multiple linear regression, the analysis is corrected for the following con-
founders: gene size, number of SNPs, number of independent SNPs, number
of recombination hotspots, linkage disequilibrium, and genetic distance
(measured in centimorgans). Last, a gene set enrichment-like statistical test
is applied to determine whether a gene set is enriched for highly ranked P
values compared with a gene set of identical size randomly drawn from the
genome. Based on recommendations in the literature (23, 26), we used a
75th percentile cutoff to determine the significance of a gene, because that
cutoff has the optimal power for weak genetic effects that are expected for
complex, polygenic traits. The gene sets used were extracted and curated
from the MSigDB v3.1 database (www.broadinstitute.org/gsea/msigdb), in-
cluding gene sets from different online databases (KEGG, Gene Ontology,
BioCarta, and Reactome). We used a gene set size of 20 to 200 genes to
avoid both overly narrow and overly broad functional gene set categories
(26), resulting in 1,411 gene sets to be analyzed. Furthermore, to reduce
bias, genes mapping in the high linkage disequilibrium (LD) extended major
histocompatibility complex were excluded from the respective gene sets
(66). FDR multiple testing correction was used to correct for the number of
gene sets.

Memory Testing—the Verbal Task. Subjects viewed six series of five seman-
tically unrelated nouns presented at a rate of one word/s with the instruction
to learn the words for immediate free recall after each series. The words were
taken from the collections of Hager and Hasselhorn (67) and consisted of 10
neutral words such as “angle,” 10 positive words such as “happiness,” and
10 negative words such as “poverty.” The order of words was pseudoran-
dom, with each group of five words containing no more than three words
per valence category. In addition, subjects underwent an unexpected
delayed free-recall test of the learned words after ∼5 min. The free recall of
a word was considered successful only if it was spelled correctly or a with
single-letter typo that did not make it become a different valid word. The
relevant performance measures (PMs) are described in Table 2. In the Basel
words/pictures sample, the picture task was performed more than 3 h after
the end of the verbal task. Word arousal ratings were available in the Zurich
sample (on a scale of 1–5), and the mean arousal ratings did not differ sig-
nificantly between positive and negative words: arousal(positive) = 3.41
(mean) ± 0.44 (SEM); arousal(negative) = 4.10 ± 0.16; Student t test; P = 0.16.

Computational Model for the Verbal Task. To dissociate specific mental pro-
cesses involved in learning and memory, we used a computational model to
describe individual performance in the verbal memory task (21). Depending
on how well individuals remember a word, they may or may not try
to write it down in the free recall, and if they try, their recall may or may
not be correct. The probability that the attempted recall is correct
depends on memory strength m of each word as follows: pcorrectðm, sÞ=
1=ð1+ expð−sðm−m50%ÞÞÞ, with sigmoidal steepness s and center of the
sigmoid m50% = 1. The decision to attempt the recall of weak memories
depends on the participant’s willingness to risk making errors. We mod-
eled this decision-making aspect using the decision threshold β, where
recall was attempted for words with memory strength m > β but not for
those with m < β. During the encoding, initial memory strength for each
word was assigned as m = α × e + N(0, σ), with α being the learning rate, e
the emotional modulation of memory strength (e = eneg for negative
words, e = epos for positive words, e = 1 for neutral words), and N(0, σ) the
Gaussian noise with mean 0 and SD σ, reflecting randomness in learning
different words. Because the memory strength of words that have been
recalled correctly in the immediate recall is likely to increase through
repetition (i.e., the participants writing them down), we multiplied the
memory strength m of immediately recalled words by the repetition-based
memory improvement c (c≥1). To model forgetting during the 5-min
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delay, we multiplied all memory strengths by the forgetting rate γ (γ<1). It is
important to note that, because no external measure could distinguish the
repetition-based memory improvement from the forgetting rate in our
experiments, these two parameters were closely related and together
reflected memory maintenance.

The described model had eight parameters: α, β, γ, epos, eneg, s, c, and σ.
Because our behavioral phenotype consisted of only eight partly correlated
measures per individual, it was impossible to estimate all eight parameters
reliably. Because the PCA indicated five substantial components (Fig. S1), we
chose to keep five of the eight parameters in the model flexible (different
between individuals) and the three remaining ones fixed (same for all in-
dividuals). The selection of the most appropriate model (i.e., which param-
eters would be flexible and which fixed) was performed empirically, based
on the corresponding mean goodness-of-fit values. Such selection ensured
that closely related parameters, such as c and γ, would not both be flexible,
whereas relatively independent parameters, which can account for more
variance, would.

Estimation and Evaluation of Best-Fitting Model Parameters. To estimate the
best-fitting model parameters, we computed the expected values of all
performance measures (PM1–8; Table 2) as a function of eight model pa-
rameters (α, β, γ, epos, eneg, s, c, σ). We numerically computed integrals over
probability distributions of memory strength m, because this method was
more efficient and robust than simulating the model with random numbers
and computing averages over multiple simulation runs. As a control, we also
simulated the model stochastically: The averages of PMs over 100,000 sim-
ulations were almost exactly the same as those using the expected value-
based method.

To evaluate how well the model with a particular set of parameters fits
individual behavioral performance, we used the following goodness-of-fit
function (20, 21, 68):

χ2 =
X8

i=1

�
PM exp

i − PMmod
i ½parameters�

�2

�
σ exp
i

�2

where PMi
exp and PMi

mod are experimental and modeled performance
measures of that individual, respectively, and (σiexp)2 is the variance in the
experimental data of PMi.

With χ2 as the objective function to minimize, we performed the esti-
mation of best-fitting parameters in several stages (21):

i) Model selection: To determine which five parameters should be flexible,
we evaluated all 56 possible five-of-eight combinations. Because of the
high computational cost of running 56 full estimation procedures, at
this stage we performed only a moderately accurate estimation of the
three fixed parameters.

ii) Using the two best models, we performed a more refined estimation of
fixed parameters, thereby improving the χ2 values. We note that al-
though the improvements in χ2 values were substantial, they were small
compared with the differences between the initial χ2 values of the two
best models and those of the other, worse models; therefore, it is very
unlikely that any of those other models would become comparatively
better with refinement.

iii) For the final refinement, we evaluated the averages of all 210 − 1 =
1,023 combinations of the 10 best parameter sets for each model,
thereby further improving the χ2 values. Finally, parameter sets from
the model with the best goodness-of-fit were used for GWAS.

In all parameter estimation steps the search was performed in the fol-
lowing ranges: (α, β, epos, eneg, σ) ∈ (0.3, 3.5), c ∈ (1, 4.2), γ ∈ (0, 0.8), and s ∈ (0,
16). In choosing the ranges we balanced two partially opposing aims: to
keep them as similar as possible to avoid bias to the estimation results and
to keep them as close as possible to the likely distribution of each parameter
to maximize estimation accuracy. The default range of 0.3–3.5 ensured that
fewer than 1% of estimated parameter values were near the boundaries.
Other ranges were used either because of fundamental constraints (c ≥1 and
γ<1) or because the likely spread of parameter values was very different
from the default. To evaluate how well the model fits individual data, we
used the χ2 test with ν = 8 − 5 = three degrees of freedom (five flexible
parameters and eight PMs). Values of P > 0.05 indicate no statistical dif-
ference between modeled and observed PMs, meaning that the model fits
the data well.

The Picture Task and Controls. After receiving general information about the
study and giving their informed consent, participants were instructed and

trained on the picture task as well as the N-back working memory task. They
performed the encoding of pictures for 20 min and then performed the
N-back task for 10 min.

In the picture task, stimuli consisted of 72 pictures that were selected from
the International Affective Picture System (IAPS; 69) and from in-house
standardized picture sets that allowed us to equate the pictures for visual
complexity and content (e.g., human presence). Participants were instructed
to view the pictures passively and subsequently rate them according
to emotional valence/arousal. Pictures received from IAPS were classified
according to the IAPS valence rating; the remaining eight neutral pictures
were rated based on an in-house valence rating. Positive stimuli were se-
lected initially to match the arousal ratings of negative stimuli based on data
from a pilot study in 20 subjects. Examples of pictures are as follows: erotica,
sports, and appealing animals for the positive valence; bodily injury, snake,
attack scenes for the negative valence; and neutral faces, household objects,
and buildings for the neutral condition. On the basis of normative valence
scores (from 1 to 9), pictures were assigned to the emotionally negative
(2.3 ± 0.6), emotionally neutral (5.0 ± 0.3), and emotionally positive (7.6 ±
0.4) conditions, resulting in 24 pictures for each emotional valence. Four
additional pictures showing neutral objects were used to control for primacy
and recency effects in memory. Two of these pictures were presented in the
beginning and two at the end of the picture task. They were not included in
the analysis. In addition, 24 scrambled pictures were used. The background
of the scrambled pictures contained the color information of all pictures
used in the experiment (except primacy and recency pictures), overlaid with
a crystal and distortion filter (Adobe Photoshop CS3). In the foreground, a
mostly transparent geometrical object (rectangle or ellipse of different sizes
and orientations) was shown. The pictures were presented for 2.5 s in a
quasi-randomized order so that no more than four pictures in the same
category occurred consecutively. A fixation-cross appeared on the screen for
500 ms before each picture presentation. The stimulus onset time was jit-
tered within 3 s [1 repetition time (TR)] per valence category with regard to
the scan onset. After a picture was presented, participants subjectively rated
the picture according to valence (negative, neutral, positive) and arousal
(large, medium, small) on a three-point scale (self assessment manikin) by
pressing a button with a finger of their dominant hand. For scrambled
pictures, participants rated the form (vertical, symmetric or horizontal) and
size (large, medium, small) of the geometrical object in the foreground. A
maximum 6 s was allowed for rating each picture. Participants were not told
that they should remember the pictures for later recall.

The participants also performed the 0- and 2-back versions of the N-back
task (70). The task consisted of 12 blocks (six 0-back, six 2-back) in which 14
test stimuli (letters) were presented. The 0-back condition required partici-
pants to respond to the occurrence of the letter “x” in a sequence of letters
(e.g., N-l-X-g ...), and the 2-back condition required subjects to compare the
currently presented letter with the penultimate letter to decide whether
they are identical or not (e.g., S-f-s-g ...) Performance was recorded as the
number of correct responses, and the difference between the 2-back and the
0-back conditions served as a control phenotype of working memory.

After finishing the tasks, participants performed free recall of the pictures,
which required them to write down a short description (a few words) of the
previously seen pictures. Remembered primacy and recency pictures and
training pictures were excluded from the analysis. No time limit was set for
this task. Two trained investigators independently rated the descriptions for
recall success (interrater reliability >99%). Depending on the computational
model parameter with which each gene set was associated, different be-
havioral phenotypes were used. For the learning rate α, the relevant phe-
notype was the percentage of pictures remembered in the free recall (Table
S1). For the negative emotional modulation parameter eneg, the relevant
phenotype was the percentage of negative pictures minus the percentage of
neutral pictures remembered in the free recall.

Multilocus Genetic Scores. To capture the multiallelic effect of gene sets as-
sociated with different model parameters, we generated individual multi-
locus genetic scores for each of these gene sets. The score comprised SNPs
from an equal number of genes (i.e., one most significant SNP per gene) that
were associated with the relevant phenotype of the picture task (or the
control N-back task) in the pictures/fMRI sample. The score was computed by
summing up the individual number of reference alleles over all of these SNPs,
weighted by the direction of effect on the phenotype with “1” (the reference
allele positively correlated with the phenotype) or “−1” (the reference allele
negatively correlated with the phenotype). Each missing SNP was assigned
the average value of that SNP over all participants of the sample for whom it
was not missing. There were 0.41% of SNPs missing for L1CAM interactions,
and 0.69% were missing for amine compound SLC transporters. To test the
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robustness of the fMRI results, we also built a genetic score using two most
significant SNPs per gene.

Construction of a Population-Average Anatomical Probabilistic Atlas. Auto-
matic segmentation of 1,000 subjects’ T1-weighted images, including the
participants from the current study, was used to build a population-average
probabilistic anatomical atlas. More precisely, each participant’s T1-weighted
image first was automatically segmented into cortical and subcortical
structures using FreeSurfer (version 4.5, surfer.nmr.mgh.harvard.edu; 71).
Labeling of the cortical gyri was based on the Desikan–Killiany Atlas (72),
yielding 35 regions per hemisphere.

The segmented T1 image then was normalized to the study-specific an-
atomical template space using the subject’s previously computed warp field
and was affine-registered to the MNI space. Nearest-neighbor interpolation
was applied to preserve labeling of the different structures. The normalized
segmentations finally were averaged across subjects to create a population-
average probabilistic atlas. Each voxel of the template consequently could
be assigned a probability of belonging to a given anatomical structure,
based on the individual information from 1,000 subjects.

Functional Neuroimaging and Picture Recognition. Participants of the Basel
pictures/fMRI sample performed the picture and N-back tasks in the scanner.
They were positioned in the scanner after training. The participants received
earplugs and headphones to reduce scanner noise. Their heads were fixated
in the coil using small cushions, and they were told not to move their heads.
FunctionalMRIs were acquired during the performance of the picture task for
∼20 min, followed by the 10-min N-back task. After that task, participants
were taken from the scanner to a different room for free recall of the
presented pictures. Pictures were presented in the scanner using MR-com-
patible LCD goggles (Visuastim XGA; Resonance Technology). Eye correction
was used when necessary.

Approximately 80 min after the presentation of the last picture during
encoding, participants were repositioned in the scanner and performed a
recognition task for 20 min. The recognition task consisted of two sets of
stimuli that were either new (i.e., not presented before) or old (i.e., presented
during the picture encoding task). Each of the two sets contained 72 pictures
(24 pictures of each valence). During recognition, the pictures were presented
for 1 s in a quasi-randomized order so that no more than four pictures of the
same category appeared consecutively. A fixation cross appeared on the
screen for 500 ms before each picture presentation. The stimulus onset time
was jittered within 3 s (1 TR) per valence and previously seen/new category
with regard to the scan onset. After picture presentation, participants sub-
jectively rated the picture as recollected, familiar, or new by pressing a button
with a finger of their dominant hand. Picture rating was possible in a time
window of maximum 3 s.

Depending on the computational model parameter with which each gene
set was found to be associated, different fMRI contrasts were used. For the
learning rate α, we used two encoding contrasts: pictures of all valence
categories vs. scrambled controls and subsequently remembered pictures (of
all valence categories) vs. subsequently not-remembered pictures; the latter
contrast is known as difference due to memory (Dm; 29). For the repetition-
based memory improvement c, which reflects memory maintenance, the
relevant behavioral phenotype was the percentage of recollected pictures
that had been seen previously, and the appropriate fMRI contrast was pre-
viously seen pictures vs. new pictures during recognition. Recognition data
were used for this parameter because free recall was not performed in the
scanner, and memory maintenance processes may not be reflected during
the encoding. To ensure that the effects observed using contrast between
the previously seen vs. new pictures reflected the episodic memory compo-
nent of previously seen, not new, pictures, we also used the contrast of
previously seen pictures that were recollected vs. those rated as familiar or
new. To investigate neural correlates of working memory, the 2-back vs.
0-back contrast was used.

The contrasts described above were calculated individually using a fixed-
effects model (first-level analysis). Because we were using such contrasts, we
controlled for all factors that were constant between the two conditions,
whether of neuronal or nonneuronal origin. The resulting contrast param-
eters then were used for genotype-dependent analyses in a random effects
model (second-level analysis). Specifically, we used a regression model to
analyze gene-dose–dependent differences in brain activity, with the multi-
locus genetic score, based on the related behavioral phenotype, as covariate.

We controlled for the effect of sex by including it as a covariate. The sig-
nificance threshold for score-dependent analysis was set at P < 0.05, FWE-
corrected for multiple comparisons in the whole brain. We also performed
second-level analysis with the related behavioral phenotype itself as a
covariate.

Mediation Analysis. To test whether the observed effect of the L1CAM in-
teractions gene set on behavioral performance was mediated by the acti-
vation of specific brain regions, we ran awhole-brainmediation analysis using
the Multilevel Mediation and Moderation toolbox (wagerlab.colorado.edu/
wiki/doku.php/help/mediation/m3_mediation_fmri_toolbox; 73). We looked
for brain regions whose activation during recognition (the contrast between
previously seen vs. new pictures) mediated the association between the
multilocus genetic score (called the “predictor”) and recognition perfor-
mance. To be considered as mediator, a voxel had to satisfy the following
criteria: the predictor variable must be related to the mediator (path a); the
mediator must be directly related to behavior, controlling for the predictor
(path b); the mediation effect must be significant (effect a*b), meaning that
the predictor–behavior relationship is reduced significantly by including the
mediator in the model. Bootstrapping was used to obtain corresponding
P values, and an FDR threshold of q < 0.05 across all effects of interest (a, b,
and a*b coefficients) was applied to correct for multiple comparisons. Fur-
thermore, sex was included as covariate.

Because causality between correlated brain activity and behavior cannot
be inferred, we also tested using the same procedure to determine whether
the association between the multilocus genetic score and differences in brain
activity during recognition (the contrast between previously seen vs. new
pictures) was mediated by picture recognition.

Sample from the German AgeCoDe Study. The sample consisted of elderly
participants in the German AgeCoDe study, an ongoing primary care-based
prospective longitudinal study on the early detection of mild cognitive im-
pairment and dementia established by the German Competence Network
Dementia. The sampling frame and sample selection process of the AgeCoDe
study have been described in detail previously (74). After the application of
the selection criteria (SI Materials and Methods), a total of 1,244 subjects
remained in the sample. Sufficient DNA samples for genomewide geno-
typing were available for 782 subjects. Additionally, 39 subjects were ex-
cluded because of sex-check inconsistencies, low call rate, or extreme values
of heterozygosity rate, which may indicate a genotyping bias. The final
sample comprised 743 subjects (241 males and 502 females; mean age: 79.53 ±
3.21 y). As part of the structured clinical interviews, subjects were presented
a list of 10 words from the German version of the CERAD Word List Learning
Task (28) three times (presentation per word: 2 s); each trial was presented in
a different order. Participants were asked to read each word aloud as it was
presented. After each trial, subjects were asked to recall freely as many
words as possible. The number of correctly remembered items over the three
trials (immediate recall) served as a relevant phenotype for the gene set
associated with the learning rate α, whereas the number of correctly recalled
items after a 10-min delay (filled with other questions of the structured
interview) was relevant for the gene set associated with the repetition-
based memory improvement c.
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