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Abstract

Adult hippocampal neurogenesis (AHN) has intrigued neuroscientists for decades. Several lines of 

evidence show that adult-born neurons in the hippocampus are functionally integrated and 

contribute to cognitive function, in particular learning and memory processes. Biological 

properties of immature hippocampal neurons indicate that these cells are more easily excitable 

compared to mature neurons, and demonstrate enhanced structural plasticity. The structure in 

which adult-born hippocampal neurons are situated -the dentate gyrus- is thought to contribute to 

hippocampus function by disambiguating similar input patterns, a process referred to as pattern 

separation. Several ideas about AHN function have been put forward; currently there is good 

evidence in favour of a role for AHN in pattern separation. This function of AHN may be 

understood within a ‘representational-hierarchical’ view of brain organisation.

Introduction

The discovery of neurogenesis in the brain of adult mammals1-3, including humans4, 

received considerable attention as it challenged the prevailing dogma that the brain is ‘post-

mitotic’ and as such is endowed with limited regenerative capacity. In the mammalian brain, 

adult neurogenesis is restricted to two regions: 1. the DG, at the border of the granule cell 

layer and hilus (the subgranular zone) where adult neurogenesis gives rise to the primary 
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granule cells (GCs), and 2. the subventricular zone of the lateral ventricles; cells born here 

subsequently migrate to the olfactory bulb5-7. Given the well-established role of the 

hippocampus in learning and memory8, it was soon suggested that AHN may contribute to 

these functions in some way. This idea was supported by the finding that memory demand 

correlated with AHN in birds9 and that in rats AHN could be stimulated by learning a spatial 

task10. In this manuscript, we will review some of the biological properties of adult-born 

hippocampal neurons and provide an overview of the structure in which adult-born 

hippocampal neurons are situated, the dentate gyrus. This is followed by an overview of 

studies that have addressed a putative role of AHN in learning and memory function and a 

discussion of the ideas on how adult-born hippocampal neurons may contribute to 

hippocampus function.

Properties of adult-born neurons

Before proceeding to a discussion on the exact role of AHN it is important to understand the 

biological properties of these neurons and especially how these properties are distinct from 

developmentally-born GCs. Adult-born neurons are targeted by axons originating in the 

entorhinal cortex (EC)11; recently it has also been shown that these cells initially receive 

most input from intra-hippocampal cells and are later innervated mostly by perirhinal- and 

lateral entorhinal cortex (LEC) neurons12. Adult-born neurons grow axons onto target cells 

in CA313, 14 and functionally, these cells integrate into the DG network15. By 4 weeks after 

birth new GCs evoke stable action potentials in CA3 neurons16. At the level of 

neurotransmission, adult-born neurons follow a similar maturation pattern as neurons born 

during development17. Newborn cells are initially electrically silent, and then γ-

Aminobutyric acid (GABA) innervation switches from a depolarizing to a hyperpolarizing 

state, in ways analogous to developmental neurogenesis18-20. GABA, the major inhibitory 

neurotransmitter in the adult brain, plays an important role in the maturation of adult-born 

neurons21, 22. Several other factors are involved in maturation and integration of adult-born 

neurons, such as Disrupted in Schizophrenia-1 (DISC-1), which acts in concert with 

GABA23; N-methyl-D-aspartate (NMDA) receptor activation24, 25 and hilar mossy cell 

activation26, amongst others. AHN is under strong regulatory control of the internal and 

external environment, thus endowing this part of the brain with a high level of structural 

plasticity capacity. AHN was found to correlate positively with exercise27, enviromental 

enrichment28 and roaming behaviour29 and was shown to be changed after exposure to 

(stress) hormone levels 30-34; early life experience35, 36; antidepressants37, 38 and various 

other factors. Many of these also affect hippocampus function and in several of these 

studies, a positive correlation between the level of AHN and memory performance has been 

found.

A unique property of immature neurons is a lower threshold for firing action potentials 

compared to the surrounding mature GCs. In addition, long-term potentiation (LTP) is more 

easily induced in these neurons17, 39-41. Importantly, 7-8 weeks after cell birth, adult-born 

neurons are physiologically indistinguishable from mature neurons in the 

network 15, 19, 20, 42 and based on this property it may be suggested that their unique 

contribution occurs in the earlier stages of maturation16. This increased excitability has been 

at the core of theories and computational models of AHN, as will be discussed later.
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In addition to the increased excitability and synaptic plasticity, recent evidence also shows 

that adult-born neurons are unique at the level of structural plasticity. It was found that 

exposure to a learning experience can alter the shape of the dendritic tree of adult-born 

neurons in a persistent manner; a phenomenon absent in mature cells43. AHN thus endows a 

subset of neurons with a unique experience-dependent ‘structural plasticity capacity’. This 

capacity to change shape in response to learning was found to be retained by adult-born 

neurons up to 4 months after cell birth44. Whether or not this property contributes to a 

unique function of adult-born neurons within the DG remains to be shown, but in support of 

this, AHN ablation during a restricted 2 week time-window impaired water maze acquisition 

2 and 4 months later44. In addition, it was shown that 5 month old adult-born neurons are 

preferentially activated in response to exploration45. These findings suggest that adult-born 

neurons retain certain unique characteristics for a relatively long period (and beyond the 7-8 

weeks as defined by their physiological properties), favouring their involvement in funtional 

networks.

Properties of the dentate gyrus

As AHN occurs within the DG, a good place to start a discussion about its function is to start 

with discussion of the anatomy, properties and putative functions of the DG.

Anatomy—The DG is the first input region of the hippocampus from the parahippocampal 

region via the perforant path, which originates mainly in layer II of the LEC and medial 

entorhinal cortex (MEC), (for an extensive connectivity diagram, see46). Perforant path 

fibers project to the DG, which then relays information to CA3. Information from the EC is 

dispersed onto a relatively large number of GCs and then subsequently converges onto a 

lower number of neurons in its output region, the CA3. The large number of DG neurons 

and subsequent convergence onto CA3 may allow subtle differences in the original EC input 

to be amplified during encoding. From CA3, Schaffer collaterals connect to the CA1 after 

which information exits the hippocampus, to the EC. In addition to this classical “trisynaptic 

circuitry” involving DG, EC neurons also project directly onto CA3 pyramidal cells47. Thus, 

the DG can be bypassed and may function as a side-loop48 in which information from the 

EC to the CA3 is duplicated. Furthermore, the DG also receives input from the CA3, 

through back-projections onto hilar mossy cells and interneurons49.

Network activity—The DG has a unique pattern of activity, such that it is relatively silent 

while the animal is awake or during exploration50, but shows increased activity during rest/

sleep50-52. GCs have a strongly hyperpolarized resting membrane potential53 and are under a 

high level of inhibitory control of hilar interneurons through feedforward (from EC neurons) 

and feedback (from GCs) inhibition54-56. Immediate-early gene expression studies have 

confirmed this so-called sparse coding of the DG and show that only 1-5% of all GCs are 

active at a given time during behavioural activity, compared to about 40% of CA 

neurons45, 57. Even though only a few GCs are active at any given time, powerful output of 

these cells via large so-called detonator synapses onto CA3 apical dendrites facilitates 

further processing of this sparse code. For example, a single mossy fiber was shown to elicit 

an action potential in a downstream CA3 neuron58.
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Firing properties of DG GCs differ from cells in the CA regions. Cells in the CA regions can 

have a single ‘place field’ that becomes active whilst exploring a particular location in an 

environment59. A change of environment induces rearrangement of place cell activity, 

which is referred to as remapping. Remapping either occurs as an overall change of place 

cell activity (i.e. global remapping), in which individual place cell activity is uncorrelated to 

a different previous environment, or it occurs upon minor contextual changes in the 

environment, expressed as changes in firing rates of individual cells (i.e. rate remapping)60. 

In the DG, rate remapping is thought to occur upon the convergence of spatial (grid cell) 

information from MEC input61 with sensory information from the LEC62-64, allowing for 

location-coupled sensory representations65-67. Like CA cells, most GCs have place fields50. 

It should be noted however, that the GC population may be heterogeneous in terms of spatial 

firing properties and GCs with both single and multiple place fields have been reported52. 

This latter study emphasized the importance of relating spatial firing properties to specific 

DG cell types (i.e. mature- or immature GCs, or potentially mossy cells in the hilus), a 

methodological issue that has not yet been resolved. As a consequence, it is not known 

whether all cells types within the DG (including hilus) tend to fire with the same level of 

sparsity (or lack thereof). Whether adult-born neurons facilitate sparse firing or whether 

these neurons actually comprise the majority of active cells (and thus themselves fire in a 

less sparse manner), remains to be determined68.

Behaviour—For several tasks that are considered hippocampus-dependent, an intact DG is 

required (for reviews, see48, 69, 70). DG function has often been studied using lesions 

induced by colchicine (an alkaloid that produces selective damage to DG GCs and mossy 

fibres while leaving other hippocampal subfields reasonably intact) or 

diethyldithiocarbamate (DDC), which inactivates mossy fiber transmission. Using these 

methods, the DG was shown to be necessary for spatial working memory and reference 

memory71-74, in addition to associative memory as tested using contextual fear conditioning 

paradigms75, 76. Performance on delayed-(non)-matching-to-sample paradigms may be less 

dependent on the DG as deficits were found to be transient and reverted by post-lesion 

training77, 78.

Pattern separation

More specifically, it has been suggested that the DG is required for pattern separation79, 

which refers to the computational process by which a neural circuit decorrelates similar 

input into a more orthogonal output signal. As discussed in the computational 

literature80, 8182, pattern separation is thought to be necessary for the formation of unique, 

non- (or less-) overlapping representations and thus successful memory storage. In 

particular, the DG is thought to pre-process information, which facilitates pattern completion 

(retrieval of a complete memory from a partial cue) in the downstream CA3 attractor 

circuitry. This putative role in pattern separation is consistent with sparse coding in the DG 

and the fact that information from the EC is dispersed onto a relatively large number of GCs 

and then subsequently converges onto a lower number of neurons in its output region, the 

CA3.
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Some of the most direct evidence for a role for the DG in pattern separation comes from 

electrophysiological experiments. Neural coding in the DG was investigated in an open 

field, the shape of which was gradually morphed from circular to square, thus requiring 

discrimination of a change in context83. Small contextual alterations induced substantial 

changes in the location- and firing rate of place fields in GCs, whereas activity of CA3 cells 

changes only gradually, at the level of firing rate. Discrimination of dissimilar events in the 

same study, as measured by placing animals in a different room, recruited different cell 

populations of CA3, although the same set of neurons in the DG were active (but see84). 

Global remapping may be accomplished independently of the DG through the direct 

connections of grid cells of EC to CA383. Whether rate remapping is a candidate by which 

the EC-DG-CA3 network accomplishes pattern separation of spatial information remains to 

be determined. More recently, Neunuebel & Knierim (2014)85 recorded single-unit activity 

simultaneously from CA3 and DG and provided direct quantitative evidence of a pattern 

completion-like process in the CA3. In this study it was shown that the CA3 produced an 

output pattern closer to the originally stored representation, whereas the DG activity showed 

degraded input patterns as would be expected to occur during pattern separation.

To specifically assess pattern separation ability at the level of behaviour, several tests have 

been developed. These tasks reasonably assume that the representations formed after 

effective pattern separation will be useful in tasks with a high demand on resolving the 

confusability of inputs, for example in tasks requiring discrimination of contexts, locations 

and episodes. Such discrimination had already been shown to depend on the hippocampus, 

using tasks requiring discrimination between chambers86, 87, neighbouring food wells in a 

delayed matching task88, and more recently, neighbouring locations on a touchscreen89, 90. 

To our knowledge the first study explicitly testing the involvement of the DG in pattern 

separation behaviourally was that of Gilbert and colleagues (2001)79, who used a delayed-

matching-to-sample paradigm in a circular arena with baited food wells. In this study 

location discrimination performance was assessed using pairs of similar locations (i.e. 

locations near to each other) and less similar locations (i.e. locations farther apart from one 

another). Animals with selective DG lesions were impaired at discriminating similar but not 

dissimilar locations, while those with CA1 lesions were not. Lee and Solivan (2010)91 took 

a somewhat similar approach using a radial arm maze. Rats were required to discriminate 

object-place pairs. DG lesions resulted in severe and sustained impairments in 

disambiguating objects. The authors concluded that the DG is necessary for discriminating 

highly overlapping object and/or spatial information, but is less important when there was 

minimal overlap in either object or spatial information. McHugh and colleagues (2007)92 

showed that knockout mice that lacked the gene encoding the essential subunit of the N-

methyl-D-aspartate (NMDA) receptor NR1 in dentate gyrus GCs specifically were impaired 

in contextual fear conditioning requiring the discrimination of similar contexts. In parallel, 

NR1 knockout led to impaired population coding in the CA3-CA1 fields showing DG 

requirement for successful downstream processing. The authors suggested that this 

similarity-dependent effect provides evidence that GCs in the DG play a critical role in 

pattern separation. Recently it was shown that BDNF in the DG is necessary for the 

consolidation, but not retrieval of similar (and not dissimilar) locations in a spontaneous 

location recognition task93. In this study, BDNF was found to be expressed on an ‘as 

Oomen et al. Page 5

Wiley Interdiscip Rev Cogn Sci. Author manuscript; available in PMC 2015 September 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



needed’ basis, only in response to exposure to spatial locations with high similarity. These 

data indicated that pattern separation function may be particularly important during the 

encoding/consolidation phase. Finally, a pattern separation function in the DG-CA3 region 

has been reported in human subjects. Using functional imaging, subjects were scanned 

during incidental encoding of objects that were either presented repeatedly or alternating 

with lure objects (i.e. a similar condition). The authors conclude that activity in the DG-CA3 

region is associated with pattern separation, whereas CA1 activity is associated with pattern 

completion94.

Adult neurogenesis in learning and memory

Overview

The first studies to report a direct relationship between AHN and learning and memory 

processes inhibited cell proliferation by administration of methylazoxymethanol acetate 

(MAM). These studies found impairments in trace eyeblink conditioning and trace fear 

conditioning95, but not water maze acquisition and retention, and contextual fear 

conditioning96. From these findings it was concluded that AHN may be particularly 

involved in more challenging memory tests such as those in which the to-be-remembered 

associations are temporally separated by a short interval (i.e. trace conditioning). Other 

studies using toxins replicated some of these findings: trace eyeblink conditioning was 

impaired after temozolomide (TMZ) treatment97 and, consistent with earlier findings, MAM 

treatment did not affect contextual fear conditioning or water maze acquisition98, 99. 

Contrary to Shors et al. (2002) however, others have found that retention of platform 

location in the water maze was impaired by MAM ablation98, and that AHN may control the 

use of spatial strategies (using TMZ100). Recently, TMZ ablation was shown to affect water 

maze acquisition in juvenile but not in older animals101.

Other, arguably better methods of AHN ablation have been developed, as some neurotoxins 

were shown to cause unwanted side-effects, especially when applied systemically102. 

Alternative methods include (focal, forebrain specific) X-ray irradiation and genetic tools. 

Despite this progress, studies using these methods have also yielded inconsistent findings on 

classical tests of learning and memory. To summarize, effects of AHN ablation on 

acquisition of spatial navigation tests resulted in impairments in some103-108, but not 

all105, 109-113experiments. Of note, in some studies AHN ablation particularly impaired 

retention of spatial locations103, 106, 108, 110, 114-116, but others found no such 

effect105, 109, 111. A retention deficit in spatial memory was recently confirmed in a study 

using optogenetic tools, in which the importance of the age of adult-born neurons was also 

highlighted16. The authors reported involvement of 4 week-old neurons (but not 2 or 8 

week-old neurons) in retention, but not acquisition, of the water maze. Studies on contextual 

fear conditioning and object (or object location) memory show mixed results; both 

impaired16, 106, 107, 111, 117-119 and unaffected103, 108, 115, 120 memory performance has been 

found, for reviews see121-123.

Other evidence for a role for AHN in learning and memory was found in imaging studies, 

where results indicate a preferential recruitment of adult-born neurons in spatial 

exploration45 and learning and memory124. In addition, genetic AHN ablation results in 
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compromised LTP and long-term depression (LTD) in DG-slices125, and genetically-

induced higher levels of AHN result in enhanced levels of LTP126. In vivo, AHN ablation 

through X-ray irradiation did not reduce the level of LTP (one day after induction) and was 

shown to enhance retention of LTP in the DG for up to 2 weeks127. Others found that in 

vivo, reduced AHN through irradiation lowered responsiveness of perforant path stimulation 

and increased spontaneous gamma-oscillations128. In sum, the presence of adult-born 

neurons can affect electrophysiological properties of the DG and thus potentially memory 

processing, although the functional consequences of increased excitability of these neurons 

are not always straightforward.

Together, these data suggest that the specific involvement of AHN in classical learning and 

memory tests may depend on a number of factors such as the relative age of neurons, the 

phase of memory addressed and the type of test used. Also, it has been suggested that sex33- 

and species-specific differences exist. For example, some researchers have suggested that 

AHN levels and the involvement of adult born neurons in memory performance may be less 

in mice compared to rats129. Several ideas have been developed and tested regarding a more 

specific role of AHN in learning and memory, which may explain some of the 

inconsistencies that have been reported; some of these ideas are outlined below along with 

any empirical evidence that has been gathered in support.

A potential role in clearance or forgetting

Some of the earlier computational modelling studies emphasized that adding new neurons to 

a network leaves existing circuitries intact, thus avoiding ‘catastrophic interference’ of 

already formed memories130, 131. Others have suggested the opposite: the addition and 

integration of new neurons can lead to structural remodelling of existing networks and 

information storage may be affected by AHN after the learned event leading to 

forgetting132. Such a mechanism has also been proposed to underlie infantile amnesia133. 

The idea that AHN may stimulate forgetting is reminiscent of some earlier models in which 

neuronal turnover accelerated the removal of memories from the network134. Removal of 

information from such networks was indeed shown to occur as a result of cell turnover, and 

this removal was in some models paralleled by increased quality of more recent 

memories135. This has been referred to as the “memory clearance hypothesis”.

Some evidence that AHN may remove existing memories and thus promote forgetting was 

provided using presenilin-1 knock-out (PS1 KO) mice that lack environmental enrichment-

induced increased AHN136. In a learning-enrichment-retrieval paradigm, PS1 KO mice, in 

the absence of AHN, showed enhanced contextual memory during retrieval. The authors 

thus concluded that AHN results in memory clearance from the hippocampus. However, 

another study using a similar design found no evidence for a role of AHN in memory 

clearance137. Here the authors used wheel running to upregulate AHN between learning and 

the subsequent retrieval phase of a spatial Y-maze task, and found that this led to improved 

retention. This has been contradicted by a recent, extensive study by Akers et al (2014)138. 

They showed, using several animal models, that levels of AHN correlate with forgetting of 

previously learned information. Of interest compared to the previous study, a causal 

approach was taken, using AHN ablation models in a learning-exercise-retrieval similar to 
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Van der Borght et al (2007). Akers and collegues found that, using genetically-induced 

AHN knockdown in mice, an increase in AHN between encoding and retrieval facilitates 

forgetting of the previously learned information.

Kitamura and co-workers127 took a somewhat different approach. They tested whether AHN 

is required to clear memory traces from the hippocampal circuits in the context of the 

systems consolidation hypothesis, which suggests that the hippocampus temporarily stores 

memories that are later transferred to cortical regions for permanent storage139. To address 

whether AHN is involved in such transfer, they used two methods of AHN ablation 

(irradiation and a transgenic mouse model that overexpresses follistatin) with transient 

hippocampal inactivation. Firstly, AHN ablation did not affect memory, as tested by 

contextual fear conditioning. In addition, hippocampal inactivation 1 day after contextual 

fear conditioning training impaired retrieval in both animals with ablated AHN and controls. 

Interestingly, hippocampal inactivation 28 days after training also impaired retrieval in 

animals with ablated AHN, but did not impair retrieval in controls. Thus, the authors 

concluded that blockade of AHN extends the period of hippocampal dependency for 

contextual fear memories. Further potential support for the idea that AHN contributes to 

memory through forgetting and/or clearance was provided by the finding that the removal of 

adult-born neurons changes memory formation140. Overall, these ideas deserve more 

attention in future studies.

A potential role in pattern separation

Consistent with the idea that the DG is important for pattern separation (see above), Becker 

(2005) developed a computational model in which a specific role for AHN in recall of 

highly similar representations was assessed, by simulating the effect of neuronal turnover on 

recall performance of unrelated items, unrelated paired associates or related, highly 

confusable, items141. Neuronal turnover positively affected recall performance only in the 

case of related items, suggesting a role for AHN in pattern separation specifically. 

Empirically, Clelland et al (2009)142 compared two different techniques for ablating 

immature neurons, X-ray irradiation and lentiviral expression of dominant-negative version 

of the Wnt protein, accomplished through intra-DG injection. Both methods produced 

impairments discriminating similar, but not dissimilar locations in two very different 

behavioural tasks, a spatial memory task in a radial arm maze and a touchscreen-based 

automated spatial discrimination task in an operant chamber. Confirmatory evidence has 

since been provided using several different behavioural methods. For example, AHN-

knockdown disrupted memory for similar contexts in a fear conditioning paradigm143, 144.

Further support for a functional role of AHN in pattern separation came from experiments in 

which AHN was increased. For example, Sahay et al. (2011)126 used a genetic manipulation 

to artificially increase AHN. This resulted in improved context discrimination in a fear 

conditioning paradigm in which animals were trained to discriminate between two similar 

contexts across repeated sessions. (It should be noted that this fear conditioning paradigm 

has not always included a critical ‘dissimilar’ control condition to vary the load on pattern 

separation so non-specific effects cannot be definitively excluded; however see 

references145, 146. Creer and colleagues (2010)147 demonstrated that wheel running in mice 
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increased AHN and pattern separation in a touchscreen-based behavioural task and that this 

treatment was ineffective in aged animals that lacked running-dependent increase in AHN, 

providing some evidence that it was the increase in AHN and not other, exercise-induced 

effects, that were responsible for the improvements.

Impaired pattern separation after AHN ablation has been shown to accompany changes in 

activation of CA3 neurons. Niibori and colleagues (2012)146 showed that ablation of adult-

born neurons impairs contextual discrimination of similar- but not dissimilar contexts. In 

addition, they addressed changes in downstream network activity by analysing Arc 

expression through cellular compartment analysis of temporal activity by fluorescence in 

situ hybridization (catFISH) in the CA3. AHN ablation was shown to result in an increased 

overlap of neural activity in CA3 during exposure to similar contexts (i.e. the same neurons 

were activated upon exposure to both contexts), indicating population coding in response to 

similar, but distinct contexts. From this, it was concluded that pattern separation had been 

impaired by AHN ablation in the DG.

In summary, although ablation of AHN has yielded inconsistent results on standard, general 

spatial memory tasks, when pattern separation is explicitly manipulated, impairments have 

been obtained in several laboratories using a variety of methods in both mice and rats. We 

suggest that a plausible explanation for the differences found with standard spatial memory 

tests may come from uncontrolled variation in the load on pattern separation across these 

studies148.

How do adult-born neurons contribute to pattern separation?—How adult-born 

neurons may contribute to DG function and pattern separation is not fully understood. As 

described earlier, adult-born neurons have unique physiological properties such as a 

relatively low firing threshold, which has been at the core of most ideas on the contribution 

of AHN to function. Based on this property, some have suggested that immature neurons are 

the principal coding units in the DG network, encoding information during the initial hyper-

plastic period, but becoming less active as they mature, an idea formalised in the ‘early 

retirement’ hypothesis149. How this process facilitates pattern separation specifically 

remains unclear. Opposing this view, it has now been shown that neurons may be involved 

in function up to 4 or 5 months after birth beyond their hyper-plastic period44, 45 and that 

mature GCs are, in fact, activated in response to perforant path stimulation150. An 

alternative hypothesis was proposed by Aimone et al. (2006; 2009),151, 152 who suggested 

that because of their unique electrophysiological properties, immature neurons are less 

discriminating than mature GCs and therefore are more likely than mature GCs to be 

integrated into the representation of an event. In other words, newborn neurons may act as 

‘pattern integrators’. The effect of this is that events occurring at the same time will activate 

the same immature GC population, whereas events occurring days/weeks later will activate 

different sets of immature GCs. Thus, over time, the activation of these different immature 

GC populations would actually increase pattern separation over time by providing a 

temporal context for events151. To our knowledge, this idea has not yet been tested 

empirically, although recent electrophysiological data indicate that immature neurons may 

act as pattern integrators as they have a low activation threshold due to an enhanced 

excitation/inhibition balance compared with mature GCs150. However, the finding that 
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sufficient levels of AHN are required for the consolidation of similar, but not dissimilar 

spatial memories encoded during a single behavioural episode, within the same temporal 

context153, suggests that these cells contribute to DG function in an immediate fashion.

In order to better understand how adult-born neurons contribute to DG function and 

potentially pattern separation, a few things should be considered. An important question is 

whether immature neurons contribute in a unique way to DG signalling (instead of merely 

adding numbers without performing a specific function)? In order to claim a specific role for 

adult-born neurons, AHN knock-down should be compared to the removal of a similar 

number of mature GCs. If inactivation of adult GCs does not impair pattern separation, a 

unique contribution to function may be assumed. A recent publication has offered some 

evidence in favour of this, as inhibiting neurotransmission of the majority of adult GCs 

resulted in either enhanced or unchanged performance on tasks for pattern separation144. 

How a potential unique contribution is achieved in mechanistic terms remains the subject of 

speculation. Either the unique electrophysiological properties, or the (as of yet less explored) 

enhanced capacity for structural plasticity44 may allow immature GCs to dictate DG 

network activity. Adult-born cells may do so as principal coding units or alternatively, by 

recruiting mechanisms that facilitate DG network activity128 such as the activation of 

inhibitory circuits154, 155. Finally, a role for other plasticity related factors should be taken 

into account, such as brain-derived neurotrophic factor (BDNF)148. BDNF in itself was 

shown to be required for the succesful consolidation of similar spatial memories, suggesting 

a role in pattern separation93. Of interest, it was recently shown that BDNF interacts with 

adult born neurons in the formation of such memories153.

Pattern separation within a wider framework—Although we have focused on the 

role of DG neurogenesis for pattern separation, we suggest that pattern separation is not 

unique to the DG. The ability of neural networks to ‘pattern separate’, the process of 

producing outputs that are less correlated than their inputs, may be a ubiquitous property 

fundamental to neural networks in general. Indeed, for some time we have argued that 

unique conjunctive representations that reduce interference exist throughout ventral visual 

stream, continuing into the temporal lobe156-160. Each step, as information is processed 

through the stream, results in the formation of increasingly complex representations. The 

hippocampus is regarded as a late stage in this processing hierarchy, mediating high-level 

relational/spatiotemporal representations161. As a consequence, each brain region within this 

object-processing hierarchy may perform pattern separation for the level of stimulus 

complexity that it represents.

Within this framework, impairments in memory have been explained in terms of 

interference161. The model successfully predicts that manipulations that affect (e.g., impair) 

encoding, when carried out during a retention interval, can affect subsequent memory 

performance in the opposite direction (e.g., leading to improved memory 

performance)162-164. Viewed from this perspective, the previously described reports of AHN 

‘clearing’ memories, or inducing ‘forgetting’132,may be more parsimoniously explained in 

terms of enhanced encoding of similar, interfering information during the retention interval, 

an explanation consistent with the proposed role for AHN in encoding/consolidation and 

pattern separation.
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Although we have focussed in our work on the ventral visual-perirhinal-hippocampal 

stream, the “representational-hierarchical” principle of organisation almost certainly applies 

to many other systems, for example the dorsal visual stream, and cortical auditory 

processing stream, both of which are thought to be organized in a hierarchical manner165-167 

and so, by extension, would operate in the same way, with higher-level representations 

resolving ambiguity/interference from lower-level ones. Thus, rather than being restricted to 

the DG, a strong claim would be that pattern separation is a wide-spread, possibly 

ubiquitous principle of brain function160.

Others have suggested, however, that the DG is a “domain general” pattern-separator -- 

while also acknowledging that pattern separation happens in many brain regions and for 

many cognitive processes, including perirhinal cortex-dependent object recognition, and also 

visual perception168, 169. It is known that the hippocampus processes sensory and non-

spatial information through LEC input64, 66, 170, 171 as part of a multi-level contextual 

representation. However the idea that inputs are, e.g., separated in perirhinal cortex into new 

representations of objects, and then separated again in the DG into new representations of 

objects, seems logically problematic. Perhaps the separation process in the DG and other 

regions is somehow qualitatively different, but this needs to be explained. Indeed, there is 

also clear causal (lesion) evidence against the idea that DG has the same pattern-separating 

function as other regions. For example, tasks designed to test the use of “pattern-separated” 

conjunctive object representations are reliably impaired by perirhinal cortex lesions, but are 

completely unaffected, or even facilitated, by hippocampus lesions (e.g,172, 173). Therefore, 

whether there is a necessary role for immature neurons in the DG outside of spatial/

contextual pattern separation (i.e. universal pattern separation) remains an open question.

Conclusion

Given the empirical results described above, there is considerable evidence that adult-born 

neurons in the DG can contribute to cognitive function. Several studies and methods have 

now shown that the human DG produces new neurons during adult life4, 174. The functional 

and clinical potential for cognitive function in humans is evident and many have suggested 

AHN as a potential biomarker, cause or treatment target in brain-related diseases175-178. 

Some evidence for changes in the level of AHN has been found in disorders such as 

schizophrenia179 but remains a topic of debate in others (e.g., Alzheimers’ disease180-182 

and depression183-185). Although preliminary evidence exists that AHN may correlate 

positively with memory performance in humans, as measured by the proliferation and 

differentiation of adult hippocampal stem cells186, it remains to be determined to which 

extent AHN is relevant for human cognitive function.

As for the specific contribution of AHN to memory processing, recent evidence from animal 

models for a role for these neurons in pattern separation is strong and this may offer an 

explanation for the variation found in earlier studies. If the representational-hierarchical 

view discussed above is correct, unique conjunctive representations in the DG would be 

expected to contribute to tasks in the spatial/contextual domain in the same way that 

perirhinal cortex contributes to tasks in the object domain, for example by reducing 

interference187, facilitating complex perceptual discriminations188, and mediating configural 
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learning157. Indeed, the reduction of interference by adult-born neurons has already been 

suggested189. However, complete understanding of the role of AHN in cognition will require 

a synthesis of this view with other findings including the role of AHN in memory clearance, 

transfer and forgetting.
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