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Autoantibodies (aAb) associatedwithAlzheimer’s disease (AD) have not been sufficiently characterized and their exact involvement
is undefined.The use of information technology and computerized analysis with phage display technology was used, in the present
research, to map the epitope of putative self-antigens in AD patients. A 12-mer random peptide library, displayed on M13 phages,
was screened using IgG from AD patients with two repetitions. Seventy-one peptides were isolated; however, only 10 were positive
using the Elisa assay technique (Elisa Index > 1). The results showed that the epitope regions of the immunoreactive peptides,
identified by phage display analysis, were on the exposed surfaces of the proteins. The putative antigens MAST1, Enah, MAO-A,
X11/MINT1, HGF, SNX14, ARHGAP 11A, APC, and CENTG3, which have been associated with AD or have functions in neural
tissue, may indicate possible therapeutic targets.

1. Introduction

Alzheimer’s disease (AD) is the most important cause of
dementia. Its prevalence increases with age and, togetherwith
increasing life expectancy, has created the expectation of an
increase in the number of cases, especially in developed coun-
tries [1–4]. Due to its devastating effect on cognition and high
social and economic cost [5, 6], AD has become an important
subject of research and, due to its characteristics, is also a
challenge. This is especially true since the neurodegenerative
process may progress for many years before clear behavioral
and cognitive symptoms permit diagnosis [7, 8].

Following the original description of AD in 1906, the
presence of 𝛽-amyloid (A𝛽) deposits, senile plaques (SP),
and neurofibrillary tangles (NFT) has been established as
key markers of the disease [9, 10]. The search for improved
understanding of its development has focused on these

components, which have also been linked to numerous other
neurobiological processes as well as genetic and environmen-
tal factors [11]. Despite extensive research, our understanding
of AD is still limited because accurate diagnosis of the onset
of the disease is often not possible [12].

Soon after it was observed that SP and NFT are accom-
panied by an inflammatory process in the immune system,
this system began to be investigated regarding its role in
AD pathogenesis [13, 14]. As in other central nervous system
diseases, Parkinson’s disease, Lewy corpuscles dementia,
and obsessive compulsive disorder, there appears to be a
relationship between inflammatory processes and humoral
response to AD [15, 16].

Several studies have discovered an abundant presence
of antibodies directed at targets in brain neural tissue,
cerebrospinal fluid, and the serum of patients with AD.
Antibodies against neurotransmitter receptors (glutamate,
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dopamine, serotonin, and acetylcholine), enzymes (ATP
synthase and aldolase), cytoskeletal proteins, and microglia
have been described [17–20]. Their role in the development
of Alzheimer’s disease is still uncertain and may simply be
the result of neuronal death from exposure to autoantigens
or may have some contribution to the pathological process
[21–23]. The characterization of these autoantibodies (aAb),
their antigens, and their role in disease may be a means
for the development of improved diagnostic tools and the
identification of new therapeutic targets.

Phage display (Ph.D.) technology is useful for the iden-
tification of peptides or antibodies on the surface of the
filamentous M13 bacteriophage capsid. This capsule permits
exposure to an extensive diversity of peptides that can bind
to various targets and be identified using peptide library
techniques. This methodology has been proven useful not
only for the selection of peptides that mimic proteins but also
for the identification and description of epitopes recognized
by antibodies [24, 25]. It also allows for the production of
the monoclonal antibodies used to treat several diseases,
vaccines, and diagnostic tests as well as several uses in
nanotechnology [26].

Phage display findings can be analyzed with different
bioinformatic tools: the identification of consensus motifs
among selected sequences, the identification of possible tar-
gets by linear and conformational (3D structure) comparison
with protein databanks, and assessments of their putative
epitopes with their degree of antigenicity. This information
can be extremely useful for planning experiments, designing
drugs, and other applications [27–29].

The present study identified mimetic peptides of target
antigens in the circulating IgG present in the serum of
patients with AD. Our use of the phage display technique,
together with bioinformatic tools, may represent one of the
first evidences of the presence of autoantibodies and their
putative epitope mapping, in AD.

2. Materials and Methods

2.1. Recruitment of Patients, Diagnostic Criteria, and Sample
Collection. Serum samples from AD patients and healthy
controls, matched by sex and age, were obtained from the
University Hospital of Uberlandia. For the diagnosis of
dementia, the DSM-IV TR criteria were used [30] and for
the diagnosis of AD we used the criteria of the National
Institute of Neurological and Communicative Disorders and
Stroke/Alzheimer’s Disease and Related Disorders Associa-
tion (NINCDS-ADRDA) [31]. Patients were stratified accord-
ing to the Clinical Dementia Rating (CDR), Portuguese
version [32]. The controls were evaluated using the Mini-
Mental State Exam [33]. This research was approved by
the Research Ethics Committee of the Federal University of
Uberlandia (number 304/09).

2.2. Selection of PeptidesThatMimic AD Self-Antigens (Mimo-
topes). The phage selection was performed using a pool of
sera from AD patients and healthy (control) individuals.
Immunoglobulin G (IgG) was secured using magnetic beads

coupled to protein G Dynabeads (Invitrogen). For subtrac-
tion of nonspecific peptides, 10 𝜇L of the M13 phage library
(PhD12, New England Biolabs Inc.; 1 × 1011 viral particles)
was added to 190𝜇L of TBS-Tween 0.1%. After 30 minutes of
incubation, magnetic separation was performed. The phage
eluate was subtracted two more times prior to the positive
selection, which was performed for 30 minutes against IgG-
coupled beads of ADpatients, completing one selection cycle.
This procedure was repeated twice. Finally, bound phages
were recovered from the beads by acid elution (500𝜇L of
glycine, pH 2) for 10 minutes and then neutralized with 75𝜇L
of Tris (pH 9).

Selected phages were amplified, purified, and titrated
according to the Ph.D. Phage Display Libraries Instruction
Manual (New England Biolabs).

2.3. DNA Extraction and Sequencing. After three rounds of
selection, 96 blue colonies were randomly selected and their
phage single strand DNA was isolated using iodide buffer
extraction procedures [34].

2.4. Bead-ELISA (Enzyme Linked Immunosorbent Assay in
Bead). The selected peptide-phage clones were used in the
bead-ELISA assay against IgG from controls and AD patients
to evaluate their reactivity and specificity.

Fifty microliters of phage supernatant was incubated
with IgG coupled in magnetic beads (Invitrogen) for one
hour with stirring, at room temperature. Using a magnetic
apparatus, the microspheres were precipitated, washed six
times with TBS-T 0.1%, and incubated with monoclonal anti-
M13 peroxidase conjugate (GE Healthcare) diluted 1 : 5000
in TBS-T 0.1% and 5% BSA for one hour with stirring,
at room temperature. Microspheres were again precipitated
and washed six times and the reaction was observed with
buffer orthophenylenediamine (OPD) to 1mg/mL plus 3%
hydrogen peroxide (H

2
O
2
). The results were expressed as an

arbitrary ELISA Index (EI) and calculated as follows: EI =Abs
of serum sample/cut-off, where the cut-off was determined
as the mean absorbance of the negative control sera plus
two standard deviations. Values of EI > 1.0 were considered
positive.

2.5. Bioinformatics. The vector sequences were removed and
the deductions of peptide sequences were performed using
the ExPASy Translate Tool (http://web.expasy.org/translate).
Afterwards, the peptide sequences were submitted to in silico
analysis (Figure 1).

For a more detailed analysis, the sequence of positive
peptides selected by the ELISA assay (EI > 1) was subjected
to alignment using the BLAST tool (http://blast.ncbi.nlm.nih
.gov/) and compared with those available in the database of
nonredundant protein sequences using the BLASTP algo-
rithm, limiting the search to Homo sapiens sequences.

The proteins indicated in alignment were selected for the
next step of the analysis. We excluded unnamed sequences
which had only been predicted or that were from unknown
proteins. Those sequences with low 𝐸-value were analyzed to
determine whether the region of alignment with the peptide
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Figure 1: Bioinformatics workflow.
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Figure 2: Detection of IgG antimimotope in serum from patients
with Alzheimer’s disease by Elisa using peptide-phage selected by
phage display. Values of EI > 1.0 were considered positive (Student’s
t-test, 𝑃 < 0.05). For clarity, peptides with Elisa Index values lower
than 1 were omitted.

was a predicted epitope using BepiPred (http://www.cbs.dtu
.dk/services/BepiPred/) [35] for linear B-cell epitopes
and CBTOPE (http://www.imtech.res.in/raghava/cbtope/)
for conformational B-cell epitopes [36]. If the region of
alignment was found to be a predicted epitope and the
three-dimensional structure was available in a protein
databank format (http://www.rcsb.org/pdb/home/home.do),
this protein was selected for the next step of analysis.

The program PEPSURF (http://pepitope.tau.ac.il/) was
used to map the putative mimotope selected by phage display
in the three-dimensional protein structure of the protein [29].

2.6. Statistical Analysis. Statistical analysis was performed
using the GraphPad Prism version 5.00 (GraphPad Software
Inc.).

3. Results

In this study 100 patients who had registered cognitive
disorders were evaluated. Only 10 of these patients had
complete AD diagnosis with laboratory tests, imaging, and
assessment of cognitive function by neuropsychological tests.
As paired healthy control (HC), we used 10 cognitively
healthy individuals.

Phage display selection of a 12-mer random peptide
library generated 75 peptides, of which 71 were distinct
sequences. A phage ELISA assay was performed with these
clones using a pool of serum from the patients and from
the controls. The result showed that of the 71 peptides, only
10 were highly reactive mimotopes when compared with the
controls (IE > 1).This suggested that circulating IgG fromAD
patients recognizes these specific peptides (Figure 2).

Those peptideswith distinct sequenceswere subsequently
chosen for in-depth characterization through bioinformatics.
The data are presented in Table 1. As can be seen, only nine
sequences of peptides led to the identification of targets
according to established criteria for the bioinformatics anal-
ysis.

After the initial identification of targets for alignment
and prediction of linear and structural epitopes, the three-
dimensional alignment, using the PepSurf program, was
performed. This result demonstrated that peptide sequences
fromphage displayweremapped in exposed regions (external
surfaces) of target proteins and could be accessible to anti-
bodies (Figure 3).

4. Discussion

Phage display technology can be considered a subtractive
proteomic strategy for the selection of specific molecules
without known targets.This is due to its combinatorial nature,
favoring the random binding to several molecules. It is,
for this reason, an important tool for the identification of
biomolecules because it exposes a large variety of ligands to
many targets at the same time and requires only minimal
knowledge of the starting proteome/immunome target [37].
However, this technology has a great disadvantage: only
linear or simple cyclic peptides can be incorporated into
phage pIII protein [38].

Since there was the possibility of the phage binding on
components of the screening system such as plastic, magnetic
bead, protein G [39], or irrelevant IgG, we performed a
subtractive selection twice using IgG from a binding assay of
healthy controls before selection with IgG from Alzheimer’s
patients. This precaution was taken to avoid the selection of
peptides binding in the background.

Our selection and analysis strategy resulted in the iden-
tification of ten potential mimotopes recognized by the IgG
present in the serum of patients with AD. It was possible
to select peptides by phage display and prevalidate them as
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Figure 3: Three dimensional epitope prediction using the PepSurf program. The peptide alignment regions are shown in red. All of the
peptides align with external regions. (a) MAST1; (b) Enah; (c) MAO-A; (d) X11/MINT1; (e) HGF; (f) SNX14; (g) ARHGAP 11A; (h) APC; (i)
CENTG3. Source: Martz E. FirstGlance in Jmol (http://firstglance.jmol.org).

Table 1: Peptide sequence and position of alignment in putative Alzheimer’s disease self-antigens.

Clone Peptide sequence Alignment region Putative protein matched PDB Accession number
NCBI

ALZ01 TSISINPPRRPS 672–683 MAST1 2M9X AAH27985.2
ALZ02 SRPRPLIRNRRP 341–350 Enah 2XQN AAH65238.1
ALZ03 MTIRRHRHRPKI 128–131 MAO-A 2Z5Y P21397.1
ALZ04 SRRRIPRINRPQ 431–438 X11/MINT1 1X11 Q02410.3
ALZ05 KRRNTILINLPN 4–9 HGF 2HGF P14210.2
ALZ06 TPIKKMIRRLPH — — — —
ALZ07 LPTKRIIKRMRR 502–508 SNX14 4BGJ Q9Y5W7.3
ALZ08 MSLNLRMRPMRI 449–453 ARHGAP 11A 3EAP Q6P4F7.2
ALZ09 KMTRRTHINQIS 111–115 APC 1AUT 1AUT C
ALZ10 RSIPRIHINTTN 235–246 CENTG3 3IHW 3IHW A
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Table 2: Identity of the self-antigens mapped by mimotopes.

Database ID Description Protein
AAH27985.2 Microtubule associated serine/threonine kinase 1 MAST1
AAH65238.1 Enabled homolog (Drosophila) ENAH
P21397.1 Monoamine oxidase A MAOA
Q02410.3 Amyloid beta (A4) precursor protein-binding, family A, member 1 APBA1
P14210.2 Hepatocyte growth factor (hepapoietin A; scatter factor) HGF
Q9Y5W7.3 Sorting nexin 14 SNX14
Q6P4F7.2 Rho GTPase activating protein 11A ARHGAP11A
NM 000312 Protein C (inactivator of coagulation factors Va and VIIIa) PROC
AF413079.1 Homo sapiens centaurin gamma 3 mRNA CENTG3

potential new products for specific diagnosis of thyroid can-
cer [34], neurocysticercosis [40, 41], leishmaniasis, dengue,
and leprosy [42]. The peptides selected in this work are also
new potential tools for developing specific serum diagnostics
for AD. Evaluation with large samples will be necessary for
validation in serum platforms such as the ELISA assay.

Autoantibodies are important for AD progression.
Patients with AD have a low titer of serum levels of the
anti-beta-amyloid antibodies (A𝛽1–42, A𝛽1–15 and A𝛽16–
30) compared with age matched non-AD controls [43].
Antibodies against A𝛽 have potential use in AD treatment
[44, 45]. However, the action of the autoantibodies on other
neuroproteins is still unclear.

The putative epitopes of the self-antigens, using the
mimotopes, were mapped and are presented in Table 2. The
target proteins have an important function in the central
nervous system or are involved in AD (Table 2).

The ALZ01 peptide is aligned with the MAST1 sequence.
MAST1 is a member of the microtubule associated ser-
ine/threonine kinase family [35]. It is an important com-
ponent of the postsynaptic region [46] and one of the
differentially expressed genes in the brain of patients with AD
[47].

The Enah or Mena proteins, with which peptide ALZ02
is aligned, are a component of the neural growth cone [48],
important for neural development [49] and axonal structure
[50].

Alz03 is a putative mimotope of MAO-A, an important
enzyme of the catecholamine pathway. Some studies have
shown changes of the catecholamine in AD. NE levels are
decreased in the hippocampus of patients with AD [51]. In
addition, specific variants of PS1, an important enzyme in
the formation of Ab, could influence the catalytic activity of
MAO-A [52].

The ALZ04 peptide sequence is aligned with the X11
protein family. These proteins, also known as Mints or
APBA (APP binding family A), are multidomain adaptor
proteins [53]. They are involved in many cellular processes
important for neuronal function including the regulation of
ion channel function, cellular traffic, synaptic vesicle docking,
and exocytosis. The X11s proteins are also involved in APP

processing [54, 55]. The Mint1 PTB domain interacts with
APP, regulating its traffic. Several studies have shown that
gene deletion or suppression interferes with the Ab levels
[56].

Another interesting mimotope of a putative self-antigen
identified in the present research was the HGF.This polypep-
tide is a growth factor that acts like a semaphorin in the neural
development [57]. Some studies have shown that levels of
HGF are increased in the cerebrospinal fluid of patients with
AD [58]. Also, in the brain of patients with AD, there is an
increase in HGF expression whichmay indicate a response to
injury [59].

The SNX14 protein, also mapped by the peptides from
phage display, is an important element for endocytosis and
endosomal signaling [60]. It has been shown, in mice, that
it regulates the intrinsic excitability of pyramidal neurons
[61]. The SNX12, another family member of nexins sorting,
is involved in the development of the cerebral cortex [62]
and regulates the endocytosis of BACE-1 [63]. Its levels are
diminished in the brains of AD patients [64].

The APC protein, in mice, was found to reduce the
production of Ab. The mechanism involved appears to be a
stimulation of the alpha secretase activity [65].The intracere-
bral infusion of APC also reduced the excitotoxicitymediated
by NMDA receptors [66].

The CENTG3 antibody, also known as AGAP3 and
mapped by our mimotopes, is important for AMPA receptor
traffic to the neuralmembrane during long termpotentiation,
which strengthens the synapse [67]. An alternative splicing
variant of AGAP3, CRAG, acts like a semaphorin [68].

The involvement of aAb in neurodegenerative diseases
can be varied and uncertain. Antibodies can act as receptor
agonists or antagonists, coagonists, activate the complement
proteins, or lead to internalization of receptors [15]. These
aAb can act directly in the disease process or may be formed
only as a consequence of the exposure to new antigens by
neuronal death. But, interestingly, they may also become
potential biomarkers to improve understanding of AD biol-
ogy and progression.

The role of aAb in AD has not been determined despite
frequent descriptions of its presence in the serum and
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cerebrospinal fluid of AD patients. Some aAb, such as that
generated against A𝛽, appear to prevent the deposition and
formation of fibrils and plaques by reducing neurotoxicity.
Their presence in healthy individuals suggests a homeostatic
role [22, 23].

Nagele et al. [69] identified several self-antigens through
proteinmicroarrays by demonstrating the presence of various
aAb in the serum of patients with AD. The antigens with
higher aAb reactivity were suggested as potential biomarkers.
Many of the putative self-antigens identified in this study have
a clear involvement with AD but the effective participation of
these aAb in AD is still to be determined.

The use of mimic peptide as a diagnostic, rather than
full protein, may yield increases in the specificity of the in
vitro reaction. Since only the reactive region of the biomarker
target will be in contact with the antibody, the background
reactions tend to be low. Further studies with large sample
sizes are necessary to define the potential of the mimotope
peptide here isolated as a new biomarker.

5. Conclusion

The combination of in silico approaches and phage display
technology was found to be an important tool in the iden-
tification of putative novel targets in Alzheimer’s disease.The
success of our epitope fingerprinting was based on a strategy
that involved performing a subtractive selection against the
IgG of AD patients. We identified mimotopes that mimic
self-antigens and these mimotopes were recognized by the
autoantibodies of AD patients, which may indicate potential
usefulness in the diagnosis of this disease.
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