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The expression level of each gene is controlled by its regulatory regions, which determine the precise regulation in a tissue-
specific manner, according to the developmental stage of the body and the necessity of a response to external stimuli. Nucleotide
substitutions in regulatory gene regionsmaymodify the affinity of transcription factors to their specificDNAbinding sites, affecting
the transcription rates of genes. In our previous research, we found that genes controlling the sensory perception of smell and genes
involved in antigen processing and presentation were overrepresented significantly among genes with high SNP contents in their
promoter regions. The goal of our study was to reveal functional features of human genes containing extremely small numbers
of SNPs in promoter regions. Two functional groups were found to be overrepresented among genes whose promoters did not
contain SNPs: (1) genes involved in gene-specific transcription and (2) genes controlling chromatin organization. We revealed that
the 5󸀠-regulatory regions of genes encoding transcription factors and chromatin-modifying proteins were characterized by reduced
genetic variability. One important exception from this rule refers to genes encoding transcription factors with zinc-coordinating
DNA-binding domains (DBDs), which underwent extensive expansion in vertebrates, particularly, in primate evolution. Hence, we
obtained new evidence for evolutionary forces shaping variability in 5󸀠-regulatory regions of genes.

1. Introduction

The expression of eukaryotic protein-coding genes can be
regulated at several steps, including transcription initiation
and elongation,mRNAprocessing and transport, translation,
and stability. Most of the regulatory processes, however, are
believed to occur at the level of transcription initiation [1].

Transcription is precisely regulated depending on cellu-
lar conditions. The transcriptional activity of each gene is
regulated by its promoter region, which is typically located

upstream and immediately adjacent to the transcription
start site (TSS). Promoters contain specific short regions
of DNA (10–20 nucleotides) recognized by regulatory pro-
teins (transcription factors) and termed transcription factor-
binding sites. Specific interaction of transcription factorswith
DNA sequences within the promoter region (alone or in an
assemblage with other proteins) facilitates the recruitment of
RNA polymerase to specific genes [1, 2].

Regulatory regions of eukaryotic genes are typically
organized in a complicated manner, so that the regulatory
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regions of a specific gene may contain binding sites for more
than 20 transcription factors [3–6]. On the other hand, a great
number of different regulatory proteins (general transcrip-
tion factors, regulatory sequence-specific DNA-binding fac-
tors, transcriptional coregulators, etc.) are involved in tran-
scription regulation. According to recent data, the human
genome encodes about 1500 regulatory sequence-specific
DNA-binding factors (transcription factors, TFs) [7–9].

TFs constitute a large functional family of proteins di-
rectly regulating the activity of genes. To exert their function
in gene transcription activation or repression, TFs must
recognize the place in the genome where they should bind.
For this purpose, they are equipped with DNA-binding
domains (DBDs) [8].

Another very important group of regulatory proteins
affecting transcription are chromatin regulators. Chromatin
regulators can mediate histone (or DNA) modifications and
chromatin remodeling to adjust chromatin structures and
functions [1].The inspection of databases, comprising human
genes involved in chromatin regulation (CREMOFAC, CR
Cistrome, and HIstome), and annotation by GO terms asso-
ciated with chromatin, presented by EntrezGene, tells us that
at least one hundred chromatin regulatorsmay be encoded by
the human genome [10–12].

A single nucleotide polymorphism, or SNP, is a variation
at a single position in a DNA sequence among individuals.
The 1000 Genomes Project characterizes human genomic
variation by using next-generation sequencing strategies. At
present, the project reports on genomes of 1092 individuals
sampled from 14 populations drawn from Europe, East Asia,
sub-Saharan Africa, and the Americas. Over 38 million SNPs
have been identified by the 1000 Genomes Project, more than
a half of which were not described previously [13].

There is evidence that promoter regions are particularly
stressed by transcription-related mutagenic phenomena and
that they harbor a large amount of genetic variations com-
pared with other genomic regions. According to our previous
study [14], whichwas based onNCBI’s dbSNP build 138,more
than half of the total number of SNPs (59.05%) identified by
the 1000 Genomes Project are located in transcribed regions
of the human genome, 1.07% of all SNPs are mapped to
coding exons, and 1.05% are located within promoter regions
of genes. The SNP density in the 500 bp regions upstream
of TSSs is approximately the same as in introns (3.7 SNPs
per 1000 bp). It is considerably higher than in coding regions
(2.4 SNPs per 1000 bp).

As well as SNPs located in coding gene regions, promoter
and enhancer SNPs may affect phenotypic traits. One func-
tionalmechanism is that the genetic variants within upstream
regions may influence gene transcription by altering the
binding affinity of a transcription factor to the DNA [1, 15–
17]. Such SNPs are designated as regulatory.

For example, it was estimated that the G→T substitution
(rs1271572) in the ER𝛽 promoter prevented transcription
factor Yin Yang 1 (YY1) binding and reduced its transcription
activity. The TT genotype for rs1271572 was associated with
elevated risk for breast cancer in Chinese women and with
unfavorable prognosis in Chinese breast cancer patients [18].

At present, evidence for evolutionary and nonevolu-
tionary forces shaping the genetic variability of 5󸀠-flanking
regions of human genes is under investigation [19]. In this
context, functional analysis of genes whose promoters harbor
extremely high or very low SNP contents may be useful.

In our previous study based on the humanwhole-genome
data from the 1000 Genomes Project, functional analysis of
genes whose 5󸀠-flanking regions contain high SNP contents
(six or more SNPs) was performed.We revealed two overrep-
resented groups: (1) genes controlling the sensory perception
of smell and (2) genes involved in antigen processing and
presentation [14]. We suggested that high promoter SNP
contents caused diversity in the expression levels of genes and,
in turn, were partly responsible for the broad variability of
immune recognition and olfactory cognition.We conjectured
that the parallelism between functions of the immune and
olfactory systems was due to the fact that both systems were
targeted on the reception of extremely variable chemical
compounds (numerous environmental olfactory stimuli or
immune stimuli produced by rapidly evolving microbiota).
Therefore, high SNPs contents in the promoters of genes
involved in olfactory cognition and antigen processing and
presentation may be, to some extent, a result of balancing
selection.

Functional analysis of genes with high SNP content in
regulatory regions was performed by the FANTOM5 Con-
sortium.They found that SNPs associated with such diseases
as Hodgkin’s lymphoma, inflammatory bowel disease (early
onset), systemic sclerosis (and the like), and such phenotypic
traits as birth weight and prostate-specific antigen levels
(and the like) are significantly overrepresented in regulatory
regions (promoter and enhancers) [20].

The goal of this study is to reveal functional charac-
teristics of human genes containing extremely low level of
SNPs in promoter regions.This knowledge may give a deeper
view of genic intolerance to regulatory variation and may
be useful for interpretation of personal genomes. Investi-
gating data from the 1000 Genomes Project Consortium,
we found that almost one-fifth (16.5%) of the total number
of transcripts did not contain SNPs in their 500 bp long
upstream regions. Functional analysis of transcripts (genes)
with SNP-depleted 5󸀠-regulatory regions revealed several
overrepresented functional groups of genes controlling: (1)
gene-specific transcription, (2) chromatin organization, and
(3) male gamete generation.

Then comparisons among all genes encoding transcrip-
tion factors (or chromatin-modifying proteins or four super-
classes of TFs) versus genes from the whole-genome were
done. Analysis of transcript distributions as a function
of SNP contents per 700 bp regions (−600/+100) around
TSSs showed that SNP contents in the main groups of
genes/transcripts (TFs and chromatin-modifying proteins)
and in three superclasses of TFs (with the exception of TFs
with zinc-coordinating DBDs) were lower than the SNP
content in the whole-genome set of transcripts. In addition,
a similar analysis was performed for genes located on auto-
somes (chromosomes 1–22) and reduced genetic variability
of upstream regions controlling transcription factors and
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chromatin-modifying proteins was observed in these cases as
well.

Finally, the main functional gene groups (TFs and
chromatin-modifying proteins) and genes belonging to four
different superclasses of TFs were ranked according to their
RVIS values, calculated from exome data by Petrovski et
al. [21]. The differences between groups of genes revealed
by using RVIS values were in good agreement with the
differences between these gene groups and thewhole-genome
dataset revealed when distributions of promoter SNPs con-
tent were analyzed. As RVIS correlates with the functional
significance of genes, we conclude that the reduced level of
SNPs in the 5󸀠-regulatory regions of genes encoding TFs and
chromatin-modifying proteins may be explained, at least in
part, by genic intolerance to regulatory variation.

2. Materials and Methods

2.1. Sequence Sets and SNP Data. The annotations of SNPs
mapped to chromosomes 1–22, X, and Y of the GRCh37/hg19
assembly of the human genome were extracted from the
UCSCTable Browser (https://genome.ucsc.edu/cgi-bin/hgTa-
bles, the track common SNPs (142), and table snp142Common;
this track refers to release142 of dbSNP, http://www.ncbi
.nlm.nih.gov/projects/SNP/). For SNP data, we used addi-
tional filters class single and validation by 1000 genomes.

The annotations of transcripts for the GRCh37 assembly
of the human genome were extracted from the Ensembl
archive by the Biomart data mining tool (http://grch37
.ensembl.org/biomart/martview).The following criteria were
used to retrieve annotations of transcripts: (a) with HGNC
ID(s): only; (b) gene type: protein coding; (c) transcript
type: protein coding; (d) chromosome: 1–22,X,Y; (e) status
(gene): KNOWN; (f) status (transcript): KNOWN. As a
result, the total whole-genome set of 47,469 transcripts with
distinct transcription start sites (TSSs) was obtained. These
transcripts were annotated by 18,817 distinct HGNC gene
symbols (see Table 1, dataset whole-genome).

At the first step, the SNP content was determined for each
transcript as the count of SNPs in the 500 bp long region
upstream of the annotated TSS.

Thenwe divided regions from−1000 to +200 around each
TSS into bins of 100 bp. For each transcript, the count of SNPs
in each bin was determined.

Finally, we calculated the counts of SNPs in seven regions
with different locations surrounding TSSs ([−900/+100],
[−800/+100], etc., until [−300/+100]). In each case, we
revealed subsets of transcripts whose 5󸀠-regulatory regions
did not contain SNPs. These subsets are designated below as
SNP-depleted.

2.2. GO Category and Pathway Analysis. The Database for
Annotation, Visualization, and Integrated Discovery web-
based Functional Annotation Tool (DAVID tool) was applied
[22, 23] to the sets of SNP-depleted transcripts that do not
contain SNPs in their regions surrounding TSSs.

The overrepresented GO terms from the biological pro-
cesses vocabulary were considered in our study. The signifi-
cance of GO terms was estimated through the EASE score,
amodified Fisher exact𝑝 value (a built-in function ofDAVID
tool) on the base of the number of genes from the list under
study and the number of genes expected by chance. Groups
with fold enrichment values 1.5 or more and 𝑝 values (EASE
scores) less than 0.001 were kept in analysis.

2.3. Functional Groups of Genes. The set of genes encoding
TFs (designated below as All TFs) was obtained using the
TFClass database (http://tfclass.bioinf.med.uni-goettingen
.de/) [9]. TFClass provides a comprehensive classification
of human transcription factors based on their DBDs. A
total of ten superclasses (including the transitory Superclass
“0,” “Yet undefined DNA-binding domains”) have been
identified, comprising 40 classes and 111 families. Counted
by genes, 1558 human TFs have been classified so far. The
data (format-version 1.2., date 23:09:2014) were downloaded
in OBO format and then processed to the tab-delimited text
format. Identifiers from Ensembl database were converted to
EntrezGene database identifiers with the bioDBnet: db2db
tool (http://biodbnet.abcc.ncifcrf.gov/db/db2db.php).

In addition, four subsets of the set All TFs were formed.
According to TFClass, Superclass 2 (zinc-coordinating
DBDs) was by far the largest among the nine superclasses
of defined DBDs. It included 51% of all TF genes, followed
by helix-turn-helix (27%) and basic domain factor genes
(11%).Therefore, the subsets ZNF,HTH, and Basic comprised
genes encoding factors with zinc-coordinating DBDs, helix-
turn-helix, and basic domain factor genes, respectively. In
addition, the last subsetOther included genes (11%) encoding
factors with DBDs of all other types (the remaining seven
superclasses).

The set of human genes encoding chromatin-modifying
proteins (this set of transcripts/genes was designated as
Chr Mod) was compiled from three sources. First, 99 genes
encoding chromatin-modifying proteins were extracted from
EntrezGene (http://www.ncbi.nlm.nih.gov/gene) using the
GO term “chromatin modification” as a query. Second,
64 genes were obtained from CREMOFAC, a database of
chromatin-remodeling factors [10]. Third, 23 genes were
picked out from CR Cistrome, a knowledgebase for chro-
matin-modifying enzymes and chromatin remodelers [11].
CR Cistrome comprised genes encoding chromatin regula-
tors from four cohorts: reader, writer, eraser, and remodeler.
After fusion of the three thus obtained gene lists, the result-
ing gene set comprised 167 genes encoding proteins with
chromatin-modifying activities.

The human genes encoding proteins involved in sper-
matogenesis (this set of genes/transcripts was designated as
Sperm) were extracted from EntrezGene (http://www.ncbi
.nlm.nih.gov/gene) using the GO term “spermatogenesis” as
a query.

Table S1, in Supplementary Material available online
at http://dx.doi.org/10.1155/2015/260159, presents the lists of
transcripts for all groups used in analysis. The numbers of
transcripts/genes for all groups are given in Table 1.
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Table 1: Sequence sets used in analysis.The column “number of transcripts/genes” presents the count of transcripts that were computed after
intersection of the respective subset with the whole-genome dataset of 47,469/18,817 transcripts/genes.

Dataset of transcripts Number of transcripts/genes
Full name Short name
All protein-coding transcripts from the human genome Whole-genome 47,469/18,817
All transcription factors from TFClass All TFs 3,957/1,454
Transcription factors with zinc-coordinating DBDs (Superclass 2 from TFClass) ZNF 2,074/750
Helix-turn-helix transcription factor genes (Superclass 3 from TFClass) HTH 921/383
Basic domain transcription factor genes (Superclass 1 from TFClass) Basic 432/170
Genes encoding transcription factors with DBDs of all other types (Superclasses
0, 4, 5, 6, 7, 8, and 9 from TFClass) Other 554/160

Genes encoding chromatin-modifying proteins (according to GO, CREMOFAC,
and CR Cistrome) Chr Mod 533/167

Genes encoding proteins involved in spermatogenesis (according to GO) Sperm 936/361

2.4. Comparison of SNP Content Distributions in 5󸀠-
Regulatory Regions of Functional Gene Groups with the
Distribution in the Whole-Genome Dataset. Another ap-
proach was based on the analysis of the distributions of
SNP content in 5󸀠-regulatory regions of human genes
from functional gene groups (encoding TFs or chromatin-
modifying proteins).

Thedistributions of SNP contents in 5󸀠-regulatory regions
for any test group of transcripts were compared with the
distribution for the whole-genome dataset. The statistical
significance of differences was estimated by Fischer’s 𝑡-test for
angular (arcsine square root) transformed proportions [24].
The first proportion 𝑝

1
(𝑁) was computed for the test group

as the ratio of the number of transcripts having no more
than𝑁 SNPs in 5󸀠-regulatory regions to the total number of
transcripts in the test group. The second proportion 𝑝

2
(𝑁)

was calculated similarly for the whole-genome dataset. For
the range of thresholds 𝑁 (0, 1, 2, . . .) the angular transfor-
mation 𝑦(𝑝

𝑖
) was computed to apply the 𝑡-test as follows:

𝑦(𝑝
𝑖
) = 2arcsin(sqrt(𝑝

𝑖
)), where 𝑖 = 1, 2.

2.5. The Estimation of Genic Intolerance to Functional Vari-
ation for Genes from Functional Gene Groups and the Com-
parison with That in the Whole-Genome Dataset. To com-
pare genic intolerance to functional variation for functional
groups of genes considered above with that for the whole-
genome dataset, we used RVIS (Residual Variation Intoler-
ance Score) values presented in Dataset S2 from [21]. They
presented RVISs for 16,956 human genes: when the score was
equal to zero, the gene has an average number of common
functional variants, given its total mutational burden; when
the score was negative, the gene had a lesser functional
variation thanmight be expected; and positive scores pointed
to variability exceeding the average level. Negative scores are
therefore suggestive of purifying selection and positive scores
of balanced or positive selection or both.

The statistical significance of differences between distri-
butions was estimated by Fischer’s 𝑡-test for angular trans-
formed proportions (see above).
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Figure 1: Cumulative percentage plot for the fraction of human
transcripts from the whole-genome dataset, possessing certain
numbers of SNPs in their 500 bp long regions upstream annotated
transcription start sites. 𝑥-axis denotes the threshold SNP content in
500 bp upstream TSS. 𝑦-axis denotes the cumulative fraction of the
whole-genome dataset of transcripts.

3. Results

3.1. Human Promoter Variability in the Whole-Genome
Dataset. Figure 1 shows the fractions of human transcripts
(from the whole-genome dataset of 47,469 protein-coding
transcripts; see Section 2.1), possessing no more than certain
numbers of SNPs (SNP content) in 500 bp long regions
upstream annotated TSSs. We designated such a number of
SNPs as a threshold for SNP content in the upstream region.

Themajority of transcripts have low or intermediate SNP
contents in their 500 bp regions upstream annotated TSSs.
For example, no more than five SNPs were found in the
upstream regions of 92.44% of transcripts. This means that
the other transcripts of the whole-genome dataset (∼8%)
contain six or more SNPs in their 500 bp long upstream
regions. Functional annotation of this group of transcripts
with SNP-rich promoters (six or more SNPs per 500 bp) was
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Figure 2: The fractions of transcripts from the whole-genome
dataset that do not contain SNPs in their 100 bp long upstream
regions as a function of region location. 𝑥-axis shows the borders
of 100 bp bins relative to the TSS. 𝑦-axis means the fraction of
transcripts that lack SNPs in the respective 100 bp bin.

presented previously [14]. At most one SNP was found in the
upstream regions of 38.5% of transcripts. Almost one-sixth
of transcripts from the whole-genome dataset (16.5%) do not
contain SNPs in their 500 bp long upstream regions.

3.2. Proportions of Transcripts from the Whole-Genome
Dataset That Do Not Contain SNPs in Their 5󸀠-Regulatory
Regions. To define the optimal length and location of the
5󸀠-regulatory regions of genes that subsequently would be
subjected to the functional analysis, we calculated the pro-
portions of transcripts from the whole-genome dataset that
do not contain SNPs in various bins of 5󸀠-regulatory regions.

Using data on SNPs content in each 100 bp bin from−1000
to +200, the proportions of transcripts in the whole-genome
dataset that do not contain SNPs in a fixed binwere calculated
(Figure 2).Theminimal fraction of transcripts that lack SNPs
in a 100 bp long bin was revealed for the local region from
−200 to −100. Five local 100 bp long bins upstream (from
−700 to −200) and two downstream bins (from −100 to +100)
are also characterized by lower proportions of transcripts
that lack SNPs within these bins. The bins at both flanks
[−1000/−700] and [+100/+200] have greater proportions of
transcripts that lack SNPs within these bins.

This analysis allows us to conclude that (1) the region
[−300; +100] around TSSs has the highest content of SNPs;
and (2) for subsequent analysis, the optimal 3󸀠-boundary of
promoter regions possessing elevated SNPs content may be
strictly defined as +100 and the 5󸀠-boundary of these regions
may be set within a wide range from −700 to −300.

3.3. Biological Processes Overrepresented among Genes Whose
Transcripts Were Found in the SNP-Depleted Datasets. To
reveal the functional characteristics of genes whose promoter
regions have low levels of polymorphisms, we performed

functional analysis of genes whose transcripts had no SNPs
in their 5󸀠-flanking regions.The analysis was done for several
datasets of transcripts that had no SNPs within extended or
restricted 5󸀠-regulatory regions (Table 2). In what follows,
these datasets will be designated as SNP-depleted within
[−900/+100], SNP-depleted within [−800/+100], and so forth
until SNP-depleted within [−300/+100]. The numbers of
SNP-depleted transcripts/genes involved into analysis are
indicated in the second column of Table 2. The largest
number of transcripts/genes was 10,488/6,024 for dataset
SNP-depleted within [−300/+100] and the lowest number of
transcripts/genes involved into analysis was 2,821/1,587 for
dataset SNP-depleted within [−900/+100].

The GO terms overrepresented among transcripts/genes
from SNP-depleted datasets were selected by applying the
DAVID tool. The full list of the most overrepresented GO
categories for each dataset is presented in Table S2. In all
cases, fold enrichment exceeded 1.5, and 𝑝 value was below
0.001. Then we composed a joint list of overrepresented GO
terms revealed from analysis of all SNP-depleted datasets
for various overlapping regions, removed duplicates, and
grouped closely related GO terms (see columns 1 and 2 in
Table S3). The next columns of this table summarize the
occurrence of each GO term among the overrepresented
terms for each SNP-depleted dataset. In such a way, we
revealed three most common classes among GO terms
satisfying the aforementioned criteria that were associated
with (a) chromatin organization, (b) transcription, and (c)
multicellular organism reproduction/gamete generation. GO
terms that belong to these three classes are given in Table 2.

The first class of GO terms includes regulation of specific
transcription from RNA polymerase II promoter, positive reg-
ulation of specific transcription from RNA polymerase II pro-
moter, negative regulation of transcription, DNA-dependent,
regulation of gene-specific transcription, negative regulation of
gene-specific transcription, and negative regulation of specific
transcription from RNA polymerase II promoter. The sec-
ond class of GO terms includes chromosome organization,
chromatin organization, chromatin modification, chromatin
assembly or disassembly, nucleosome organization, and DNA
packaging. The third class of GO terms includes gamete
generation, male gamete generation, and spermatogenesis.

The numbers of genes annotated by GO categories
of these three classes varied from 15 to 105. GO terms
associated with chromatin organization and transcription
were found to be overrepresented in four or more SNP-
depleted datasets. GO terms associated with transcription
were revealed on the base of analysis of SNP-depleted 5󸀠-
regulatory regions of short and medium lengths (−300/+100,
−400/+100, −500/+100, and −600/+100) (Table 2). GO terms
associated with chromatin organization were revealed on the
base of analysis of SNP-depleted 5󸀠-regulatory regions of
short (−400/+100), medium (−500/+100 and −600/+100),
and long lengths (−700/+100, −800/+100, and −900/+100)
(Table 2). GO terms associated with multicellular organ-
ism reproduction/gamete generation were overrepresented
in three SNP-depleted datasets formed based on the most
extended regions (−700/+100, −800/+100, and −900/+100).
For the latter three regions we found among top-scoring GO
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terms only terms associated with chromatin organization and
gamete generation (Table S3).

As shown inTables S2 and S3, the distinctive feature of the
dataset SNP-depleted within [−600/+100] is that practically
all (with only one exception) overrepresented GO terms
(among those revealed with fold enrichment > 1.5 and 𝑝
value < 0.001) are associated with chromatin organization and
transcription.Hence, we performed the next analysis only for
region −600/+100.

3.4. Promoter Variability in Genes Controlling Transcrip-
tion and Chromatin Organization. Our second analysis was
undertaken to compare promoter variability in genes control-
ling transcription or chromatin organization with the vari-
ability in the whole-genome dataset. Since genes encoding
transcription factors are the largest functional group of genes
associated with transcription, we included this gene group
into analysis. Likewise, we chose genes encoding chromatin-
modifying proteins for further functional analysis as genes
functionally associated with chromatin organization. The
lists of transcripts/genes encoding transcription factors or
chromatin-modifying proteins were formed as described in
Materials and Methods. These lists are denoted in what
follows as All TFs and Chr Mod.

To characterize the group of genes controlling transcrip-
tion factors in more detail, we divided this list of genes into
four subclasses according to the structures of their DBDs (see
Section 2) and performed the same analysis with four sets of
5󸀠-regulatory regions of genes from these four subclasses.

At this step of our analysis, only 5󸀠-regulatory regions
spanning nucleotides within −600 to +100 around TSSs were
investigated.

The comparison of distributions of SNP content in 700 bp
long regions (from −600 to +100) around annotated TSSs in
each group of transcripts and in the whole-genome dataset
shows that transcripts of both large groups (All TFs and
Chr Mod) and three subclasses of TFs (groups HTH, Basic,
and Other) tend to have lower SNP contents (Figures 3(a),
3(b), 3(d), 3(e), and 4(a)). To confirm this assumption, we
applied the 𝑡-test for angular transformed proportions (see
Materials and Methods) to the range of thresholds of SNP
content (Figures 3(f) and 4(b)). We concluded that for any
threshold of SNP content from one to eight significant deple-
tion of transcripts with SNPs was observed in five out of six
gene groups. A very weak significance at only one threshold
(“≤5”) was revealed for the group that comprised genes
encoding factors with zinc-coordinating DBDs (Figures 3(c)
and 3(f)).

3.5. Promoter Variability in Genes Controlling Spermatogen-
esis. To interpret the low SNP content in the 5󸀠-regulatory
regions of genes controlling gamete generation, we addition-
ally compiled the dataset of genes Sperm (Table 1).

At this step of our analysis, 5󸀠-regulatory regions span-
ning nucleotides within −700 to +100 around TSSs were
investigated. This region was chosen in accordance with the
fact that the GO terms associated with spermatogenesis were
enriched only in datasets SNP-depleted within [−700/+100],

SNP-depleted within [−800/+100], and SNP-depleted within
[−900/+100] (Tables 2, S2, and S3). The comparison of
distribution of the SNP content in 5󸀠-regulatory regions (from
−700 to +100) in a group of transcripts denoted as Sperm
and in the whole-genome dataset shows that transcripts
of this functional group tend to have lower SNP contents
(Figure 5(a)). The 𝑡-test (Figure 5(b)) confirms that the dif-
ferences are significant.

However, we found that a notable portion of transcripts
from the Sperm dataset (52 transcripts out of 936) were
located on the Y chromosome, while only 115 transcripts out
of the total amount 47,469 were mapped to this chromosome
(according to 𝑡-test 𝑝 < 2 ∗ 10−30). We suspected that this
notable enrichment might explain the extremely low level
of SNPs in 5󸀠-regulatory regions of transcripts from the
Sperm dataset, since there were profound differences between
the SNP content in 5󸀠-regulatory gene regions located on
chromosomes 1–22 and the SNP contents on both sex chro-
mosomes (Figure S1).

To test this hypothesis, we excluded transcripts located
on the X and Y chromosomes from all datasets presented in
Table 1 and performed the same analysis as in the previous
section.The results are presented in Figures S2(a), S2(b), and
S2(c).

We revealed that, only for genes from the dataset Sperm,
(1) the difference in promoter SNP content between tran-
scripts located on all chromosomes (autosomes and sex
chromosomes) and the whole-genome dataset of transcripts
was significant (Figure 5), while (2) for the respective pair
of autosomal subsets of transcripts (spermatogenesis versus
whole-genome) the statistical significance was rejected (Fig-
ure S2(c)). Hence, the depletion of SNPs in the 5󸀠-regulatory
regions of spermatogenesis genes is the consequence of the
frequent occurrence of these genes in the Y chromosome.
For this reason, hereafter we consider only genes controlling
transcription and chromatin organization.

3.6. Estimations of Genic Intolerance to Functional Varia-
tion in Functional Gene Groups and Comparison with the
Whole-Genome Dataset. Since low levels of SNPs in the 5󸀠-
regulatory regions of genes encoding TFs and chromatin-
modifying proteins may reflect the selection pressure acting
on genes, the question arises as to the extent to which the
promoter SNP content correlates with other measures of
selection pressure on genes. For this purpose, we used RVIS
values, which had been calculated by Petrovski et al. [21],
based on data on allele frequencies in the coding gene regions
of genes (for details see Section 2). RVIS ranks human genes
in terms of their intolerance to permanent functional genetic
variation in the human population.

We found that genes encoding TFs and chromatin-
modifying proteins had lower RVIS values than genes from
the whole-genome dataset (Figure 6(a)). The comparison of
RVIS values for subclasses of TFswith different types ofDBDs
revealed that (a) group Other, which comprised 160 TFs
with DBDs of seven different types, was the most intolerant
to genetic variation and (b) the group of genes encoding
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Figure 3: Comparison of SNP content distributions in upstream regions for human genes encoding transcription factors with the distribution
in the whole-genome dataset (Table 1). The 5󸀠-regulatory regions between −600 and +100 bp around TSSs are analyzed. The datasets of
transcripts/genes (Table 1) are derived fromTFClass [9]: (a) all transcription factors, (b) helix-turn-helix factor genes, (c) transcription factors
with zinc-coordinating DBDs, (d) basic domain factor genes, and (e) genes encoding factors with DBDs of all other types. In panels (a) to (e)
the 𝑥-axis denotes the SNP content; the 𝑦-axis means the fraction of transcripts with specific content of SNPs in their 5󸀠-regulatory regions.
Panel (f) presents the significance of the 𝑡-test (𝑦-axis), which compare the above-described SNP contents in test groups with the content in
the whole-genome dataset as a function of the threshold of SNP content (𝑥-axis). The 𝑡-test was applied as described in Section 2.
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Figure 4: Comparison of SNP content distributions in upstream regions of human genes encoding chromatin-modifying proteins with the
distribution in the whole-genome dataset (Table 1). The 5󸀠-regulatory regions between −600 and +100 bp around TSSs are analyzed. The
dataset of chromatin-modifying proteins genes/transcripts was extracted from EntrezGene, CREMOFAC [10], and CR Cistrome Databases
[11]. In panel (a), the 𝑥-axis denotes the SNP content, and the 𝑦-axis denotes the fraction of transcripts with specific content of SNPs in their
5󸀠-regulatory regions. Panel (b) presents the significance of the 𝑡-test (𝑦-axis), which compares the SNP contents in test groupwith the content
in the whole-genome dataset as a function of the threshold of SNP content (𝑥-axis). The 𝑡-test was applied as described in Section 2.
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Figure 5: Comparison of SNP content distributions in the upstream regions of human genes controlling spermatogenesis (dataset Sperm) with
the distribution in the whole-genome dataset (Table 1).The 5󸀠-regulatory regions between −700 and +100 bp around TSSs were analyzed.The
genes for dataset Sperm were extracted from EntrezGene by GO term spermatogenesis. In panel (a), the 𝑥-axis denotes the SNP content, and
the 𝑦 axis denotes the fraction of transcripts with specific contents of SNPs in their 5󸀠-regulatory regions. Panel (b) presents the significance of
the 𝑡-test (𝑦-axis), which compares the SNP contents in test group with the content in the whole-genome dataset as a function of the threshold
of SNP content (𝑥-axis). The 𝑡-test was applied as described in Section 2.

factors with zinc-coordinating DBDs was the most tolerant
to functional genetic variation.

The application of the 𝑡-test (see Section 2) for distribu-
tions of SNP content showed that the differences between
datasets All TFs, Chr Mod, and three out of four subclasses
of genes encoding TFs (HTH, Basic, and Other) versus genes
from the whole-genome dataset were highly significant for
the broad range of thresholds (Figure 6(b)).

Thus, the subclasses of TFs can be ranked according
to RVIS with regard to intolerance to mutations in their
coding regions as follows: Other > HTH ∼ Basic > ZNF.

This order perfectly correlates with the differences between
these gene groups and the whole-genome dataset revealed
when distributions of promoter SNP content were analyzed
(Figure 3(f)).

4. Discussion

4.1. Fractions of Transcripts with Elevated or Reduced SNP
Contents in the 5󸀠-Regulatory Regions of Human Protein-
Coding Genes. At the first step of our study, we confirmed
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Figure 6: Comparison of Residual Variation Intolerance Score (RVIS) [21] percentiles for six groups of human genes with percentiles for the
whole-genome dataset. (a) Cumulative percentage plots for the RVIS percentiles for six groups of human genes and for the whole-genome
dataset. (b) Significance of the 𝑡-test (𝑦-axis) where RVIS percentiles in six groups were compared with those for the whole-genome dataset
as a function of the RVIS percentile threshold (𝑥-axis). The 𝑡-test was applied as described in Section 2.

our previous result [14] that SNP contents in the 5󸀠-
flanking regions of protein-coding genes from the whole-
genome dataset were highly variable (Figure 1).We used 1000
Genomes Project data from dbSNP build 142 and annotation
of transcripts extracted from the Ensembl.

Almost one-twelfth (7.5%) of the total number of promot-
ers were found to have high SNP contents (six ormore SNPs).
This is in good agreement with our earlier report based on
data from dbSNP build 138 [14], where we showed that genes
with greater genetic variability of their 5󸀠-flanking regions
(more than six SNPs per 500 bp) comprised 5.5%of all human
genes. According to functional annotation performed in that
study by DAVID tool, three groups were overrepresented
among the genes with high SNP content: (a) genes controlling
the sensory perception of smell, (b) a specific subset of
promoters of sensory perception genes encoding olfactory
receptors, and (c) genes involved in antigen processing and
presentation. It was proposed that the elevated level of genetic
variability in promoter regions of these functional groups of
genes is maintained to an extent by balancing selection, that
is, the necessity of evolutionary adaptation to highly variable
environmental conditions characterized by great diversity of
immunogenic and olfactory stimuli.

On the other hand, one-fifth (16.5%) of the total number
of 5󸀠-regulatory regions within −500/−1 were SNP-depleted.
We were also interested in investigating the extent to which
the proportions of SNP-depleted promoters depend on the
length and location of the promoter regions. The analysis of
proportions of transcripts having no SNPs within particular
100 bp bins in the −1000/+200 regions around TSSs showed
that (a) the bins between −200 and −100 had the lowest
proportion and (b) bins within −700 and +100 had lower
proportions than flanking ones (Figure 2).

The reduced proportion of SNP-depleted regions among
local 100 bp regions within −300/+100 revealed in our study
tells us that these regions surrounding TSSs contain elevated
numbers of SNPs in comparison with their flanking regions.

This finding agrees with the results published previously
by [25, 26]. Both studies had shown that in 5󸀠-regions of
human genes more SNPs occurred in close proximity to
transcriptional start sites (200–300 bp in length) than in
regions further upstream. Moreover, according to [26], SNPs
were more abundant in the first 100 nucleotides downstream
TSS than in other downstream regions.

Taking in account our results (Figure 2) and previously
published data, we conclude that the −700/+100 regions
are interesting for further functional analysis. To obtain a
more detailed view and to be sure that we did not miss any
important detail, at the next step of our study we performed
functional analysis based on data calculated for a more wider
range of 5󸀠-flanking regions (from [−900; +100] and [−800;
+100] to [−400; +100] and [−300; +100]).

4.2. Reduced Genetic Variability in the Promoter Regions
of Genes Encoding Transcription Factors and Chromatin-
Modifying Proteins. Functional analysis of SNP-depleted
transcripts performed with the DAVID tool revealed three
distinct classes of overrepresented GO terms (Table 2). The
first class was associated with transcription regulation. The
second consisted of GO terms related to chromatin orga-
nization. Notably, these two classes define two extremely
important biological processes, transcription regulation by
transcription factors, and regulation of chromatin packaging.
Both biological processes were overrepresented in four or
more sets of SNP-depleted transcripts, indicating that this
finding was highly reliable. The third class, smaller than
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the two, listed terms that described a highly tissue-specific
process of male gamete generation (spermatogenesis). We
considered this class of GO terms because terms related to
male gamete generationwere found for SNP-depleted datasets
of transcripts with very long 5󸀠-regions ([−900; +100], [−800;
+100], and [−700; +100]). Such extended lengths of 5󸀠-regions
might point to significance of the finding. However, the
statistical 𝑡-test on the heterogeneity of SNP content among
the 5󸀠-regulatory regions of genes mapped to autosomes or
sex chromosomes (Figure S2) showed that the low level of
SNPs in the third class might be completely explained by
more frequent (than expected) location of genes involved in
spermatogenesis on the Y chromosome. Hence, we restricted
our subsequent analysis of genetic variability within 5󸀠-
regulatory regions to two groups of genes involved in tran-
scription and chromatin organization (corresponding to the
two major classes of GO terms).

By using public databases, we created lists of genes
encoding TFs and chromatin-modifying proteins (Tables 1
and S1). Afterwards, we compared the contents of SNPs in
the 5󸀠-regulatory regions of transcripts (−600/+100) of the
aforementioned groups (All TFs and Chr Mod) with that
for the whole-genome dataset by Fischer’s 𝑡-test for angu-
lar transformed proportions. We showed that 5󸀠-regulatory
regions of both groups had reduced genetic variability in
comparison to that in the whole-genome dataset (Figures 3(f)
and 4(b)).

4.3. Functional Similarity and Parallelism between Transcrip-
tion Factors and Chromatin-Modifying Proteins. The whole-
genome analysis of the SNP content in 5󸀠-regulatory regions
revealed two interesting groups of genes with reduced
genetic variability: genes encoding transcription factors and
genes encoding chromatin-modifying proteins. The biologi-
cal functions of these two groups of genes are closely similar.

Sequence-specific DNA-binding TFs direct transcription
initiation to specific promoters through binding to certain
cis-regulatory elements in promoters, enhancers, silencers,
and other regulatory regions [2, 27]. The effects of their
binding may be (a) facilitation of the formation of the
basal transcription complex through contacts to general tran-
scription factors or (b) triggering of chromatin remodeling
through DNA or histone modifications [8].

Genome-wide measurements of protein-DNA interac-
tions combined with analysis of gene expression profiles
have shown that each transcription factor can modulate
transcription levels of thousands of target genes adjusting
activities of genes within gene networks [28, 29].

Chromatin-modifying proteins can (a) posttranslation-
ally modify and demodify chromatin, altering chromatin
structure and recruiting regulatory factors and (b) pro-
vide access to nucleosomal DNA or allow nucleosomes to
move to a different position along the DNA, remove, or
exchange nucleosomes using energy from ATP hydrolysis
[11]. Genome-wide analysis of histonemodifications revealed
that, like transcription factors, each chromatin-remodeling
protein can affect transcriptional level of thousands of genes,
thereby orchestrating gene activity according to intracellular
conditions or external stimuli [30].

Thus, both classes of proteins are involved in the com-
plicated process of transcriptional control, ensuring correct
expression of specific genes. Both so called “transcription
factor-binding regulatory code” and “histone code” may
be effectively used for prediction of gene expression activ-
ity. Moreover, these codes are redundant for predicting
gene expression [31]. This redundancy means that TFs and
chromatin-modifying proteins function in close coopera-
tion, facilitating the recruitment of each other to transcrip-
tion complexes. The numerous protein-protein interactions
revealed between TFs and chromatin-modifying proteins
convincingly prove this idea [32, 33].

The transcriptional regulatory system plays the cen-
tral role in controlling many biological processes, ranging
from cell cycle progression and maintenance of intracellular
metabolic and physiological balance, to cell differentiation
and developmental time courses. Numerous diseases arise
from a breakdown in the regulatory system: transcription
factors are overrepresented among oncogenes [34], and a
third of human developmental disorders are attributed to
dysfunctional TFs [27, 35, 36]. For example, genes encoding
transcriptional regulators constitute a substantial proportion
of genes associated with autism [37]. Disruption in the
activity of gene expression regulators, such as transcription
factors and chromatin-remodeling proteins, accounts for the
expression changes observed in multiple animal and cellular
models of Huntington’s disease and in samples from patients
[38].

Therefore, it is not surprising that genes of both these sys-
tems have lower SNP contents in their 5󸀠-regulatory regions.
So we hypothesize that the reduced variability of regulatory
regionsmay be due to selective pressure (purifying selection),
which removes deleterious alleles. To estimate the force of
selective pressure on genes encoding TFs and chromatin-
modifying proteins, we calculated RVIS values. According
to cumulative percentage plots for the RVIS percentiles
(Figure 6(a)), both groups showed reduced intolerance to
functional variation, confirming our hypothesis that a low
level of promoter polymorphism may have resulted from
purifying selection.

4.4. The Differences between Superclasses of TFs. According
to Figure 3(a), TFs have reduced SNP contents in their 5󸀠-
regulatory regions. In addition, we found sharp differences
between four sets of transcripts/genes encoding TFs with
DBDs of specific types. For two groups of genes encoding TFs
(TFs with helix-turn-helix DBDs (HTH superclass) and TFs
with DBDs of seven other superclasses (with the exception
of the largest ones ZNF, HTH, and Basic; see Section 2)),
the differences against the whole-genome dataset were highly
significant in a wide range of SNP contents in the 5󸀠-
regulatory regions (Figures 3(b), 3(e), and 3(f), groups HTH
and Other). The group of genes encoding TFs with the basic
domain demonstrated a moderate significance level (Figures
3(d) and 3(f), group Basic). Finally, practically no differ-
ences were revealed between genes encoding TFs with zinc-
coordinating DBDs and the whole-genome dataset (Figures
3(c) and 3(f), group ZNF). The differences between groups
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of genes formed according to the types of encoding proteins
were reproduced when cumulative percentage plots for the
RVIS percentiles were built (Figure 6). Thus, according to
RVIS, genes encoding TFs with DBDs of seven other types
are the most intolerant to functional variation.

According to [21], low RVIS points to high functional
significance of the gene and predicts potential association
with diseases. Indeed, among this group of TFs with DBDs
of seven other types (denoted as Other) there are many well-
known hubs in a molecular network. They include (a) TP53
involved in cell cycle control [39, 40]; (b) TBPs that provide
the recognition of the TATA box within the core promoter
[41, 42]; (d) factors from the NF-kB (NFKB1, NFKB2, NFK-
BIA, NFKBIB, NFKBID, NFKBIE, NFKBIL1, and NFKBIZ)
and STAT (STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B,
and STAT6) families participating in immune response [43–
46]; and (e) factors from the SOX family (SOX2, SOX5, SOX7,
SOX12, and SOX15), which regulate the network of genes that
orchestrate mammalian embryogenesis [47, 48].

On the other hand, the group of genes encoding tran-
scription factors with zinc-coordinating DBDs (ZNF) was a
special case, because it did not differ from the whole-genome
dataset (Figure 3, panels (c) and (f)). This observation was in
agreement with data obtained for RVIS values (Figure 6). A
very weak enrichment of this group of TFs in comparison
with the whole-genome dataset was revealed between 20th
and 40th percentiles of RVIS values.

The distinctive features of TFs with zinc-coordinating
DBDs revealed in our study are in accordance with ideas
proposed in [49]. They presented an evolutionary analysis
of poly-zinc-finger gene family and showed that zinc-finger
genes were not conserved among mammals. Zinc-finger
genes have undergone extensive expansion in humans. The
human genome encodes approximately 700 members of this
superclass. It was demonstrated that the major component
of the selective pressure acting on these genes was positive
selection to change theirDNA-binding specificity.We suggest
that in humans, owing to the large number of genes com-
prising the zinc-finger gene family, many of them encode
proteins with very similar functions.That is why some alleles
in promoter regions controlling zinc-finger genes at least
temporarily escape eradication by purifying selection.

The second circumstance that could partly explain dis-
tinctive features of TFs with zinc-coordinating DBDs was
outlined in the paper devoted to TFClass [8]. This superclass
was characterized by an elevated (in comparison with other
superclasses) content of putative transcription factors. This
means that for a substantial proportion of zinc-finger genes
the functional roles of encoded proteins were not studied
experimentally.

5. Conclusions

This study demonstrates that the genes involved in gene-
specific transcription (especially regulatory sequence-specific
DNA-binding factors) and chromatin organization (espe-
cially chromatin-modifying proteins) are overrepresented
among genes whose promoters do not contain SNPs. This

observation points to a lower tolerance of these groups of
genes to regulatory genetic variation. Our finding may give a
deeper view of genic intolerance to regulatory variation and
may be useful for interpretation of personal genomes.
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