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Abstract

Modern statistical methods using incomplete data have been increasingly applied in a wide variety 

of substantive problems. Similarly, receiver operating characteristic (ROC) analysis, a method 

used in evaluating diagnostic tests or biomarkers in medical research, has also been increasingly 

popular problem in both its development and application. While missing-data methods have been 

applied in ROC analysis, the impact of model mis-specification and/or assumptions (e.g. missing 

at random) underlying the missing data has not been thoroughly studied. In this work, we study 

the performance of multiple imputation (MI) inference in ROC analysis. Particularly, we 

investigate parametric and non-parametric techniques for MI inference under common 

missingness mechanisms. Depending on the coherency of the imputation model with the 

underlying data generation mechanism, our results show that MI generally leads to well-calibrated 

inferences under ignorable missingness mechanisms.
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1. Introduction

Receiver operating characteristic (ROC) analysis is a quite efficient and popular method 

used in evaluating diagnostic tests or biomarkers in medical research. While a ROC curve 

provides visual evidence used to distinguish diseased subjects from healthy ones, ROC 

analysis can also be used to provide a summary measure by computing the area under the 

curve (AUC) for the assessment of performance of a given diagnostic test or biomarker. 

Using test results, the ROC curve plots sensitivity (probability of a test detecting disease 

when the subject has the disease) against 1-specificity (specificity is the probability of a 

negative test given the subject is healthy). Assuming that larger test results (or scores) 

indicate evidence in favour of disease, for a randomly chosen healthy and diseased subject 

and AUC essentially results in the estimate of P(Y > X) (where Y denotes the test result for a 

sick patient and X is the result of a healthy patient). The larger area indicates a better 
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performance of a diagnostic test. For example, if the area is close to 1, then the underlying 

diagnostic test has a nearly perfect classification. On the other hand, if the AUC is around 

0.5, then the diagnostic test is uninformative and has the same performance of a completely 

random decision as flipping a fair coin.

In medical studies on the performance of a diagnostic test, negative results from a test may 

not be investigated further for verification (gold standard test). There are several reasons for 

this. Obtaining a gold standard might be expensive or it might require a risky invasive 

operation on the patient. In a study of diagnostic test performance, if the targeted population 

is evaluated based on only those whose true status is known, then AUC of ROC is typically 

estimated with bias. This is known as verification bias. The problem of verification bias can 

actually be thought of as a missing-data problem as the gold standard measurement for a 

diagnostic test for some patient might be missing. Almost always, this added complexity is 

exacerbated by the arbitrary missingness in biomarkers. As documented by many 

researchers, analyses that fail to take sensible action on missing data have potentially 

undesirable inferential properties including bias and distorted estimates on the uncertainty 

measures.[1] An increasingly popular method to accomplish this is multiple imputation 

(MI).[2] Briefly, MI is a simulation-based inferential tool operating on M > 1 ‘completed’ 

data sets, where the missing values are replaced by random draws from their respective 

predictive distributions (e.g. posterior predictive distribution of missing data). These M 

versions of completed data are then analysed by standard complete-data methods and the 

results are combined into a single inferential statement using rules to yield estimates, 

standard errors and p-values that formally incorporate the missing-data uncertainty into the 

modelling process.[3] The key ideas and the advantages of MI are given by Rubin [3] and 

Schafer.[4]

Our work aims to assess the performance of commonly used parametric and non-parametric 

MI methods as well as their sensitivity to the key assumptions made on the mechanisms 

underlying the way in which missing values occur. The remainder of this paper is organized 

as follows. In the next section, we review previous work on missing data in ROC analysis. 

Section 3 introduces notation, assumptions and MI methodology to be evaluated in Section 4 

via a simulation study, which mimics a typical scenario described earlier. Section 5 provides 

a discussion of the strengths and weaknesses of MI as well as our current and future work.

2. Missing data in ROC analysis

Similar to any study involving data, ROC studies are often subject to missing data. Any 

form of case deletion (list wise or record deletion) is arguably one of the most used methods 

to handle missing data. Unless the underlying mechanism of missingness is missing 

completely at random (MCAR), it almost invariably leads to bias in any respect of the 

statistical inference. Further, regardless of the missingness mechanism, it often deletes 

unacceptable rates of data records leading to inefficiency.[1] Alternatively, practice of 

imputation which is to fill missing data with plausible values is also used. There are several 

single imputation methods in practice including mean imputation, hot-deck, cold-deck or 

regression imputation. While these methods can be more efficient than case deletion, they 
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often fail to incorporate missing-data uncertainty into the final inferences. This is a serious 

drawback as the inferences are artificially precise.

The more principled approach within the framework of ROC analysis in the presence of 

verification bias was developed by Gray et al.[5] This work pertains to the development of 

unbiased estimation of specificity and sensitivity in the presence of verification bias. 

However, important limitations in this work relate to distributional assumption of normality, 

potential selection bias occurring in the selection of patients for verification and 

disallowance of arbitrary missing data in covariates. Missing data were only allowed in the 

gold standard disease status (some of the patients with diagnostic test results may not have 

verified disease status).

Acknowledging these serious problems and limitations, the more recent literature on ROC 

analysis with missing data has focused on more principled methods designed to implicitly or 

explicitly incorporate the uncertainty due to arbitrary missing data. Overall, there are two 

general approaches. The first approach is based on the idea of maximizing observed-data 

likelihood, which essentially integrates out the missing data, and hence can be viewed as 

‘averaging’ over all possible values of missing data.[1] This can be viewed as incorporating 

missingness uncertainty implicitly as the end results will not distinguish the sampling 

variability from missing-data uncertainty. Zhou [6] formulates the verification bias problem 

as a missing-data problem where the decision to verify a patient depends only on the test 

result. Zhou [6] then derives a maximum-likelihood (ML) estimation for the ROC curve 

area. More recently, Long et al. [7] proposed a robust estimation of AUC using MI 

paradigm.

The second approach uses a MI framework. While MI was originally developed to handle 

item nonresponse in surveys, it has been increasingly used in a wide variety of statistical 

problems, including ROC analysis verification bias. For example, Harel and Zhou [8] assess 

performance of imputation procedures for drawing inferences on sensitivity and specificity 

in the presence of missing data in the gold standard disease status. De groot et al. [9] also 

perform a similar assessment of MI performance under alternative imputation models 

variable-by-variable imputation and predictive mean matching. Long et al. [10] proposed a 

MI inference for ROC analysis for applications where a gold standard data might be missing 

under a mechanism called missing at random (MAR).[2]

As evidenced by these numerous applications of the popular MI inference, there does not 

exist any unified approach to creating MIs. Then, how should a practitioner proceed with the 

ROC analysis with missing values? What are the inferential consequences of choosing a 

particular analytic tool for sampling from the underlying posterior predictive distribution of 

missing data (i.e. forming of the imputations)? Finally, what are the inferential prices to be 

paid by the investigators when the models for missingness and/or data generation 

mechanisms are mis-specified? These are all standard questions casting doubt on the 

analysis with missing values regardless of the method of choice. Our work aims to unravel 

direct inferential consequences of the choices made on such questions.
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3. Notation and assumptions

Below, we state notation commonly used in the missing-data literature as well as 

assumptions pertaining to both mechanisms creating the missing data and models used to 

impute them.

3.1. Common missing-data mechanisms

Statistical methods adopted to deal with missing values ranging from case-deletion to 

model-based MI assume a certain missingness mechanism. This is also the case in ROC 

analyses as the studies designed to investigate efficiency of a diagnostic test may contain 

incomplete data. Mechanism underlying these missing values may be determined completely 

partially at random. Partially random mechanisms are the mechanisms where missingness 

probabilities could depend on other diagnostics test results. For example, patients whose 

fasting plasma glucose levels are higher than certain values are further required to be 

measured their oral glucose tolerance level (OGTL). Therefore, the missingness mechanism 

for OGTL can be deemed to depend on the fasting plasma glucose level.

Some statistical techniques explicitly state these mechanisms while others state them 

implicitly. Most current methods such as those implemented in R package pan and MlWin 

mimacro [11–13]; or others for cross-sectional data such as [14,15] and PROC MI [16] 

assume that missing values are MAR.[2] Below, we generically describe missingness 

mechanisms (for more details see [2,4]) and provide discussion in their applications.

First, let R denote a matrix of indicator variables whose elements are 0 or 1; identifying 

whether elements of a data matrix Y are missing or observed. Note that R is always observed 

and its dimension is the same as Y. Furthermore, suppose that Yobs and Ymis denote the 

observed and missing partitions of Y, respectively. Finally, let X denote a matrix of 

covariates that are fully observed (e.g. auxiliary variables).

The missing values are said to be MAR if P(R|Yobs, Ymis, X, θ) = P(R = r|Yobs = yobs, X, θ) 

holds for all θ, where θ contains all unknowns of the assumed model. This assumption states 

that the probability distribution of the missingness indicators may depend on the observed 

data but not on the missing values. This mechanism is typically applicable when completely 

observing the gold standard variable is almost impossible due to factors such as cost, risky 

or require invasive operation.

A special case of MAR is MCAR in which P(R|Yobs = yobs, Ymis, X, θ) = P(R|θ), for all θ. In 

MCAR, the probability distribution of missingness is independent of both the observed and 

missing data. This mechanism can be applied in ROC analyses in situations including lost 

patient records, exclusion from the study or drop-out, etc.

Finally, if MAR is violated, the probability distribution depends on the missing values and 

the missingness mechanism is said to be missing not at random (MNAR). In the case of 

MNAR, a joint probability model must be assumed for the complete data as well as the R, 

the missingness indicators. In ROC analyses, MNAR typically underlies the missingness 

mechanism for gold standard test results. Gold standard test is typically sought for those 
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whose diagnostic test result is abnormal. If this result does not warrant further attempt to 

obtain the gold standard test result, then we can view the underlying missingness mechanism 

as MNAR.

Another important concept is ‘ignorability’ of the missingness mechanism and it is often 

seen an implied condition once MAR is assumed. Ignorability of missing-data mechanism 

occurs when the mechanism is MAR and the parameters γ and θ are distinct: f (Yobs, R|θ, γ) 

= f (Yobs|θ) f (R|γ). As named by Rubin [2] and discussed extensively by Little and Rubin,[1] 

the rough meaning of ignorability is that the missing-data mechanism can be ignored in the 

statistical analyses. More detailed explanation and conditions under which ignoring missing-

data mechanism is valid for inferences about θ are given by Rubin,[2] and for more practical 

description see [17].

This paper is concerned with the performance of the current missing-data methods under a 

varying range of MAR, MCAR and MNAR assumptions as stated earlier. This performance 

is investigated under an ignorable missingness mechanism as defined by Rubin [2]; that is, 

the missing data are MAR and the parameters of missingness distribution and the complete-

data distribution are distinct (see more detailed discussion in [2,4]). The ‘ignorability’ 

merely means that missingness mechanism can be ignored when performing statistical 

analyses, in other words, no harm is done working with the observed data. This should not 

be understood as to discard any missing datum: It should be understood that working with 

the observed likelihood L(θ|Yobs, X)=∫ L(θ|Yobs, Ymis, X) dYmis is the same as the full 

likelihood for θ.

3.2. Inference via MI

The key feature of MI over the other methods that are either parametric (e.g. likelihood-

based) or non-parametric (e.g. weighting-based) is its versatility in the post-imputation 

phase as MI can serve multiple analytical goals using the same multiply-imputed data sets. 

Regardless of the nature of the post-imputation phase, MI inference treats missing data as an 

explicit source of random variability and the uncertainty induced by this is explicitly 

incorporated into the overall uncertainty measures of the underlying inferential process. This 

is accomplished by repeating the same complete-data analysis on the imputed data, and 

combining the estimates and standard errors under rules defined by Rubin,[3] including an 

explicit estimate of the degree of uncertainty due to the missing-data methodology.

To produce the imputations, some assumptions about the data (typically a parametric model) 

and the mechanism producing missing data need to be made. The assumed data model 

should be plausible and should be somewhat related to the analyst's investigation.[18] This 

model forms the basis to approximate the distribution in which the missing data conditional 

on observed data (i.e. predictive distribution of missing data). Our work focuses on limited 

but widely used imputation techniques and their performance in ROC analyses. These 

techniques are implementations of three distinct computational algorithms and imputation 

models that aim to simulate the predictive distribution of missing data.

The first approach jointly models variables subject to missingness, thus jointly samples from 

the underlying predictive distribution. Considering the nature of our data, which is a mixture 
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of continuous and categorical data, we adopt a general location model as an imputation 

model.[4] The R [11] package called mix [19] has been used for drawing imputations. The 

second approach has been an alternative to this method. It approximates the joint modelling 

approach with a potentially incoherent variable-by-variable approach.[20] While 

‘incoherence’ has been a subject of debate, this method has been quite successfully applied 

in many survey settings where the joint approach is essentially not applicable. The final 

approach pertains to a re-sampling-based algorithm using bootstrap for which we used R 

package called mi.[21]

4. Simulation study

The ultimate goal of our work was to assess the impact of the particular choice of imputation 

methodology and assumptions on the overall inference. To do this, we conducted a pseudo-

random experiment where typical data from medical decision problems were simulated and 

assessed with respect to the frequentist benchmarks in a repetitive sampling environment 

(e.g. coverage rates, standardized biases, etc.) We investigated the performance of multiple 

imputation method using joint, variable-by-variable and non-parametric re-sampling (i.e. 

bootstrap) approaches under alternative missingness mechanisms (i.e. MCAR, MAR and 

MNAR).

Our simulation experiment consisted of the following steps: we first simulated gold standard 

test results  from a binomial distribution with 0.5 success probability (e.g. prevalence of 

a disease in a population) for i = 1, 2, …, n. Sample size, n, was varied between 100, 300 

and 500. Data on diagnostic test results were then simulated from a normal distribution 

conditional on  (i.e. disease versus non-disease):

Particular specification on the means for the distribution of Y and Y* was motivated by the 

diagnosis process of a condition known as diabetes mellitus. To make a gold standard (i.e. 

error-free) diagnosis on such a condition, oral glucose tolerance test is used, and for error-

prone diagnosis, plasma glucose (FPG measured by mg/dl) is used. In the simulation 

experiment, for example, 120 and 110 can be thought as fasting plasma glucose level as 

commonly seen in diabetes studies (Standards of Medical Care in Diabates, 2012). Standard 

deviation (σY) are chosen arbitrarily to be 10, 20, 30 and 40 to reflect possible variations in 

the underlying groups. Our simulation experiment also considers other glucose levels, 

specifically, 130 and 110 (underlying AUC is 0.75), 140 and 110 (underlying AUC is 0.85) 

to study performance under differing AUC values.

Missing values on the observed (or simulated) values on Y and Y* were imposed under three 

different missingness mechanisms. First, we imposed MCAR where the missingness 

indicator (rYi or ) was drawn from a binomial distribution whose success probability was 

made independent from all the variables observed or missing:

Karakaya et al. Page 6

J Stat Comput Simul. Author manuscript; available in PMC 2015 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The MAR mechanism on these variables was determined so that the missingness 

probabilities on Y depended on Y*:

where β1 = −15.3, β2 = 0.125 were set to obtain rates of missingness around 10%, 30% and 

40% on either variables. Note that, in some scenarios, we set the missingness rate on 

diagnostic test result Y variable to 0% as it might be the case in clinical practice where an 

imperfect test result is observed for all units unlike the gold standard variable Y*. Finally, 

missing values on both Y and Y* were imposed under MNAR according to a cut point. 

Specifically, for the scenarios pertaining to AUC = 0.64, Y values were set to missing if they 

were higher than 125, and Y* values were set to missing with a probability of 0.3:

and, for the AUC values 0.75 and 0.85, these cut-off values were set to 140 and 150, 

respectively.

Next, we created multiply imputed data sets on Y, Y * using joint, variable-by-variable and 

re-sampling (i.e. bootstrap) approaches as described in Section 3.2. We then employed 

inference by MI [3] to draw inferences on AUC using estimation routines developed by 

Hanley et al.,[22] particularly the method for computing standard error of AUC estimate. 

The number of imputations was set to 10. A higher number of imputations led to similar 

results. The steps of incomplete data generation under MCAR, MAR, MNAR, creating MI, 

estimation and combining the estimates and standard errors via MI were repeated 1000 

times. This process allowed us to simulate the sampling distribution behaviour of MI 

inference for AUC estimation using the four distinct but widely used methods for missing 

data. The summary measures of this sampling distribution are then investigated to gauge the 

performance of each of the three methods of missing data. These measures are given below:

• Coverage rate (CR): The percentage of times that the true parameter value is 

covered in the 95% confidence interval. Here, the true parameter value is the 

average parameter estimate across the simulations before the missing values are 

imposed. If a procedure is working well, the actual coverage should be close to the 

nominal rate of 95% in our study. However, it is important to evaluate coverage 

with the other measures because high variances can lead to higher CRs. The 

performance of the procedure is regarded to be poor if its coverage drops below 
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90%.[23] If the procedure results in CRs that are close to 100% or below 85%, 

extra caution should be taken when using that procedure.

• Average width of confidence interval (AW): The distance between the average 

lower and upper confidence interval limits across 1000 confidence intervals. A high 

CR along with narrow, calibrated confidence intervals translates into greater 

accuracy and higher power.

• Root-mean-square error (RMSE): Because nonresponse or missing values have 

undesirable effect on the variances, it is important to evaluate this adverse effect. 

An integrated measure of bias and variance is used, evaluating θ̂ in terms of 

combined accuracy and precision. RMSE(θ̂) is defined as 

The simulation results focusing on the performance of the various methods of MI as well as 

case deletion are summarized in Tables 1–3. Table 1 provides summary of our simulation 

experiment under a sample size of 100 and Tables 2 and 3 are for sample sizes of 300 and 

500. Each of these tables' simulation experiment assessed the performance and sensitivity to 

the imputation model and method in variations with respect to prevalence (πY* which is also 

varied between the values of 0.5, 0.35, 0.25), AUC value (approximately set to be 0.6, 0.75, 

0.85), and standard deviation for Y, taking values of 10, 20, 30 and 40.

Across the scenarios underlying MAR and MCAR mechanisms, regardless of the imputation 

methodology, the MI inferences lead to acceptable parameter estimation and coverage, 

indicating a good performance. We specifically observe estimates with minimal biases and 

CIs with excellent coverage rates, even when the sample sizes are small and large variances 

for the underlying error-prone variable Y. Furthermore, our results clearly note that the 

performance of the MI is far more superior than the unprincipled method of simple case 

deletion, which leads to significant biases as well as dismal coverage rates even under 

MCAR. It is also noted that in some conditions the performance of the MI procedure is not 

as satisfactory. When the true missingness mechanism is MNAR, the performance of MI is 

often not acceptable with respect to bias, coverage rates or RMSE regardless of the sample 

size, variance of the error-prone variable (Y) or prevalence of a disease in a population (πY*).

As repeatedly shown in the missing-data literature, case deletion performs worst with 

respect to all criteria. When the underlying missingness mechanism is MCAR, as expected, 

AUC estimates under case deletion lead to unbiased estimates (see column #3, named 

CD(SE)). This result is drawn from comparing the third column which contains the estimate 

after case deletion averaged across the 1000 simulation repetitions and the second column 

which contains the true value () of AUC as computed as the average AUC estimate across 

the 1000 simulation repetitions. The most striking observation with case deletion is the 

unacceptably low nominal coverage rates as the AUC values increase along with the 

prevalence. Unlike the general thinking, case-deletion performance is quite poor compared 

to more principled MI methods even when the missingness mechanism is MCAR. This poor 

performance is most noticeable with respect to criteria on coverage rates which are as low as 

2% for a nominal 95%. When the missingness mechanism is not ignorable (i.e. the MNAR 

rows) coverage rates are seemingly improved, however, with a closer we realize that these 

improved rates are always with the price of wider confidence intervals and higher RMSE. 
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This is an important point as the MNAR missingness mechanism induces more selection 

causing higher magnitude of biases as well as increased standard errors associated with these 

estimates contrary to a common intuition.

Figure 1 provides a graphical illustration of the performance of each of the four methods 

(case deletion, joint imputation, sequential imputation and re-sampling-based imputation) 

with respect to bias across the three missingness mechanisms. Specifically, a matrix scatter 

plot of the true AUC values and estimated AUC values across several simulation scenarios 

is given in Figure 1. Top panel depicts the relationship under MCAR across the four 

methods, middle and lower panel provide the same for MAR and MNAR. We clearly see 

that as the missingness mechanism become more dependent on the observed and missing 

data, increasingly larger biases are observed (i.e. deviations from a 45-degree line are more 

obvious).

MI estimation appears to produce an acceptable performance in most scenarios. Regardless 

of the imputation method of choice, MI outperforms case deletion under MCAR. This 

should be noted by practitioners who prefer case deletion because the missingness 

mechanism in MCAR as even under MCAR, the case deletion could lead substantial 

inefficiency in multivariate analyses.

Under MAR mechanism, MI inference leads to well-calibrated inferences. Joint imputation 

methods generally result in more efficient results (i.e. lower RMSE, see ‘Joint Imputation’ 

column and RMSE sub-column). Performance criteria of RMSE as well as AW are 

somewhat stable: lower RMSEs and smaller AWs are observed for higher variances (σY), 

different missingness mechanisms and prevalence of disease.

We also noted that higher but mostly negligible biases in the AUC estimation occur under 

joint imputation in smaller sample sizes (under MAR, n = 100). These biases completely 

disappear as the sample size increases. This contrast shows that when the joint aspects of the 

distribution are not well estimated (e.g. correlation), the MI performance potentially leads to 

bias. When the underlying mechanism is MNAR, selection bias induced by MNAR 

adversely impacts on the CRs as well as RMSE. Note that with lower sample sizes (e.g. n = 

100), impact of selection bias is most observable in MI under parametric modelling. Re-

sampling-based MI techniques (e.g. bootstrap) outperforms parametric competitors under 

MNAR as seen in the last rows of each panel in Table 1. Larger biases, wider confidence 

intervals thus much higher-than-nominal coverage rates are observed consistently across the 

simulation scenarios. Overall, under MAR sequential methods of imputation outperforms 

joint approach especially smaller sample sizes. Under MNAR, however, regardless of the 

choice of imputation methodology, poor performance is seen across all simulation scenarios. 

If such a mechanism is suspected, practitioners are strongly recommended avoiding methods 

that makes ignorability assumption.[1] If this is not possible, it would help improve the poor 

performance adding variables that are either predictive of missing variables or help explain 

missingness as suggested by Collins et al.[23]
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5. Discussion

The overall goal of our work was to assess the impact of the model and missingness 

mechanism assumptions on the MI-based inferences in ROC analysis. Regardless of how the 

missing values occur, case deletion is seen to be dangerous in ROC analyses. Its application 

would undoubtedly lead to biases in medical diagnostic test performances, which could have 

a direct, adverse effect on patients' care. It is clearly advisable to adopt any of the MI 

techniques regardless of its particular analytical form. Under MCAR and MAR, the joint 

modelling approach appears to be preferable.

Our work considered a simple ROC analyses with arbitrary missingness and did not consider 

covariate information. It explicitly targeted performance of a diagnostic test. We would like 

to extend our current work to problems with covariate information. This is a useful 

extension not only because of its common occurrence but also because of its typical 

inclusion as covariates in the missing-data models. While we note that MI methods that 

operate under MAR/MCAR are not really suitable for MNAR, it may be possible to improve 

the performance by including informational covariates in the imputation models.[23] It is 

also known that richer imputation models improve the performance of MI inference. We 

note that the joint models can be sensitive to estimation problems originating from data 

scarcity underlying the estimation of joint aspects.

It is also valuable to study the MI performance in covariate-adjusted ROC analyses and 

three-way ROC analyses. We believe that our simulation study serves as a starting point and 

extensions require a careful imputation model selection. Both these considerations require 

multivariate models but care has to be taken as increases in dimension typically leads to 

adversities in the imputations. Our results indicate that variable-by-variable imputation 

techniques have promise in such applications whereas joint models seem to be problematic 

in cases where the joint aspects might be poorly estimated.

Finally, we plan to examine how study design or data structure influence the performance of 

MI inference in ROC analyses. It is known that ignoring design features such as the 

longitudinal or clustered nature of data lead to strong inferential drawbacks such as 

understated standard errors or biased estimates. This problem can easily be exacerbated with 

missing data. The imputation models in such situations must account for variation in data 

structures. For example, if the design is longitudinal, then the imputation model must reflect 

possible variations among the coefficients of the imputation model across the study subjects 

to avoid the potential underestimation of uncertainty measures in ROC analyses (e.g. AUC 

and its standard error). Finally, we believe that the most important direction is the 

dissemination of such methods by means of statistical software as when there are no 

statistical software available to the practitioners, methods that lead to invalid inferences (e.g. 

case deletion) are typically preferred.
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Figure 1. 
Bias performance of case deletion, joint, sequential and bootstrap-based MI across MCAR 

(top panel), MAR (middle panel) and MNAR (bottom panel).
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