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Increased COUP-TFIl expression in adult hearts
induces mitochondrial dysfunction resulting in
heart failure
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Mitochondrial dysfunction and metabolic remodelling are pivotal in the development of
cardiomyopathy. Here, we show that myocardial COUP-TFIl overexpression causes heart
failure in mice, suggesting a causal effect of elevated COUP-TFII levels on development of
dilated cardiomyopathy. COUP-TFIl represses genes critical for mitochondrial electron
transport chain enzyme activity, oxidative stress detoxification and mitochondrial dynamics,
resulting in increased levels of reactive oxygen species and lower rates of oxygen
consumption in mitochondria. COUP-TFII also suppresses the metabolic regulator PGC-1
network and decreases the expression of key glucose and lipid utilization genes, leading to a
reduction in both glucose and oleate oxidation in the hearts. These data suggest that COUP-
TFIl affects mitochondrial function, impairs metabolic remodelling and has a key role in
dilated cardiomyopathy. Last, COUP-TFIl haploinsufficiency attenuates the progression of
cardiac dilation and improves survival in a calcineurin transgenic mouse model, indicating that
COUP-TFII may serve as a therapeutic target for the treatment of dilated cardiomyopathy.
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eart failure is the leading cause of death in developed

countries, and dilated cardiomyopathy (DCM) is the most

common form of heart failure’. The aetiology for the
majority of non-ischaemic DCM remains unclear. Studies on
human specimens and animal models suggest that impaired
mitochondrial electron transport chain (ETC) reduces production
of high-energy phosphates®™, leading to energy starvation of the
cells. Although the mitochondrial ETC primarily produces ATP,
it also generates reactive oxygen species (ROS) as part of a normal
respiration process®. A defective ETC has been linked to excessive
production of ROS®, which imposes oxidative stress in failing
hearts by damaging mitochondrial DNA and proteins and
triggering more ROS formation’. In addition, mitochondrial
dynamics also contribute to mitochondrial homeostasis in
the hearts. Impairment of mitochondrial fusion by Mfnl/Mfn2
double knockout (DKO) results in mitochondrial fragmentation,
respiratory dysfunction, leading to a rapid development of DCM?,

Metabolic remodelling also emerges as a major player in
pathogenesis of heart failure. We have proposed that metabolic
remodelling precedes, initiates and sustains functional and
structural remodelling”. The PGC-1 regulatory network is
known as the major network-modulating cardiac metabolism.
This network comprises coregulators PGC-1a and PGC-1f that
coactivate multiple nuclear receptors, including estrogen-related
receptor (ERR)a, ERRy and peroxisome proliferator-activated
receptor (PPAR)a, to control expression of genes essential for
energy and mitochondrial homeostasis!®~1%. Loss of key members
in this regulatory network produces a range of metabolic defects,
including heart failure, defective mitochondrial biogenesis and
dynamics and maladaptation to cardiac stress in mice!®13,

COUP-TFII (Nr2f2), a member of the nuclear receptor family,
is highly expressed in the embryonic atrial4, whereas its
expression in ventricular cardiomyocytes remains very low from
embryo to adult'®!®. Under pathological conditions, the
expression of COUP-TFII is elevated in the stressed
ventricles of non-ischaemic cardiomyopathy patients and a
pressure overload mouse model'®!7.

In the present study, we generated a mouse model by
ectopically expressing COUP-TFII in adult cardiomyocytes to
understand the role of COUP-TFII in the development of
cardiomyopathy. Increased COUP-TFII levels alter expression of
key mitochondrial and metabolic genes, enhance oxidative stress,
disturb metabolic homeostasis and lead to DCM. On the other
hand, reduced COUP-TFII expression partially mitigates calci-
neurin-induced cardiac dysfunction and improves survival of
calcineurin transgenic mice. Our results reveal the causative role
of COUP-TFII in the development of heart failure.

Results

Increased COUP-TFII expression in stressed hearts. When we
reviewed available human DCM data sets, we found a significant
increase in COUP-TFII expression levels (3.2-fold) in 13 myo-
cardial tissues of end-stage non-ischaemic DCM!® (Fig. 1a). In a
second cohort of patients, an average of 1.8-fold increase on
COUP-TFII levels was also observed in the heart of 86 patients
with idiopathic DCM (GSE5406)'8. Results from these two
independent cohorts of patients suggest an association between
the ventricular COUP-TFII levels and DCM in human.

We found that in response to stress imposed by transaortic
constriction (TAC), the expression of ventricular COUP-TFII
mRNA was induced in mice (Supplementary Fig. 1a). This result is
consistent with previous findings of increased COUP-TFII protein
levels in this model!”. Similarly, ventricles of calcineurin transgenic
mice (CnTg), known to develop hypertrophy and subsequent
DCM, also exhibited an elevated expression of the COUP-TFII
gene (Supplementary Fig. 1b). In addition, COUP-TFII protein
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levels were increased in isolated cardiomyocytes of CnTg mice
(Supplementary Fig. 1c). Together, these results implicate a strong
association of increased COUP-TFII  expression  with
cardiomyopathy in mice and in humans.

COUP-TFII induces DCM. The potential link to cardio-
myopathy prompted us to investigate whether increased
COUP-TFII expression in mice might impact the development of
contractile dysfunction. For this purpose, we crossed a previously
established COUP-TFII overexpression allele CAG-S-COUP-TFII
with a cre driver Myh6-MerCreMer (Myh6-MCM) line'*!® to
overexpress COUP-TFII specifically in cardiomyocytes after
heart development is complete, by administration of tamoxifen
(Fig. 1b). Functionally, overexpressing COUP-TFII (OE,
Myh6-MCM; CAG-S-COUP-TFII) in 2-month-old mice resulted
in a greatly enlarged heart in comparison with the CTRL
(Myh6-MCM) mice (Fig. 1c) 16 days after COUP-TFII transgene
induction (D16). Echocardiography further revealed that OE
mice exhibited characteristics of DCM, including increased left
ventricular interior dimension (Fig. 1d and Supplementary
Fig. le), reduced fractional shortening (Fig. le) and decreased
relative wall thickness (RW'T; Supplementary Fig. 1f, right panel).
The progressive compromise of cardiac function resulted in
increased mortality of OE mice after activation of COUP-TFII
expression (Fig. 1f). Notably, day 16 OE hearts also had a 5.3-fold
increase of COUP-TFII mRNA levels over CTRL (Supplementary
Fig. 1g). By this time, the OE hearts exhibited severe dilation and
contractile dysfunction analogous to end-stage DCM in human
patients. The overexpressed COUP-TFII mRNA levels between
human specimens (3.2X, Fig. la) and OE hearts (5.3X,
Supplementary Fig. 1g) are not too far apart, suggesting that
the mouse model is relevant. Most importantly, the activated
COUP-TFII transgene increases COUP-TFII protein levels in
cardiomyocytes (Supplementary Fig. 1d) to a similar extent as
CnTg does (Supplementary Fig. 1c), which gives us confidence to
use this model for dissecting the role of COUP-TFII in
cardiomyopathy. In summary, our animal model shows that
increased COUP-TFII expression in the heart is sufficient to
induce DCM with a high mortality rate.

At the molecular level, OE ventricles exhibited decreased
oMHC, increased fMHC and reduced SERCA2a gene expression
(Supplementary Fig. 1h), similar to the molecular changes
observed in human DCM patients and other mouse models. To
gain insights on COUP-TFIDs effect in hearts, we identified the
molecular profile of day 16 OE hearts through microarray
analysis using ventricular compartments. Unbiased Gene
Ontology analysis of the OE profile showed significant enrich-
ment in the category of ‘DCM’ in the Kyoto Encyclopedia of
Genes and Genomes (P=2.2x 10~ %), further supporting the
pivotal role of COUP-TFII in DCM. Moreover, using the OE
profile as a transcriptomic signature of COUP-TFII activities, we
found that the COUP-TFII signature is considerably higher in the
DCM patients than the CTRL group (Fig. 1g). This finding
suggests a stronger presence of COUP-TFII activities in DCM
hearts as a result of higher levels of COUP-TFII expression
(Fig. la). Collectively, our data reveal that the COUP-TFII
signalling also exists in the human hearts and is positively
correlated with a pathological profile of DCM.

Mechanistically, the Ingenuity Pathway analysis reveals
‘mitochondrial ~dysfunction’, ‘fatty acid [-oxidation’ and
‘glycolysis’ as the most prominent pathways affected by
COUP-TFII overexpression in cardiomyocytes (Fig. 1h). This
result suggests that COUP-TFII alters cardiac energy homeostasis
via modulating expression of genes important for energy
production, fuel utilization and mitochondrial function.
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Figure 1 | Myocardial COUP-TFII expression causes dilated cardiomyopathy (DCM). (a) COUP-TFIl mRNA levels in human heart tissues of non-failing
(NF, n=6) and idiopathic DCM (n=13) from GSE1869. (b) Strategy of inducible COUP-TFII expression in adult mouse myocardium. (¢) Gross view of day
16 hearts. The scale of rulers underneath the whole mount images is 1Tmm. (d,e) Time-coursed echocardiogram. Day O indicates the day before induction of
COUP-TFII expression. LVIDd, left ventricular interior dimension at diastole. N=5 (CTRL) and 7 (OE). (f) Survival rate of nine CTRL and eight OE mice over
time. (g) Manifestation of the COUP-TFII gene signature in human heart samples (GSE1869). COUP-TFII gene signature is curated from all COUP-TFII
downstream targets in mouse hearts that are identified by the microarray analysis. (h) Major biological processes altered by COUP-TFIl overexpression
identified by the Ingenuity pathway analysis. ***P<0.001 (t-test) between CTRL and OE. Error bars denote the standard error of the mean (s.e.m.).

Impaired cardiac fuel utilization. The OE profile shows a
significantly reduced expression of many genes that controls fuel
utilization. Quantitative reverse transcription-PCR (qRT-PCR)
analysis revealed that genes for uptake, binding, trafficking into
the mitochondria and oxidation of fatty acids all exhibited a
reduced expression in OE hearts as early as day 4 (Fig. 2a). These
findings suggest that fatty acid utilization may be limited in the
OE hearts. Indeed, the OE hearts exhibited a lower oleate oxi-
dation rate ex vivo (Fig. 2b), as predicted by the molecular profile
of the OE hearts.

A comprehensive analysis of the genes implicated in glucose
usage of OE hearts showed decreased mRNA levels of Glut4, Hk2
and Pfkm (Fig. 2a) genes required for glucose uptake, phosphor-
ylation and subsequent glycolysis, respectively. These findings
suggest that OE hearts are also defective in glucose utilization.
This was corroborated by the reduced glucose oxidation rates in
ex vivo OF hearts (Fig. 2c). Interestingly, we also observed an
increase in the expression of a subset of genes in the glycolytic
pathways (Fig. 2a). However, these changes, which may be a
compensatory effect, were not able to offset the impairment in
glucose utilization. The reduced fatty acid and glucose oxidation
rates are accompanied with decreased oxygen consumption rate
(OCR) in the OE hearts (Fig. 2d), suggesting a defect in oxidative
phosphorylation for energy production.
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The PGC-1 network is critical in regulating genes essential for
cardiac metabolism!®!3, Because the expression of PGC-lo is
upregulated in the adipose tissue of COUP-TFII heterozygous
mutant mice?’, it is likely that PGC-1a expression is also altered
when COUP-TFII is overexpressed in the hearts. Indeed, PGC-1
expression was reduced when COUP-TFII is overexpressed
(Fig. 2a). Moreover, levels of other members of the PGC-I
network, including PGC-1f, ERRa, ERRy and PPARw are all
reduced in cardiac tissues in the OE hearts (Fig. 2a). The notion
that COUP-TFII suppresses the PGC-1 network is su}])Forted by
the inverse relationship of COUP-TFII and PGC-1a/f'!, ERRa?!
and PPARx*? signatures (Supplementary Fig. 2). These results
indicate that COUP-TFII is a major metabolic regulator that is
central to control cardiac fuel metabolism.

Because PGC-1o is a direct downstream target of COUP-TFII
in adipocytes?’, it is likely that the same regulatory mechanism
also operates in the heart. Using chromatin immunoprecipitation
(ChIP)-quantitative PCR (qPCR) assays, we found that
COUP-TFII indeed binds to a previously identified intronic
COUP-TFII-binding site in adipocytes (Fig. 2e)%°. This result
confirms that PGC-1a is likely a direct target of COUP-TFII in
the heart and that the mechanism of action by which COUP-TFII
regulates PGC-Io is conserved among various cell types. In
addition to PGC-lo, COUP-TFII also directly binds to ERRa,

3

© 2015 Macmillan Publishers Limited. All rights reserved.


http://www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9245

o
(1]

Oleate
oxidation

0.6
0.4
0.2

0

a Days post activation

4 916
Cd36
Acsl1
Slc27at
Fabp3
Cpt1b
Cpt2
Milycd
Acads
Acadm
Acadl
Acaavl
Acaa2
Glut4
Hk2
Pfkm
Gpit
Aldoa
Tpil
Gapdh
Pgk1
Enot1
Pdk4
PGC-1a
PGC-1p
ERRu
ERRy
PPARx

gdw™

%

—1

umol min~" gdw™’
©cooo
Thos

Fatty acid
metabolism
S )
S umol min
n
o

umol min~! gdw™ &
)
oo 88
*

Glycolysis

PGC-1a
PGC-1p
ERRo.
ERRy
PPARx

Metabolic
regulators

2

<2<-15 0 >15 >2 O CTRL B OE

Glucose
oxidation

€ Recruitment of COUP-TFII
% of Input

0 0.05 0.1

0.15

Glucose

Fatty acid

Cd36
Acsl1

Slc27a1

Malonyl-CoA

Tl Miycd
Acetyl-CoA

A

Cltrate

Fabp3

Pyruvate

Acyl-CoA

==

Acetyl-CoA

Energy production

Figure 2 | Impaired fuel utilization in COUP-TFII OE ventricles. (a) Relative mRNA levels by gRT-PCR in days 4, 9 and 16 ventricles. N=5 (CTRL)
and 7 (OE). Colour-coded mRNA levels depict relative folds of OE over control hearts. (b-d) Measurement of oleate oxidation (b), glucose oxidation (¢)
and oxygen consumption (d) rates in isolated whole hearts at day 9 via Langendorff preparation. N=5 (CTRL) and 7 (OE). (e) ChIP-gPCR analysis

on day 4 hearts. N =3 for each genotypes. Diagram on the right depicts fuel utilization genes affected by COUP-TFIl OE. Green marks downregulated genes
and red labels upregulated genes in response to increased COUP-TFII expression. Expression of genes with the white background is not altered by
COUP-TFII. *P<0.05; **P<0.01; ***P<0.001 (t-test) between CTRL and OE. Error bars denote the s.e.m.

ERRy and PPARx genes in ChIP assays (Fig. 2e). Collectively, our
results indicate a direct regulatory role of COUP-TFII for these
master metabolic regulators.

Development of mitochondrial dysfunction. We next examine
whether mitochondria are dysfunctional in the OE hearts, based
on downregulation of the expression of many genes that encode
components in complexes I, II, III and IV of the mitochondrial
ETC (Fig. 3a). Transcript analysis further confirmed suppression
of ETC gene expression 9 days post induction of COUP-TFII
expression when the OE hearts are at the early phase of heart
failure (Supplementary Fig. 3a). The effect of altered ETC gene
expression is manifested in the reduction of enzyme activities of
complexes I, I, III and IV in isolated mitochondria of OE
ventricles (Fig. 3b). This defect on ETC enzyme complexes may
generate excessive production of ROS and increase oxidative
stress. In addition, decreased expression of mitochondrial ROS
scavenger gene Sod2 in the OE hearts (Fig. 3a and Supplementary
Fig. 3a) may reduce the ROS detoxifying capacity and contribute
to an increase in ROS levels. In line with this gene expression
profile, higher levels of oxidized proteins were observed in
mitochondria of day 9 OE hearts in the Oxyblot assay (Fig. 3c).
As a result, mitochondrial protein function is compromised in the
OE hearts, as reflected in the reduction of mitochondrial
aconitase activity, which is highly sensitive to oxidative stress
(Fig. 3d). Control experiments carried out in a reduced condition
reveal that, without the impact of oxidation, total aconitase
activities are comparable between CTRL and OE mice, suggesting
excessive oxidation as the primary cause of reduction in enzyme
activities. The consequence of heightened oxidative stress is
manifested in a decreased mitochondrial OCR (Fig. 3e) and a
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lower mitochondrial ATP content (Supplementary Fig. 3b) sug-
gesting a reduction in oxidative phosphorylation capacity and
ATP production in mitochondria of the day 9 OE hearts. Notably,
the number and density of mitochondria are comparable between
OE and CTRL hearts, as indicated by the similar mitochondria
DNA content and volume density (Supplementary Fig. 3c,d,
respectively). It is not surprising that mitochondrial number and
density are not altered in response to decreased PGC-1o. and
PGC-1p levels, because Martin et al alreadY reported similar
observations in adult PGC-Ia/f DKO hearts'!. Perhaps the rate
of mitochondria biogenesis slows down at the adult stage,
rendering the effect of losing PGC-1a/f less pronounced as
compared with the perinatal period where mitochondria rapidly
propagate. Thus, our findings indicate that decreased ATP
production in mitochondria because of increased oxidative
stress, rather than the change of mitochondrial numbers, is one
of the major contributors of the defective energy metabolism
observed in the OE heart.

To confirm that the observed alterations of the mitochondrial
metabolism in the heart are caused by COUP-TFII overexpres-
sion and are not secondary to heart failure, we examine the
expression of COUP-TFII target genes in earlier time point before
onset of heart failure. Day 4 is likely the earliest time point for
induction of COUP-TFII expression subsequent to 3-day
treatment of tamoxifen before the exhibition of defects in the
heart function. As anticipated, echocardiogram results indeed
show no significant difference in ventricular chamber size, wall
thickness and ejection fraction between CTRL and OE hearts
(Supplementary Fig. 3e-g), indicating that day 4 OE hearts are
structurally and functionally comparable to CTRLs. Results of
qRT-PCR analyses on day 4 hearts reaffirm that suppression
of gene expression by COUP-TFII precedes the development of
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Figure 3 | Increased ROS production and compromised mitochondria functions. (a) Expression profile of affected mitochondrial genes in day 16 hearts.
Blue marks downregulated and red depicts upregulated genes. (b-e) Day 9 hearts. (b) Activities of mitochondrial ETC enzymes normalized to citrate
synthase (CS) activities. (¢) Oxyblot analysis on mitochondria protein oxidation status. Hsp60 serves as loading control. (d) Activities of mitochondria
aconitase at native and reduced forms, normalized to total mitochondria protein levels. N=3 for each genotype. (e) Mitochondria oxygen consumption
rates. (fg) Day 4 hearts. (f) Expression levels of key mitochondria ETC and ROS scavenger genes. N=6 (CTRL) and 10 (OE). (g) ChIP-gPCR results of
COUP-TFII binding at genomic loci of ETC and ROS scavenger genes. N =3 for each genotype. RCR, respiratory control ratio. Oligo, effect of oligomycin.
N =3 for each genotypes. *P<0.05; **P<0.01; ***P<0.001 (t-test) between CTRL and OE. Error bars denote the s.e.m.

gross differences between genotypes (Fig. 3f). Moreover, we also
find enhanced recruitment of COUP-TFII to the genomic loci of
Ndufs1, Ndufs6, Ndufaf4, Sdha and Sod2 genes by ChIP assays in
the day 4 OE hearts (Fig. 3g), corroborating the notion that
COUP-TFII is likely to directly regulate the expression of these
genes. Importantly, the mitochondrial respiration rate is also
lower in day 4 OE hearts than that of CTRLs (Supplementary
Fig. 3h), consistent with the COUP-TFII-dependent changes of
gene expression. Taken together, our data demonstrate that
regulation of mitochondrial gene expression and function by
COUP-TFII occurs at the time when OE hearts are structurally
and functionally similar to the CTRL hearts. These findings are
indicative of the facts that dysregulation of mitochondrial
function in the OE mice is a result of COUP-TFII signalling
rather than a secondary consequence of heart failure.
Interestingly, we found that mitochondria of day 9 OE hearts
exhibit a roundish shape with reduced electron density and
increased distance between cristae (Fig. 4a), suggesting an
accumulation of unhealthy mitochondria. Consistent with the
morphological findings, we observed a reduction in the expres-
sion of key mitochondrial dynamics genes in OE hearts, including
PinkI for removal of damaged mitochondria and Opal, Mfnl and
Mfn2 for fusion and regeneration of healthy mitochondria
(Fig. 4b and Supplementary Fig. 4a), whereas no changes were
seen in the expression of fission genes Fisl, Mff and Dnmll
(Supplementary Fig. 4a). Furthermore, protein levels of Pinkl,
Minl and Mfn2 were reduced in isolated cardiomyocytes of OE
hearts at the early failing stage (day 9, Supplementary Fig. 4b),
indicating that COUP-TFII may directly control the expression of
these genes. The reduced expression of Pinkl and Mfn2, two
of three major members of the mitochondrial quality control

pathway?>?4, in the OE hearts may disrupt the mitochondrial

dynamics and contribute to the accumulation of damaged
mitochondria as seen in the electron micrograph (Fig. 4a).
Collectively, these findings suggest that increased COUP-TFII
perturbs mitochondrial homeostasis through suppressing the
expression of mitochondrial dynamics genes.

Results from ChIP-qPCR assays further reveal in vivo binding
of COUP-TFII on genomic loci of the mitochondrial dynamics
genes Pinkl, Opal and Mfn2 of adult hearts (Fig. 4c), suggesting
that these genes are direct targets of COUP-TFII. Next, we used a
conserved COUP-TFII-binding site of the Pinkl gene as an
example to demonstrate direct regulation of Pinkl by COUP-TFII
through these cis-acting elements. This COUP-TFII-binding site
is located between 93 and 105 base pairs upstream of the
transcription start site, within a stretch of highly conserved
nucleotides between human and mouse. This site is surrounded
by open chromatin as evident by the high DNasel sensitivity
(Fig. 4d). A stretch of conserved nucleotides from this region that
contain the wild-type (Pinkl_ WT) or mutant (Pinkl_mu)
COUP-TFII-binding sites was cloned in front of a TATA-
promoter-driven luciferase reporter for luciferase assay in C2C12
cells. The COUP-TFII-binding site shows reduced reporter
activities compared with that of the mutant site (Fig. 4e),
suggesting a repressive role in the regulation of Pinkl gene
expression. Taken together, the results indicate that binding
of COUP-TFII at genomic loci represses expression of
mitochondrial dynamics genes.

The COUP-TFII regulatory network in human. The pivotal role
of COUP-TFII in regulation of mitochondrial and metabolic
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Figure 4 | Defects in mitochondrial dynamics. (a) Representative electron micrographs of day 9 ventricles from denoted genotypes. Scale bars,

0.5 um. (b) Relative mRNA levels of major mitochondria dynamics genes in day 9 isolated cardiomyocytes. N=3 for each genotypes. (¢) ChIP-gPCR
results of COUP-TFII binding at genomic loci of mitochondria dynamic genes. N =3 for each genotype. (d) Diagram of an enriched COUP-TFII-binding
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browser, mm9), and a conserved COUP-TFIl-binding sequence are shown. (e) Luciferase reporter analysis illustrates relative activities of wild-type (WT)
and mutant (mu) COUP-TFII-binding sites in C2C12 cells. *P<0.05; **P<0.01; ***P<0.001 (t-Test) between CTRL and OE. Error bars denote the s.e.m.

genes observed in mice, here, also occurs in human, as supported
by publicly available data from patient specimens (Fig. 5).
COUP-TFII activity was scored and ranked in RNA profiles
of 102 human ventricles (GSE5406) based on the mouse
COUP-TFII gene signature (Fig. 5, top panel). A higher
COUP-TFII signature indicates a stronger COUP-TFII activity in
a sample. We first observed a positive and significant correlation
between COUP-TFII levels and activities in these human samples
(Fig. 5). This result supports the notion that the COUP-TFII
regulatory network identified in mice also operates in the human
heart. In addition, there is a positive correlation between
COUP-TFII activity and levels of a cardiac stress marker Nppb
(Fig. 5), suggesting that increased COUP-TFII signalling may be
associated with cardiac stress in human hearts, consistent with
what we observed in multiple mouse models.

By comparing COUP-TFII activities and the expression levels
of genes of interest, we found significant and inverse correlations
between COUP-TFII activities and levels of many mitochondrial
genes that encode ETC enzymes, including 23 complex I, 4
complex II and 6 complex III genes (Fig. 5). Moreover, levels of
mitochondrial dynamics genes MEN2, OPAI and PINKI are also
negatively correlated with COUP-TFII activities (Fig. 5). These
findings are consistent with an essential role of COUP-TFII in
suppression of mitochondrial functions and homeostasis in
patients.

Similarly, inverse correlations were found between COUP-TFII
activities and levels of energy metabolic genes, including fatty acid
catabolic genes FABP3, MLYCD, ACADVL, ACADM, ACADS
and ACAA2, glucose metabolic genes SLC2A4, PFKM, LDHB and

PDK2, and major metabolic regulators ERRx, ERRy and PPARo
(Fig. 5). The compensatory effect of increasing expression of the
glycolytic gene ENOI is also observed in the human heart (Fig. 5),
further supporting the presence of a conserved regulatory
mechanism for cardiac metabolism. In summary, expression of
energy metabolism genes is suppressed when COUP-TFII levels
are elevated in the human hearts.

COUP-TFII reduction attenuates disease progression. The
calcineurin transgenic mice develop DCM?® and expression of
COUP-TFII is elevated in these mice (Supplementary Fig. 1b,c).
We therefore utilized this model to test whether reducing
COUP-TFII dosage ameliorates disease progression. The
COUP-TFII floxed and Myh6-MerCreMer alleles were bred into
the CnTg background to allow genetic removal of one copy of the
COUP-TFII gene in cardiomyocytes in 7-week-old animals
through tamoxifen-induced, cre recombinase-mediated gene
excision (Fig. 6a). The majority of mice carrying the calcineurin
transgene in a COUP-TFII'¥* background (CnTg COUP-
TFIP™¥+, CnTg/F*) exhibit an accelerated rate of sudden death
after 12 weeks of age, when compared with mice of CTRL groups
COUP-TFIF'*¥+ (F*) and Myh6-MerCreMer; COUP-TFIFo¥/+
(Cre/F ™) shown in Fig. 6b. Removing one copy of the COUP-TFII
gene in cardiomyocytes in the calcineurin transgenic background
(CnTg  Myh6-MerCreMer; COUP-TFIF¥+ " CnTg/Cre/F*)
substantially reduces COUP-TFII protein levels (Supplementary
Fig. 5a) and leads to an increase in overall survival rate when
compared with the CnTg/F™ group over a 20-week period
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Figure 5 | A COUP-TFIl-dependent regulatory network in human heart
samples. (Top panel) Expression array data of 86 failing and 16 non-failing
human left ventricular myocardium from GSE5406, for genes in a
transcriptional signature of COUP-TFII, with samples ordered based on
manifestation of the signature. (Bottom panel) Heat map shows levels of
genes of interest in individual samples corresponding to the order in the top
panel. Direction and statistical significance of correlation between
expression of genes of interest and COUP-TFII signature are noted at side.
Red denotes positive correlation (P<0.05, Pearson’s) and blue denotes
negative correlation.

(Fig. 6b). This demonstrates that lowering COUP-TFII dosage
prolongs survival under intense cardiac stress.
Echocardiography imaging before the removal of one copy of
COUP-TFII (6 weeks old) and post-removal (12 weeks old) was
performed to examine structural and functional alterations of the
heart. The choice of the 12-week time point is based on previous
observations that CnTg mice exhibited DCM by 12 weeks?>, and
that the transient cardiac effect exerted by tamoxifen diminished
1 month after treatment?®. Mice carrying the calcineurin
transgene already developed eccentric hypertrophy at 6 weeks,
before the treatment (Supplementary Fig. 5b,c), consistent with
previous findings®>>. Both CnTg/F™ and CnTg/Cre/E* mice
exhibit thicker left ventricular walls (Supplementary Fig. 5b) and
increased left ventricular interior dimensions (Supplementary
Fig. 5¢c), when compared with corresponding F* and Cre/F™

CTRL groups, respectively. At 12 weeks of age, the CnTg/F*
mice develop DCM, exhibiting a greatly increased inner chamber
size (Fig. 6¢) and reduced RWT (Fig. 6d), compared with CTRL
groups of the same age or within the group at age of 6 weeks
(Fig. 6¢,d and Supplementary Fig. 5¢). In contrast, removal of an
allele of COUP-TFII in CnTg/Cre/F™ mice partially suppresses
the dilation (Fig. 6c), and they maintain RWT levels similar to
that of 6-week-old mice (Fig. 6d). This result suggests that hearts
of calcineurin transgenic mice in which one copy of COUP-TFII is
removed are still able to compensate for stress via a hypertrophic
response rather than progressing towards DCM. However,
removal of just one copy of COUP-TFII failed to rescue the
declining contractility (Supplementary Fig. 5d). Taken together,
our results indicate that reducing COUP-TFII dosage is able to
improve survival rates in stressed hearts by partially attenuating
the disease progression towards DCM.

Discussion

Hearts of DCM exhibit mitochondrial dysfunction®?’, which are
proposed to increase oxidative stress, compromise high-energy
phosphate production and eventually lead to contractile
dysfunction!. Normally, oxidative phosphorylation produces
ROS as a by-product, which are removed by endogenous
antioxidants in healthy mitochondria. However, dysfunctional
mitochondria may generate excessive ROS to trigger and augment
cellular oxidative stress, and lead to pathogenesis of heart
failure®?®%°, In the present study, we found that adult hearts
with elevated COUP-TFII levels produce excessive ROS in the
mitochondria. The excessive ROS inflict damages on
mitochondria, as evidenced by structural abnormality, decreased
activities of oxidation-sensitive aconitase and reduced OCRs,
eventually leading to contractility reduction and chamber
dilation. Our findings are in line with previous studies that
demonstrate the key role of excessive mitochondrial ROS
production in the development of cardiac dysfunction. For
example, increasing ROS levels by knocking out Sod2, a principal
ROS scavenger located in mitochondrial matrix, leads to heart
failure®. Conversely, normalizing mitochondrial ROS levels
by administering synthetic Szeto-Schiller peptide SS-31 or
mitochondrial targeted catalase in hearts ameliorates stress-
induced cardiac dysfunction®!*2. Thus, our study links increased
COUP-TFII expression, as observed in a subset of DCM patients,
to excessive ROS production in adult hearts.

Functioning as a transcription factor, COUP-TFII regulates
multiple genes that control mitochondrial ROS levels. COUP-
TFII represses expression of many ETC genes in both direct and
indirect manners, resulting in decreased activities of ETC enzyme
complexes. Modifications of ETC complexes have been shown to
disturb electron transportation along the ETC and divert
electrons to oxygen for excess ROS production®**34, Therefore,
our findings suggest that COUP-TFII-mediated ETC defects
promote ROS production. At the same time, COUP-TFII
overexpression also compromises the endogenous antioxidant
capacity by directly repressing the Sod2 gene. Collectively, the
increased oxidative stress observed in COUP-TFII overexpression
hearts is likely the result of the combined effect of increased ROS
production and decreased ROS detoxification.

Mitochondrial dynamics emerge as an important mechanism
in maintaining normal cardiac function by revitalizing mito-
chondria®®. The phenotypic resemblance between COUP-TFII
OE and Mfnl/Mfn2 DKO mice® suggests that mitochondrial
fusion defects may be an important player in COUP-TFII-
induced heart failure. The faster development of aberrant
mitochondrial morphology in COUP-TFII OE as compared
with Mfn1/Mfn2 DKO mice (16 days versus 3 weeks, respectively)
further suggests that other players may also contribute to our
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phenotype. The reduced expression of mitochondrial inner
membrane fusion gene Opal in the OE hearts could be part of
the explanation, as Opal deficiency confers a mitochondrial
dysfunction phenotype as strong as the combined deficiency
of Mfnl and Mfn2 in MEF cells*®. In addition, increased COUP-
TFII may impair mitochondrial quality control that depends on
the Pink1-Mfn2 pathway?*%’. Previous studies show that loss of
Pinkl or Mfn2 results in mitochondrial dysfunction, increased
ROS production and cardiomyopathy?#383° Thus, the reduced
levels of Pinkl and Mfn2 in the OE hearts might lead to
pathological accumulation of damaged mitochondria that further
contribute to the increase of ROS production.

Transcriptional regulation of mitochondrial ETC genes by the
PGC-1 network has been previously reported!%-13 and our results
place COUP-TFII upstream of this network. Importantly, we now
show that COUP-TFII can directly modulate expression of key
ETC genes, indicating that COUP-TFII utilizes two layers
of regulating mechanisms to control the essential machinery
for oxidative phosphorylation. These COUP-TFII-dependent
regulatory mechanisms find further support in the analyses of
human specimens, in which COUP-TFII activities inversely
correlate with mRNA levels of multiple ETC genes as well as
ERRu, ERRy and PPARo, whereas failing hearts exhibit higher
COUP-TFII and lower PGC-1/ERR activities*. Notably, PGC-1o
has been shown to serve as an upstream regulator in promoting
Sod2 expression!, and is negatively regulated by COUP-TFII in
the hearts. These findings suggest that COUP-TFII may also
compromise the ROS detoxifying system through suppressing the
PGC-1a-Sod2 pathway.

Impaired cardiac energy homeostasis is a salient feature of
heart failure*?. In response to a variety of stresses, hearts
switch fuel substrate preference from fatty acids to carbohydrates
and its proposed mechanism is alteration of expression of cardiac

8

metabolic genes?>*4, Emerging evidence reveals that failing hearts
suffer impairment in this substrate selection flexibility’**>~47. In
our mouse model, increased COUP-TFII reduced fatty acid
oxidation and reduced glucose usage. This phenotype may be
attributed to repressed expression of the PGC-1 network genes
and key glucose utilization genes Glut4, Hk2 and Pfkm by
COUP-TFIIL. Collectively, our COUP-TFII OE mice exhibit a
cardiac metabolic phenotype that resembles loss of flexibility of
substrate selection in advanced DCM. We propose that alteration
of expression of key genes for both fatty acid and glucose
metabolism by COUP-TFII underlies the development of the
metabolic inflexibility.

In summary, our data indicate that overexpression of COUP-
TFII in hearts results in defects in ETC, accumulation of damaged
mitochondria and reduced mitochondrial ROS scavenging
capacity. All these defects result in the accumulation of oxidative
stress and eventually lead to heart failure. Importantly, alterations
of gene expression are already observed at day 4 when OE and
CTRL hearts are structurally and functionally similar to
each other. Therefore, the observable phenotypes are due to
COUP-TFII, not secondary to heart failure.

Methods

Animals. Mice carried CAG-S-COUP-TFII allele and COUP-TFII flox allele were
described previously!4#3, The cardiomyocyte-specific, tamoxifen inducible cre
driver Myh6-MerCreMer (Myh6-MCM)" and calcineurin transgenic mice
Tg(Myh6-Ppp3ca)®> were acquired from the Jackson Laboratory (Stock number
009075). All animals used here are male and are between 2 and 4 months old unless
otherwise indicated. All animal experiments adhered to the Guidelines of the
Institutional Animal Care and Use Committee of the Baylor College of Medicine
and were conducted within the scope of approved animal protocols.

qRT-PCR. Reverse transcription reactions were carried out using the Transcriptor
First Strand cDNA Synthesis kit (Roche, 04379012001) to make cDNA according
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to the manufacturer’s guide. Quantitative PCR (qQPCR) analysis was performed on
Applied Biosystems StepOnePlus using the FastStart Universal SYBR Green Master
Mix (Roche, 04913850001) or the Tagman Universal master Mix II (Invitrogen,
4440040). Each cycle of the gPCR consists of 95 °C, 15, for denaturing and 60 °C,
60 s, for annealing and extension with total 40 cycles performed. Primer sequences
are included in Supplementary Table 1.

Antibodies. Anti-COUP-TFII antibodies are purchased from Perseus Proteomics
(H7147, 1:2,000 dilution) or from Cell Signaling (#6434, 1:1,000 dilution). The
Pinkl antibody is from Abcam (ab23707, 1:1,000 dilution). The Mfn1 antibody is
from Abcam (ab57602, 1:500 dilution). The Mfn2 antibody is from Abcam
(ab56889, 1:500 dilution). The Hsp60 antibody is from BD Transduction (#611563,
1:5,000 dilution).

Cell line. C2C12 (ATCC CRL-1772) are acquired from American Type Culture
Collection.

Expression array analysis. Whole ventricles were collected from 2-month-old
animals comprising three Myh6-MCM and three Myh6-MCM; CAG-S-COUP-TFII
mice. RNA extraction was performed using Trizol and Qiagen RNeasy according to
the manufacturer’s guides. Affymetrix mouse genome 430 2.0 chips were used in
this study. The BCM Genomic and RNA Profiling Core Lab performed the probe
generation and subsequent microarray hybridization on Affymetrix mouse genome
430 2.0 chips. Acquired raw data were first processed by the GeneSpring GX
software using RMA as the summarization algorithm, Quantile for normalization
and median of all samples for baseline transformation. The resulting entity list was
filtered on expression (50.0-35272.484) in raw data followed by statistical analysis
using one-way analysis of variance with corrected P value cutoff at 0.05, asymptotic
for P value computation and Benjamini-Hochberg for multiple testing correction.
Calculated against the CTRL atria group, entities from the mutant atria and
CTRL ventricles having absolute fold change greater than 1.2 were considered
differentially expressed. The entity lists were subsequently annotated using
Affymetrix annotation and analysed by Ingenuity Pathways Analysis (Ingenuity
Systems). The NCBI accession number for the expression array study reported in
this paper is GSE63759.

The publicly available human array data sets GSE1869 and GSE5406 were
scored for manifestation of the mouse model-derived COUP-TFII gene signature,
using published methods*. A gene signature score (also known as a ‘t-score’) was
defined for each external profile as the two-sided t-statistic comparing, within the
profile, the average of the COUP-TFII-induced genes with the average of the
COUP-TFII-repressed genes. In this way, the t-score contrasted the patterns of the
‘COUP-TFII-induced’ genes against those of the ‘COUP-TFII-repressed’ genes,
could be used to derive a single value denoting coordinate expression of the two
gene sets. Where multiple probes in GSE5406 referred to the same gene, the probes
with the highest variation was taken to represent the gene; genes were then centred
to standard deviations from the median across samgle profiles. Expression patterns
were visualized as heat maps using Java TreeView". We analysed data from
non-ischaemic failing hearts primarily because of the scope of the present study.
For GSE1869, we used data from 6 ‘nonfailing’ and 13 ‘Nonischemic, Pre-LVAD
Patient group’ hearts for analysis. We exclude the ‘Nonischemic, No-LVAD Patient
group’ because the expression profile of this group exhibits similar pattern with the
nonfailing group!®. For GSE5406, we used data from 16 ‘human nonfailing
LV myocardium’ samples and 86 ‘human failing LV myocardium, Idiopathic’
specimens for analysis.

Mitochondrial respiration assay. XF24 extracellular flux analyzer from Seahorse
Biosciences was used to measure the rates of oxygen consumption. Mitochondria
were isolated from appropriate tissue by homogenization in mitochondrial
isolation buffer using a Dounce homogenizer (Kontes) filtered through cheesecloth,
and centrifuged at 1,500 g, then 9,000 g. XF24 cartridge was equilibrated with the
calibration solution overnight at 37 °C. XF assay buffer (70 mM sucrose, 220 mM
mannitol, 10 mM KH,PO,, 5mM MgCl,, 2mM HEPES, 1 mM EGTA, 0.2% BSA,
10 mM pyruvate and 5mM malate) was prepared and pH adjusted to 7.2 on the
day of the experiment. XF assay buffer was used to prepare mitochondrial assay
reagents, 2.5mM ADP, 2 uM oligomycin, 4 uM FCCP, 4 pM antimycin (final
concentration). All the reagents were loaded in the ports as suggested by Seahorse
Biosciences. OCRs were measured for 4 min with 30s of mixing and expressed as
pmol min ~ L,

ETC activity assay. For enzymatic assays of respiratory chain complexes I-IV,
sufficient amount of tissue or cells were collected. Potassium phosphate buffer
(25 mM, pH 7.5) was added to a final volume of 300 pl and the samples were
sonicated (5s pulse x4, 60% power) using a Microson XL2000 Ultrasonic Cell
Disruptor (Misonix). For experiments on isolated mitochondria, the mitochondria
were also disrupted by sonication as described above. The spectrophotometric
kinetic assays were performed at 30 °C in a volume of 175 pl using a
monochromator microplate reader (Tecan M200). Complex I activity
(NADH:ubiquinone oxidoreductase) was determined by measuring oxidation of

NADH at 340 nm (using ferricyanide as the electron acceptor) in a reaction
mixture of 25mM potassium phosphate (pH 7.5), 0.2 mM NADH and 1.7 mM
potassium ferricyanide. Complex II activity (succinate dehydrogenase) was
determined by measuring the reduction of the artificial electron acceptor
2,6-dichlorophenol-indophenol at 600 nm in a reaction mixture of 25 mM
potassium phosphate (pH 7.5), 20 mM succinate, 0.5 mM 2,6-dichlorophenol-
indophenol, 10 uM rotenone, 2 pgml ~ ! antimycin A and 2mM potassium
cyanide. Complex III activity (Ubiquinol/cytochrome ¢ oxidoreductase) was
determined by measuring the reduction of cytochrome ¢ at 550 nm in a reaction
mixture of 25 mM potassium phosphate (pH 7.5), 35 uM reduced decylubiquinone,
15 uM cytochrome ¢, 10 uM rotenone and 2 mM potassium cyanide. Complex IV
activity (cytochrome ¢ oxidase) was determined by measuring the oxidation of
cytochrome ¢ at 550 nm in a reaction mixture of 10 mM potassium phosphate
(pH 7.5) and 0.1 mM reduced cytochrome c. Citrate synthase activity was
determined by measuring the reduction of 5,5-dithiobis(2-nitrobenzoic acid) at
412 nm, which is coupled to the reduction of acetyl-CoA by citrate synthase in the
presence of oxaloacetate. The reaction mixture consists of 10 mM potassium
phosphate (pH 7.5), 100 uM 5,5’-dithiobis(2-nitrobenzoic acid), 50 pM acetyl-CoA
and 250 uM oxaloacetate. All activities were calculated as nmol min ~! per mg
protein, and expressed as a percentage of control activity. Experiments were
performed on six independent samples for each genotype.

Aconitase assay. The activity of mitochondrial aconitase was measured on the
basis of conversion of citrate into a-ketoglutarate coupled with NADP reduction
(Sigma) and was normalized for total protein. Activity was measured in the native
state and after ‘reactivation’ by incubating mitochondria in ferrous ammonium
sulfate for 5min before performing the assay.

Echocardiogram. For transthoracic echocardiography, mice were anaesthetized
using 2% isoflurane in 95% O,. Body temperature was maintained on a heated

platform, and electrocardiogram and temperature were continuously monitored.
Cardiac function was assessed using a VisualSonics VeVo 770 Imaging System

(VisualSonics) equipped with high-frequency 30 MHz probe.

Transaortic constriction. The TAC surgery was performed as described”! on adult
CD1 mice (strain code: 022, Charles River) of 8-10 weeks of age and between 20
and 25 g of weight. Mice were anaesthetized with isoflurane (2-3%, inhalation) in
an induction chamber and then intubated with a 20-G intravenous catheter and
ventilated with a mouse ventilator (Minivent, Harvard Apparatus, Inc).
Anaesthesia was maintained with inhaled isoflurane (1-2%). A longitudinal 5-mm
incision of the skin was made with scissors at midline of sternum. The chest cavity
was opened by a small incision at the level of the second intercostal space 2-3 mm
from the left sternal border. While opening the chest wall, the chest retractor was
gently inserted to spread the wound 4-5mm in width. The transverse portion of
the aorta was bluntly dissected with curved forceps. Then, 6-0 silk was brought
underneath the transverse aorta between the left common carotid artery and the
brachiocephalic trunk. One 26-G needle was placed directly above and parallel to
the aorta. The loop was then tied around the aorta and needle, and secured with a
second knot. The needle was immediately removed to create a lumen with a fixed
stenotic diameter. The chest cavity was closed by 6-0 silk suture. Sham-operated
mice underwent similar surgical procedures, including isolation of the aorta,
looping of aorta, but without tying of the suture. The pressure load caused by TAC
was verified by the pressure gradient across the aortic constriction measured by
echocardiography. Only mice with a pressure gradient > 35 mm Hg were analysed
for cardiac hypertrophy, echocardiography and gene analysis.

Ex vivo cardiac metabolic analyses. Mice were anaesthetized with chloral hydrate
(400 mgkg ~1) and anticoagulated with heparin (501U, i.v.). Hearts were rapidly
excised, arrested in ice-cold Krebs-Henseleit buffer, and mounted on a
Langendorff apparatus. Hearts were then perfused retrogradely at an afterload

of 80 cm H,0O with non-recirculating Krebs-Henseleit buffer containing glucose
(5mmol1~ 1), sodium oleate (0.4 mmoll~!) bound to bovine serum albumin
(Probumin, EMD Millipore), [9,3-*H]oleate (0.2 pCiml~ 1), [V-14C]glucose

(0.1 pCiml ~!) and insulin (40 pUml~ % Eli Lilly and Company). The
Krebs-Henseleit buffer was equilibrated with 95% 0,-5% CO? and maintained at a
constant temperature of 37 °C. After an initial 30 min stabilization, rates of oleate
and glucose oxidation were determined by quantitative collection of [*H],0

and [!*C]O, from the coronary effluent as previously reported®. Myocardial
oxygen consumption (MVO,; pmol min ~1) was calculated by measuring the
arterio-venous O, content difference with an YSI 5300A biological oxygen monitor.

ChIP assay. ChIP analysis of fresh cardiac tissues was performed according to a
protocol published in the Nature Protocols>>. Chromatin DNA complexes were
collected from mouse ventricles. The mouse monoclonal anti-FLAG antibody M2
(Sigma F1804) was used for the ChIP assay. DNA released from the precipitation
was subjected to qPCR analysis for quantification of the presence of specific loci.
qPCR analysis was performed on Applied Biosystems StepOnePlus using the
FastStart Universal SYBR Green Master Mix (Roche, 04913850001). Each cycle of
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the gPCR consists of 95 °C, 15, for denaturing and 60 °C, 60s, for annealing and
extension performed with total 40 cycles. Primer sequences are included in
Supplementary Table 1.

Oxyblot assay. The Oxyblot assay was perform on freshly isolated mitochondria
from ventricles by using the Oxyblot protein oxidation kit from Millipore (S7150)
according to the manufacturer’s guide.

Measurement of ATP content. ATP contents of isolated mitochondria were
assessed by the ATPlite kit from Perkin Elmer (6016943) according to the
manufacturer’s instruction, and normalized with protein contents.

Statistical tests. Two-tailed t-test is used for statistical analyses unless otherwise
indicated.

References

1.

1

(=1

1

—

12.

1

W

14.

15.

1

(=2}

17.

1

el

19.

20.

2

—

22.

23.

24.

Doenst, T., Nguyen, T. D. & Abel, E. D. Cardiac metabolism in heart failure:
implications beyond ATP production. Circ. Res. 113, 709-724 (2013).

Beer, M. et al. Absolute concentrations of high-energy phosphate metabolites in
normal, hypertrophied, and failing human myocardium measured
noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J. Am.
Coll. Cardiol. 40, 1267-1274 (2002).

Ke, B. X. et al. Tissue-specific splicing of an Ndufs6 gene-trap insertion
generates a mitochondrial complex I deficiency-specific cardiomyopathy. Proc.
Natl Acad. Sci. USA 109, 6165-6170 (2012).

Scheubel, R. J. et al. Dysfunction of mitochondrial respiratory chain complex I
in human failing myocardium is not due to disturbed mitochondrial gene
expression. J. Am. Coll. Cardiol. 40, 2174-2181 (2002).

Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J.
417, 1-13 (2009).

Ide, T. et al. Mitochondrial electron transport complex I is a potential source of
oxygen free radicals in the failing myocardium. Circ. Res. 85, 357-363 (1999).
Tsutsui, H., Kinugawa, S. & Matsushima, S. Oxidative stress and heart failure.
Am. ]. Physiol. Heart Circ. Physiol. 301, H2181-H2190 (2011).

Chen, Y., Liu, Y. & Dorn, 2nd G. W. Mitochondrial fusion is essential for
organelle function and cardiac homeostasis. Circ. Res. 109, 1327-1331 (2011).
Taegtmeyer, H., Golfman, L., Sharma, S., Razeghi, P. & van Arsdall, M. Linking
gene expression to function: metabolic flexibility in the normal and diseased
heart. Ann. N. Y. Acad. Sci. 1015, 202-213 (2004).

. Eichner, L. J. & Giguere, V. Estrogen related receptors (ERRs): a new dawn in

transcriptional control of mitochondrial gene networks. Mitochondrion 11,
544-552 (2011).

. Martin, O. J. et al. A role for peroxisome proliferator-activated receptor gamma

coactivator-1 in the control of mitochondrial dynamics during postnatal
cardiac growth. Circ. Res. 114, 626-636 (2014).

Riehle, C. et al. PGC-1{beta} deficiency accelerates the transition to heart failure
in pressure overload hypertrophy. Circ. Res. 109, 783-793 (2011).

. Schilling, J. & Kelly, D. P. The PGC-1 cascade as a therapeutic target for heart

failure. J. Mol. Cell. Cardiol. 51, 578-583 (2010).

Wu, S. P. et al. Atrial identity is determined by a COUP-TFII regulatory
network. Dev. Cell 25, 417-426 (2013).

Barth, A. S. et al. Functional profiling of human atrial and ventricular gene
expression. Pflugers Arch. 450, 201-208 (2005).

. Kittleson, M. M. et al. Gene expression analysis of ischemic and nonischemic

cardiomyopathy: shared and distinct genes in the development of heart failure.
Physiol. Genomics 21, 299-307 (2005).

Sack, M. N,, Disch, D. L., Rockman, H. A. & Kelly, D. P. A role for Sp and
nuclear receptor transcription factors in a cardiac hypertrophic growth
program. Proc. Natl Acad. Sci. USA 94, 6438-6443 (1997).

. Hannenhalli, S. et al. Transcriptional genomics associates FOX transcription

factors with human heart failure. Circulation 114, 1269-1276 (2006).

Sohal, D. S. et al. Temporally regulated and tissue-specific gene manipulations
in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ.
Res. 89, 20-25 (2001).

Li, L. et al. The nuclear orphan receptor COUP-TFII plays an essential role in
adipogenesis, glucose homeostasis, and energy metabolism. Cell Metab. 9,
77-87 (2009).

. Dufour, C. R. et al. Genome-wide orchestration of cardiac functions by the

orphan nuclear receptors ERRalpha and gamma. Cell Metab. 5, 345-356
(2007).

Smeets, P. J. et al. Transcriptomic analysis of PPARalpha-dependent alterations
during cardiac hypertrophy. Physiol. Genomics 36, 15-23 (2008).

Ashrafi, G. & Schwarz, T. L. The pathways of mitophagy for quality control and
clearance of mitochondria. Cell Death Differ. 20, 31-42 (2013).

Chen, Y. & Dorn, 2nd G. W. PINK1-phosphorylated mitofusin 2 is a Parkin
receptor for culling damaged mitochondria. Science 340, 471-475 (2013).

25. Molkentin, J. D. et al. A calcineurin-dependent transcriptional pathway for
cardiac hypertrophy. Cell 93, 215-228 (1998).

26. Koitabashi, N. et al. Avoidance of transient cardiomyopathy in cardiomyocyte-
targeted tamoxifen-induced MerCreMer gene deletion models. Circ. Res. 105,
12-15 (2009).

27. Jarreta, D. et al. Mitochondrial function in heart muscle from patients with
idiopathic dilated cardiomyopathy. Cardiovasc. Res. 45, 860-865 (2000).

28. Burgoyne, J. R., Mongue-Din, H., Eaton, P. & Shah, A. M. Redox signaling in
cardiac physiology and pathology. Circ. Res. 111, 1091-1106 (2012).

29. Maack, C. & Bohm, M. Targeting mitochondrial oxidative stress in heart failure
throttling the afterburner. . Am. Coll. Cardiol. 58, 83-86 (2011).

30. Nojiri, H. et al. Oxidative stress causes heart failure with impaired
mitochondrial respiration. J. Biol. Chem. 281, 33789-33801 (2006).

31. Dai, D. F. et al. Mitochondrial targeted antioxidant Peptide ameliorates
hypertensive cardiomyopathy. J. Am. Coll. Cardiol. 58, 73-82 (2011).

32. Song, M. et al. Super-suppression of mitochondrial reactive oxygen species
signaling impairs compensatory autophagy in primary mitophagic
cardiomyopathy. Circ. Res. 115, 348-353 (2014).

33. Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell
120, 483-495 (2005).

34. Van Vranken, J. G. et al. SDHAF4 promotes mitochondrial succinate
dehydrogenase activity and prevents neurodegeneration. Cell Metab. 20,
241-252 (2014).

35. Dorn, G. W. & Kitsis, R. N. The mitochondrial dynamism-mitophagy-cell
death interactome: multiple roles performed by members of a mitochondrial
molecular ensemble. Circ. Res. 116, 167-182 (2014).

36. Chen, H.,, Chomyn, A. & Chan, D. C. Disruption of fusion results in
mitochondrial heterogeneity and dysfunction. J. Biol. Chem. 280, 26185-26192
(2005).

37. McLelland, G. L., Soubannier, V., Chen, C. X,, McBride, H. M. & Fon, E. A.
Parkin and PINKI function in a vesicular trafficking pathway regulating
mitochondrial quality control. EMBO J. 33, 282-295 (2014).

38. Bhandari, P., Song, M., Chen, Y., Burelle, Y. & Dorn, 2nd G. W. Mitochondrial
contagion induced by Parkin deficiency in Drosophila hearts and its
containment by suppressing mitofusin. Circ. Res. 114, 257-265 (2014).

39. Billia, F. et al. PTEN-inducible kinase 1 (PINK1)/Parké is indispensable for
normal heart function. Proc. Natl Acad. Sci. USA 108, 9572-9577 (2011).

40. Sihag, S., Cresci, S., Li, A. Y., Sucharov, C. C. & Lehman, J. . PGC-1alpha and
ERRalpha target gene downregulation is a signature of the failing human heart.
J. Mol. Cell. Cardiol. 46, 201-212 (2009).

41. St-Pierre, J. et al. Suppression of reactive oxygen species and neurodegeneration
by the PGC-1 transcriptional coactivators. Cell 127, 397-408 (2006).

42. Razeghi, P. et al. Downregulation of metabolic gene expression in failing
human heart before and after mechanical unloading. Cardiology 97, 203-209
(2002).

43. Taegtmeyer, H., Hems, R. & Krebs, H. A. Utilization of energy-providing
substrates in the isolated working rat heart. Biochem. J. 186, 701-711 (1980).

44. Taegtmeyer, H., Sen, S. & Vela, D. Return to the fetal gene program: a suggested
metabolic link to gene expression in the heart. Ann. N. Y. Acad. Sci. 1188,
191-198 (2010).

45. Taegtmeyer, H., Wilson, C. R, Razeghi, P. & Sharma, S. Metabolic energetics
and genetics in the heart. Ann. N. Y. Acad. Sci. 1047, 208-218 (2005).

46. Kadkhodayan, A., Coggan, A. R. & Peterson, L. R. A ‘PET’ area of interest:
myocardial metabolism in human systolic heart failure. Heart Fail. Rev. 18,
567-574 (2013).

47. Neglia, D. et al. Impaired myocardial metabolic reserve and substrate selection
flexibility during stress in patients with idiopathic dilated cardiomyopathy. Am.
J. Physiol. Heart Circ. Physiol. 293, H3270-H3278 (2007).

48. Takamoto, N. et al. COUP-TFII is essential for radial and anteroposterior
patterning of the stomach. Development 132, 2179-2189 (2005).

49. Qin, J. et al. COUP-TFII inhibits TGF-beta-induced growth barrier to promote
prostate tumorigenesis. Nature 493, 236-240 (2013).

50. Saldanha, A. J. Java Treeview--extensible visualization of microarray data.
Bioinformatics 20, 3246-3248 (2004).

51. Hang, C. T. et al. Chromatin regulation by Brgl underlies heart muscle
development and disease. Nature 466, 62-67 (2010).

52. Goodwin, G. W., Ahmad, F., Doenst, T. & Taegtmeyer, H. Energy provision
from glycogen, glucose, and fatty acids on adrenergic stimulation of isolated
working rat hearts. Am. J. Physiol. 274, H1239-H1247 (1998).

53. Lee, T. L, Johnstone, S. E. & Young, R. A. Chromatin immunoprecipitation and
microarray-based analysis of protein location. Nat. Protoc. 1, 729-748 (2006).

Acknowledgements

We thank the Mouse Phenotyping Core Lab of Baylor College of Medicine for the
gracious support on cardiac imaging and data analysis. We also express appreciation to
Ms Guannu Xu, Pei Li, Wen Chen and Lita Duraine for technical support. We also thank
the Baylor Microarray Core supported by DERC center (P30 DK079638) and Duncan
Cancer Center for microarray analysis. We also thank Baylor Genetically Engineered

| 6:8245| DOI: 10.1038/ncomms9245 | www.nature.com/naturecommunications

© 2015 Macmillan Publishers Limited. All rights reserved.


http://www.nature.com/naturecommunications

ARTICLE

Mouse Core for the service of mouse generation. This work was supported by grants
from NIH DK59820 and HL114539 (to S.Y.T. and M.J.T.), DK45641 (to M.].T.),
HL061483 (to H.T.), NCI P30 CA125123 (to CJ.C.) and K99 HL112952 (to R.H.).
We acknowledge the joint participation by Adrienne Helis Malvin Medical Research
Foundation through its direct engagement in the continuous active conduct of medical
research in conjunction with Baylor College of Medicine and the Cancer Program.

Author contributions

S.P.W.,, MJ.T. and S.Y.T. designed the experiments. S.P.W. and C.Y.K. performed the
experiments and data analysis. SP.W., M.].T. and S.Y.T. wrote the paper. C.J.C.
performed the bioinformatics analysis. All other authors carried out or supervised
various aspects of experimental data collection.

Additional information
Accession codes. Microarray data have been deposited in the GEO database under
accession code GSE63759.

Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Wu, S.-P. ef al. Increased COUP-TFII expression in adult hearts
induces mitochondrial dysfunction resulting in heart failure. Nat. Commun. 6:8245

doi: 10.1038/ncomms9245 (2015).

This work is licensed under a Creative Commons Attribution 4.0
5 International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise

in the credit line; if the material is not included under the Creative Commons license,

users will need to obtain permission from the license holder to reproduce the material.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

| 6:8245 | DOI: 10.1038/ncomms9245 | www.nature.com/naturecommunications 1

© 2015 Macmillan Publishers Limited. All rights reserved.


http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Increased COUP-TFII expression in stressed hearts
	COUP-TFII induces DCM
	Impaired cardiac fuel utilization

	Figure™1Myocardial COUP-TFII expression causes dilated cardiomyopathy (DCM).(a) COUP-TFII mRNA levels in human heart tissues of non-failing (NF, n=6) and idiopathic DCM (n=13) from GSE1869. (b) Strategy of inducible COUP-TFII expression in adult mouse myo
	Development of mitochondrial dysfunction

	Figure™2Impaired fuel utilization in COUP-TFII OE ventricles.(a) Relative mRNA levels by qRT-PCR in days 4, 9 and 16 ventricles. N=5 (CTRL) and 7 (OE). Colour-coded mRNA levels depict relative folds of OE over control hearts. (b-d) Measurement of oleate o
	The COUP-TFII regulatory network in human

	Figure™3Increased ROS production and compromised mitochondria functions.(a) Expression profile of affected mitochondrial genes in day 16 hearts. Blue marks downregulated and red depicts upregulated genes. (b-e) Day 9 hearts. (b) Activities of mitochondria
	COUP-TFII reduction attenuates disease progression

	Figure™4Defects in mitochondrial dynamics.(a) Representative electron micrographs of day 9 ventricles from denoted genotypes. Scale bars, 0.5thinspmgrm. (b) Relative mRNA levels of major mitochondria dynamics genes in day 9 isolated cardiomyocytes. N=3 fo
	Discussion
	Figure™5A COUP-TFII-dependent regulatory network in human heart samples.(Top panel) Expression array data of 86 failing and 16 non-failing human left ventricular myocardium from GSE5406, for genes in a transcriptional signature of COUP-TFII, with samples 
	Methods
	Animals
	qRT-PCR

	Figure™6COUP-TFII haploinsufficiency partially rescues calcineurin transgenic mice.(a) Experimental design. Echo, echocardiography. (b) Kaplan-Meier curve of mice with denoted genotypes over a 20-week observation period. (c) Left ventricular interior dime
	Antibodies
	Cell line
	Expression array analysis
	Mitochondrial respiration assay
	ETC activity assay
	Aconitase assay
	Echocardiogram
	Transaortic constriction
	Ex vivo cardiac metabolic analyses
	ChIP assay
	Oxyblot assay
	Measurement of ATP content
	Statistical tests

	DoenstT.NguyenT. D.AbelE. D.Cardiac metabolism in heart failure: implications beyond ATP productionCirc. Res.1137097242013BeerM.Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured no
	We thank the Mouse Phenotyping Core Lab of Baylor College of Medicine for the gracious support on cardiac imaging and data analysis. We also express appreciation to Ms Guannu Xu, Pei Li, Wen Chen and Lita Duraine for technical support. We also thank the B
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




