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Society makes substantial investments in biomedical research,
searching for ways to better human health. The product of this
research is principally information published in scientific journals.
Continued investment in science relies on society’s confidence in
the accuracy, honesty, and utility of research results. A recent fo-
cus on productivity has dominated the competitive evaluation of
scientists, creating incentives to maximize publication numbers,
citation counts, and publications in high-impact journals. Some
studies have also suggested a decreasing quality in the published
literature. The efficiency of society’s investments in biomedical
research, in terms of improved health outcomes, has not been
studied. We show that biomedical research outcomes over the last
five decades, as estimated by both life expectancy and New Mo-
lecular Entities approved by the Food and Drug Administration,
have remained relatively constant despite rising resource inputs
and scientific knowledge. Research investments by the National
Institutes of Health over this time correlate with publication and
author numbers but not with the numerical development of novel
therapeutics. We consider several possibilities for the growing in-
put-outcome disparity including the prior elimination of easier re-
search questions, increasing specialization, overreliance on reduc-
tionism, a disproportionate emphasis on scientific outputs, and
other negative pressures on the scientific enterprise. Monitoring
the efficiency of research investments in producing positive soci-
etal outcomes may be a useful mechanism for weighing the effi-
cacy of reforms to the scientific enterprise. Understanding the
causes of the increasing input-outcome disparity in biomedical re-
search may improve society’s confidence in science and provide
support for growing future research investments.
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Few forces have transformed society more than science.
Knowledge gained through the scientific method has lifted

billions out of poverty, fueled industrialization and mass com-
munication, eradicated smallpox, and placed human footprints
on the moon. During the 20th century, science was increasingly
funded by governments and corporations vying for military and
economic advantage. Furthermore, the realization that in-
vestments in biomedical research translated into medical ad-
vances garnered strong societal support for the expenditure of
public funds to support science. Today, science is a vast industry
producing new knowledge, usually to address particular prob-
lems or questions facing humankind. Like any industry, the sci-
entific enterprise uses tools and resources—scientists, money,
and time—to produce an output: scientific knowledge, which can
be represented by publications in the scientific literature.
To remain competitive, corporations have long sought to max-

imize production efficiency, defined here as the ratio of output to
input, by trimming waste and producing more (1). With increasing
competition for research grants and jobs, funders and employers
have turned to measures of efficiency and productivity to evaluate
scientists (2). Such pressures have created well-documented in-
centives for scientists to maximize apparent productivity through

publication numbers, citation counts, and publishing in high-
impact journals (3, 4). Although this approach is designed to
reward those who contribute most to the knowledge base, recent
studies have raised questions about the quality of the biomedical
literature (5–8). One such study found that only 11% of findings
could be confirmed in 53 “landmark” hematology and oncology
publications (6). Another study found that 43 of 67 published
cardiovascular, oncological, and women’s health findings could
not be reproduced (7). Recently, it was estimated that more than
$28 billion is spent each year in the United States on irrepro-
ducible preclinical research and that the prevalence of these
studies in the literature exceeds 50% (8). We note that this lack
of reproducibility was identified by the National Institutes of
Health (NIH) as a major problem and has led to initiatives for
enhancing reproducibility and transparency (9). The irreproduc-
ibility of published data could potentially waste limited funding,
years of work, and threatens to undermine public confidence in
the scientific enterprise.
A pure focus on scientific outputs can ignore the quality of

those outputs. This is partially due to the fact that the quality and
importance of scientific publications, unlike most human prod-
ucts, is subjective and difficult to assess in the present (10, 11).
The true measure of a study’s quality would involve time-con-
suming and costly independent replication and an analysis of the
work’s outcomes, including assessing its downstream utility to
other applications and its effects on society. However, given the
length of time needed and low probability of any given study
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generating substantial societal impact, it is very difficult to judge
individual scientists or their work using simple outcome mea-
sures. Valid scientific research can have tremendous intrinsic
societal value in producing information without the need for
tangible outcomes. However, we also assume that all valid sci-
entific research has some probability of generating tangible
outcomes, even though such outcomes can be unpredictable and
distant in both time and subject matter. For example, the theory
of general relativity proposed in 1916 did not produce a useful
outcome to the public until the late 20th century, when it pro-
vided a means to account for differences in clock rates under
different gravitational influences, thereby enabling the global
positioning systems found in a majority of modern cell phones
and vehicles (12). Despite the intrinsic social value of biomedical
knowledge, it is evident that public agencies, such as the NIH,
support biomedical research with outcome-oriented goals, in-
cluding benefitting health, preventing disease, and increasing
return on investment (13). Although it is impractical to measure
the outcomes generated by individual researchers, we believe
that it is possible to estimate the outcomes of the biomedical
research enterprise. In contrast to the production-based defini-
tion of efficiency (outputs ÷ inputs), we believe that evaluating
research outcomes relative to inputs can be used to monitor the
efficiency of biomedical innovation and the impact of research
investments. Without studying outcomes, there is no way of
knowing if society’s investment in research is paying off, and
there is no way of evaluating the efficacy of systemic modifica-
tions to the scientific enterprise.

Results
We used the annual number of PubMed publications to estimate
total biomedical research output, whereas the number of uniquely
named authors was used to estimate the number of contributing
scientists. Both publication number and author number have risen
exponentially since 1965 (Fig. 1A). PubMed now adds more than

1 million new biomedical publications annually, a 527% increase
over 1965. The number of authors has risen even faster—809%
since 1965—with more than 1.63 million individuals contributing
in 2014. The pace of increasing authors is an underestimate, be-
cause many investigators share common names. Furthermore, the
average number of authors per published manuscript in the
PubMed database has more than doubled since 1965 (Fig. S1A).
The number of retractions found in the literature has also risen
rapidly since the late 1990s (Fig. S1B), as documented previously
(14, 15). The number of scientific journals represented in PubMed
has tripled since 1965 (Fig. S1C). The growth in US-affiliated
publications and authors from 1995 to 2012 was substantial, but
less than worldwide increases (Fig. S2). Furthermore, total bio-
medical knowledge is better approximated by the global increase
in publications rather than publications affiliated with any par-
ticular nation.
The number of New Molecular Entities (NMEs) approved by

the Food and Drug Administration (FDA) was used to estimate
the outcomes of the biomedical research enterprise (Fig. 1B).
NMEs are defined as drugs containing active moieties, as either
a single ingredient or as a combination product, that have not
previously been approved by the FDA. Biologic products may be
defined as NMEs for the purposes of FDA review even if a
closely related moiety has previously been approved (16). NMEs
are an attractive outcome measure because they are unequivocal
indicators of progress in global biomedical research. NME ap-
provals grew steadily each decade from 1965 to 2004 but
regressed over the last 10 y (Fig. S3 A and B). Furthermore, the
magnitude of growth observed in annual NME approvals was
much smaller than the changes in author or publication number.
The numbers of received and approved New Drug Applications
(NDAs) have remained relatively constant (Fig. 1B), suggesting
that the FDA’s ability to review applications is not a major
limiting factor on new therapeutic approvals.
As the largest contributor to global biomedical research funds

(17), the NIH budget (inflation-adjusted to 2014 dollars) was
used as a proxy for total biomedical research funds (Fig. 1C).
The budget rose exponentially from 1965 to 1999. Over the next
4 y, the budget doubled before a steady decrease occurred during
2003–2014, which is larger than apparent because of the rapidly
rising cost of scientific experiments. The cost per NME, in mil-
lions of dollars of NIH budget, was compared for each decade
from 1965 to 2014, and has grown rapidly since the mid-1980s
(Fig. S3 C and D). When normalized to their 1965 values, NIH
budget, author number, publication number, and number of
approved NMEs enjoyed a combined 5.5-fold increase over the
last 50 y (Fig. 1D). The greatest share of that growth occurred
in the number of scientists (9.1-fold) and the number of pub-
lications (6.3-fold). NIH budget increased to a lesser extent
(4.2-fold), whereas approved NMEs increased least of all (2.3-
fold). Consequently, society’s acquisition of new knowledge
through biomedical publications drastically outpaced the pro-
duction of novel therapeutics by the biomedical research en-
terprise (Fig. 1E).
Biomedical research efficiency (outcomes ÷ input) was in-

vestigated by calculating approved NMEs each year per relative
units of new scientific knowledge, yearly scientific authors, and
yearly NIH funding (Fig. 2 A–C). Decreasing research efficiency
from 2000 to 2014 is demonstrated by the drop in approved
NMEs for each unit of personnel and financial input. Despite
2014 being the most productive year for novel therapeutics since
1996, the number of NMEs developed per billion dollars of NIH
funding was 56% lower in 2000–2014 compared with 1965–1999.
The same drop is evident in approved NMEs for each unit of
published scientific knowledge, illustrating that increasing scientific
outputs have not translated into new therapeutics in a proportional
manner. Cumulative NMEs since 1965 divided by cumulative bio-
medical knowledge remained relatively constant from 1976 to

Fig. 1. Changing inputs, outputs, and outcomes in biomedical research
from 1965 to 2014. (A) Yearly publication number and author number.
(B) Yearly received and approved NDAs and approved NMEs. (C) The annual
NIH budget, inflation-adjusted to 2014 dollars. (D) Yearly inputs, outputs,
and outcomes in biomedical research are represented by NIH budget, author
number, publication number, and number of approved NMEs. All categories
are normalized to 1.0 for their respective levels in 1965. (E) Cumulative
knowledge in the form of scientific publications since 1965 is compared with
cumulative NMEs since 1965. Both publications and NMEs are normalized to
1.0 for their respective levels in 1965.
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1999, followed by a marked decline through 2014 (Fig. 2D). As
might be expected, the number of authors was highly correlated
with the number of publications in a year (Fig. 3A). The number
of NMEs produced in a given year, however, correlated very
poorly with the resources and knowledge needed to develop
them (Fig. 3 B and C). Finally, both author number and publi-
cation number had closer relationships to the NIH budget over
the last 50 y than to NMEs (Fig. 3D).
Because discovery takes time to translate into products, we

investigated whether the observed effect was due to a growing
time lag between these two events. To estimate the time between
discovery and product, we analyzed 12 examples of medical
breakthroughs resulting from 11 key scientific discoveries during
the last century (Table S1). The translation lag time between
discovery and implementation was between 10 and 14 y for most
discoveries and did not increase with more recent examples.
Although this retrospective analysis suffers from selection bias in
choosing ultimately productive scientific discoveries, it does
provide an estimate for bench-to-bedside translation time. Other
more systematic studies have found longer translational lag
times, but did not indicate that these lags have increased (18, 19).
The observed declines in research efficiency did not change even
when approved NMEs per units of new scientific knowledge and
yearly scientific authors were adjusted with a discovery to
product translation lag of 15 y (Fig. S4 A, B, and D). Research
efficiency followed an even sharper decline when the NIH bud-
get was adjusted with a 15-y translation lag (Fig. S4C).
Despite being affected by many factors other than biomedical

research, we explored life expectancy and patent applications as
alternative outcome and output measures. US life expectancy at
birth rose linearly from 1965 to 2012 with an average yearly
growth of slightly more than 2 mo (Fig. 4A). Patent applications
in the United States increased 504% since 1965, similar to the
527% growth that was observed in publication number (Fig. S5).
We used these alternative outcome and output measures to track
biomedical research efficiency over time. Dividing life expec-
tancy (LE) and the yearly change in life expectancy (ΔLE) by the
output measure of biomedical publication number (Fig. 4B)
showed a steady decline. A similar drop in research efficiency is
evident when LE and ΔLE per unit of NIH funding is followed
over time (Fig. 4C). Many major medical breakthroughs in re-
cent decades have been targeted to diseases affecting older pa-
tient populations. To determine whether life expectancy has
risen faster in older populations, we examined the life expectancy
at age 70 (LE70) of 11 European nations from 1965 to 2012 and
the European Union from 2002 to 2012. All LE70 measurements

increased linearly, following the pattern of US LE at birth (Fig.
S6A). Furthermore, the 11 analyzed European nations experi-
enced an average yearly increase in LE70 of less than 1.5 mo from
1965 to 2012 (Fig. S6B). This result indicates that life expectancy
gains among older populations have also not kept pace with
rising biomedical research inputs and outputs.

Discussion
The data presented above suggest an increasing disparity be-
tween resource inputs and outcomes in biomedical research. To
visualize the relationship between scientific inputs, outputs, and
outcomes, we constructed a scheme showing the flow of re-
sources within the biomedical research enterprise (Fig. S7). In-
creasing resource investments have led to an explosion in
scientific knowledge, but the resulting gains in new therapies and
improved human health have been proportionally smaller, as
measured by NMEs and prolongation of life expectancy. Several
possible causes for slowed growth in biomedical research out-
comes are considered.
First, the problems could have become more difficult through

prior elimination of easier research questions or the challenge of
producing therapies that are better than current standards of
care (20). This possibility could account for a decreasing mar-
ginal impact of new biomedical innovations. Increasing regula-
tory requirements over the last half-century—generally in the
interest of public safety—have undoubtedly placed larger fi-
nancial and temporal burdens on the development of new
therapies. Furthermore, as scientists now spend nearly half of
their time on administrative tasks, they are able to devote less
time to research and training responsibilities (21). Other eco-
nomic factors, such as the recent proliferation of patent trolls
(22), may have also contributed to a stifling of biomedical in-
novation. Additionally, society has seen a shift from acute to
chronic illnesses, and the development of therapies for chronic
illnesses may be inherently more difficult. We note that im-
proving health outcomes in chronic patients often requires pro-
longed and coordinated medical care. It is possible that the

Fig. 2. Biomedical research efficiency measured by outcomes ÷ outputs and
outcomes ÷ inputs. (A–C) NMEs produced each year divided by yearly units
of new knowledge (A), scientific authors (B), and NIH funding (C) relative to
1965 levels. (D) The cumulative number of NMEs produced since 1965 di-
vided by cumulative biomedical knowledge generated since 1965.

Fig. 3. Correlations between authors, NMEs, NIH budget, and publication
numbers from 1965 to 2014. NIH budget, author number, and publication
number are plotted in log base 10. (A) Log-log plot of publication vs. author
number. (B) Plot of NMEs vs. NIH budget. (C) Plot of publication number and
author number vs. NMEs. (D) Plot of publication and author number vs. the
NIH budget.
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current health care delivery system and public health policies are
not optimally aligned to today’s foremost medical problems.
Second, biomedical research findings may be accurate, but

many have little immediate clinical relevance. In this regard,
mice are widely used for biomedical discovery, but this species
may not accurately predict human outcomes (23). Similarly, re-
liance on cell lines for basic discovery has many limitations in-
cluding the facts that experiments may not reflect tissue
conditions and that many cell lines are not authenticated or are
contaminated (24, 25). A “brute-force bias” in pharmaceutical
research and development has been attributed as a likely reason
for stagnant NME approvals (20). This bias is manifested by an
increasing dependence on high-throughput screening in highly
simplified, automated systems for very specific molecular effects
(i.e., high affinity binding to a target). A corollary to this bias is
the assumption that more funding will directly translate into
more drug candidates. Although such reductionist approaches
have facilitated the analysis of enormous candidate drug librar-
ies, there is evidence that techniques used decades ago may have
been more effective at identifying clinically relevant molecules
(20). While a focus on reductionism has greatly expanded our
knowledge of biology’s most basic components, the extent to
which this applies to complex biological networks is not clear.
Specialization in science has also grown with the expansion of
the scientific knowledgebase, increasing the necessity of techni-
cal collaboration (26). The mean number of authors per PubMed
publication has grown from 1.94 to 5.61 since 1965, suggesting
that more collaboration is now necessary (Fig. S1A). We note
that there is some evidence that increasing authorship may re-
flect inflationary practices more so than research complexity or
collaboration (27). Specialization may also raise barriers to
interfield collaboration and cause pertinent findings or tech-
niques to be overlooked by scientists in disparate fields.
A third possibility is that the quality of the scientific literature

has decreased. Several articles illustrate a recent surge in retracted
publications and widespread irreproducibility in the literature
(5–8, 14, 15). The high prevalence of irreproducible research
likely reflects the use of highly specialized techniques, the in-
complete publication of methods, the failure to share necessary
reagents or software, poor experimental design, and the bias
toward publication of positive results. A recent study of error in
retracted publications suggests that many erroneous findings
remain uncorrected in the literature, creating the possibility for
friction in the discovery process as scientists are distracted by
invalid leads and/or spend time investigating and correcting

published errors (28). Common commercial products such as
research antibodies suffer from batch-to-batch variability, unchar-
acterized cross-reactivity, and protocol-specific changes in bind-
ing specificity (29). We also note that the documented growth of
retracted and irreproducible research likely reflects a combination
of increased prevalence and surveillance of problematic manu-
scripts and science (15). Irreproducible, incorrect, and falsified
results in the literature can all contribute to inefficiencies in the
process of scientific discovery. The incidence of these publications
may be linked to the use of scientific outputs as metrics for the
competitive evaluation of scientists (3, 4). We note that certain
metrics are easier to game than others, and thus the use of less-
pliable scientific output measures may lead to a decline in inap-
propriate incentives (30). It is also not known whether the use of
such metrics might concurrently affect the creativity and work ethic
of scientists. Behavioral research has indicated that task-based in-
centives tend to increase productivity, but with little impact on
creative work (31). Finally, the current mania for publishing science
in high-impact factor journals delays the publication of key findings
as scientists shop for high-impact venues and may be creating
perverse incentives that affect outcomes because high-impact sci-
ence does not necessarily imply high importance (4).
We suspect that slowed biomedical outcomes growth is the

result of some combination of the problems detailed above.
Suggested remedies to these problems include reforms that
could ease the regulatory hurdles for new therapeutics (11, 32),
reduce administrative burdens (32), improve the clinical rele-
vance of reductionist biomedical techniques (20), shift incentives
away from scientific outputs (3, 4), encourage the publication of
negative results (33), mandate public access to government-
funded research results and methods (34), facilitate independent
reproduction of important studies (35), and/or create a frame-
work for measuring the outcomes of biomedical research (11,
36). A simple focus on boosting any given biomedical research
metric, such as the number of approved NMEs, is not likely to
solve the problem of slowed outcomes, but may instead con-
tribute to misdirected incentives. To address the systemic prob-
lems detailed in this manuscript, it will be essential to consider
each of the possible problems and their respective solutions in
relation to the entire biomedical research enterprise and the
culture of science. However, for policy changes to have the de-
sired effect, they will need to be tested experimentally and that
may require the development of new tools to measure the effi-
ciency of science. Efforts to reduce the disparity between bio-
medical research inputs and outputs and their eventual societal
outcomes will likely require a variety of reforms on the part of
individual scientists, academic institutions, private corporations,
and governmental entities (37, 38).
We acknowledge that any link between biomedical innovations

and overall life expectancy is controversial, with many other
factors—including political stability, food production, hygiene,
education, income, transportation, and communication—poten-
tially having greater impact. However, these factors are more
likely to affect developing regions, and for both the United
States and Europe, political stability, abundant food, adequate
hygiene, and developed communication and transportation net-
works were available and stable during the time of our study. In
this regard, long-term linear mortality reduction may be the re-
sult of increasing public health and biomedical resources com-
bined with their decreasing marginal effectiveness (39). Other
studies have attributed decreases in disease-specific mortality to
certain biomedical innovations (40, 41). A key limitation of these
analyses is the difficulty in appropriating patient outcomes that
result from a given clinical innovation to the initial funding of
many underlying basic research advances. Even in the face of
sluggish therapeutic development and constant life expectancy
gains, biomedical innovations over the last 50 y have trans-
formed many individual fields, including imaging, criminology, the

Fig. 4. Alternative measures of biomedical research efficiency from 1965 to
2012. (A) Mean US life expectancy at birth (LE, blue line) and the yearly
change in life expectancy (ΔLE, orange line). (B and C) LE and ΔLE for each
divided by that year’s biomedical research publications (B) and NIH budget
(C). ΔLE curves in B and C are not identical, but they appear similar at this
scale due to the small differences between them.

11338 | www.pnas.org/cgi/doi/10.1073/pnas.1504955112 Bowen and Casadevall

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504955112/-/DCSupplemental/pnas.201504955SI.pdf?targetid=nameddest=SF1
www.pnas.org/cgi/doi/10.1073/pnas.1504955112


treatment of some cancers, and HIV/AIDS (40, 42–44). It is also
possible that the exponential growth in research investment and
scientific knowledge over the previous five decades has simply not
yet grown fruit and that a deluge of medical cures are right around
the corner, a development that would make us extremely happy.
One explanation for such a possibility is humanity’s relatively re-
cent development of the necessary technology to generate and
manipulate vast quantities of data coupled with inadequate tools
to analyze and make use this of data.
Our results are best interpreted as a cautionary tale that will

hopefully motivate new efforts to understand the parameters
that influence the efficiency of science and its ability to translate
discovery into practical applications. Considering that humanity
is currently facing numerous challenges such as climate change,
emerging infectious diseases, environmental degradation, and a
faltering green revolution, each of which requires scientific ad-
vances to provide new solutions, it is essential for science to
function at its best. Science’s power to influence society has
historically resided in its ability to reliably predict phenomena
and improve human lives. A worrisome consequence of the
growing input-outcome disparity in biomedical research may be
an erosion of society’s trust in the scientific enterprise at a time
when science and its findings are often under attack (45, 46),
with wide-ranging consequences for public health and future
research funding. In support of this concern we note that the
number of NMEs flattened from 2004 to 2014, a decade when
the NIH budget decreased in real terms. Nevertheless, we are
hopeful that the scientific community can use this information to
adopt measures that improve the efficiency of the scientific en-
terprise. The ongoing motivation of scientific research should
continually refocus to mirror its historical objectives: making
discoveries that expand human knowledge and generating out-
comes that positively impact humanity.

Methods
PubMed Data Retrieval. The PubMed search engine can be used to access the
most comprehensive aggregation of global biomedical literature, which
contains more than 23 million records and is maintained by the NIH and the
US National Library of Medicine (47). An algorithm was written in Perl to
query PubMed for all citations per year from 1809 to 2014. All citations with
“journal article” publication type were downloaded in MEDLINE format and
parsed according to documented field descriptors (48). Unique journal
names were determined from the “journal title” data field. Unique author
names were determined from the “author” data field, which includes last
name, first and middle initials, and a suffix, if applicable. Corporate or
group authors were excluded from this analysis. The author count based
on distinct names in the database represents a low estimate of the true
number of authors because scientists that share a common name are
counted as one. Additionally, PubMed limited the maximum author
number in its MEDLINE records to 10 per publication from 1984 to 1995
and then to 25 per publication from 1996 to 1999, which further con-
tributes to an undercounting of scientists (48). Yearly publication number
was calculated as the number of PubMed citations with at least one in-
dividual author. Retracted publications were counted by original year of
publication and also by year of retraction. Retraction data were gathered
by automatically querying PubMed each year for “retracted publication”
and “retraction of publication” publication types.

To gather data on publications and authors arising from the United States,
we performed the same analysis as described above but added “USA” af-
filiation as a search constraint. Affiliation details were only recorded in
PubMed citations for first authors from 1988 to 2013. The designation USA
was added to author affiliations arising from the United States starting in
1995, and quality control of this field ceased during 2013 to facilitate affil-
iation details being added for all authors (48). Therefore, our analysis was
limited to 1995–2012 and underestimates both the number of US scientists
and publications with contributions from US scientists. We compared the
number of USA-affiliated first authors to the global number of first authors
during the same time period (Fig. S2). PubMed data presented in this
manuscript was gathered on March 7, 2015 and reflects the PubMed data-
base as of this date. PubMed’s records do not comprehensively cover the

biomedical literature before 1965, so this was chosen as the starting year for
most of our analyses. The Perl script and raw data used in this analysis are
available and annotated at https://github.com/bowenanthony/biomedical-
outcomes.

NIH Investment Data. For the purposes of this study, the NIH budget was used
as an estimate for the annual investment of public funds in the biomedical
research enterprise. NIH budget appropriations from 1938 to 2014 were
obtained (49, 50) and inflation adjusted to 2014 dollars using the annual
average Consumer Price Index (51). Although the NIH is responsible for a
fraction of worldwide biomedical research funds, it is the largest public
sector contributor by far (17) and has an easily accessible and comprehensive
budget history. Including private sector investments and other national re-
search budgets would make year-to-year comparisons over the last five
decades prohibitively difficult. Furthermore, including additional sources of
private or public biomedical research funds would only increase the input-
outcome disparities presented in this article because the NIH funds are just a
portion of worldwide investment. It can also be argued that much of the
innovation in the private sector is based on the discoveries of government-
funded research, presumably because governments are able to take on
greater risk than corporations (52).

Research Outcomes Data. The long-term outcomes of biomedical research on
human health and the economy are difficult to quantify due to numerous
confounding variables. Therefore, NMEs approved by the FDA were used to
estimate the relative yearly outcomes of the biomedical research enter-
prise. The number of received and approved NDAs and approved NMEs
from 1938 to 2014 were obtained from the FDA (53, 54). From 2004 to 2014,
these data include Biologic License Applications and approved biological
products. Because the United States is the largest market for drug man-
ufacturers (55), most new therapeutics eventually make their way to the
FDA’s approval pipeline. We acknowledge that some NMEs, known as “me
too drugs” are generated by making minor changes to existing thera-
peutics, creating compounds with little to no benefit over the original
medication (56). Removing such “me too drugs” from our analysis, how-
ever, would be somewhat subjective and would only worsen the problem
of slowed biomedical research outcomes. Although some NMEs have a
much greater impact than others on health outcomes, it is very difficult to
quantify the disease-specific outcomes of each NME. Additionally, a
comparison of NME-related health outcomes over time would likely
overvalue older therapeutics due to the time required for drugs to impact
population health and also because new uses for existing drugs are often
discovered over time. We recognize that much of the yearly NIH in-
vestment in biomedical research does not go directly to creating novel
therapeutics. Funds spent on the development of new research tools and
new uses for existing therapeutics are not represented by NMEs, but
quantifying outcomes of this research is difficult. Additionally, a large part
of the NIH budget funds basic research with the potential for long-term
utility but no immediate impact on human health. For the purpose of this
analysis we assume that all valid contributions to the cumulative scientific
knowledgebase have some probability of future therapeutic utility. We
also assume that the rate of NME approval is proportional to the rate of
overall outcomes in biomedical science.

Alternative Measures. The products of biomedical research are embodied by
more than new pharmaceuticals on the market and peer-reviewed scientific
publications. To address this, we examined the average US life expectancy at
birth as an outcomemeasure and the number of utility patent applications in
the US as an output measure. Data for these measures from 1965 to 2012
were obtained from theWorld Bank and the US Patent and Trademark Office
(57, 58). Patent application numbers reflect utility patents and exclude de-
sign patents. We also recognize that many medical advances throughout the
last several decades have targeted illnesses present in older patient pop-
ulations and therefore might be better represented by measuring life ex-
pectancy at age 70. Because these data were not readily available for the
United States, life expectancy at age 70 was obtained from Eurostat for 11
European nations with comprehensive data from 1965 to 2012 and for the
European Union from 2002 to 2012 (59).
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