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Calcium (Ca2+) released from the sarcoplasmic reticulum (SR) is crucial
for excitation–contraction (E–C) coupling. Mitochondria, the major
source of energy, in the form of ATP, required for cardiac contractility,
are closely interconnected with the SR, and Ca2+ is essential for opti-
mal function of these organelles. However, Ca2+ accumulation can
impair mitochondrial function, leading to reduced ATP production
and increased release of reactive oxygen species (ROS). Oxidative
stress contributes to heart failure (HF), but whether mitochondrial
Ca2+ plays a mechanistic role in HF remains unresolved. Here, we
show for the first time, to our knowledge, that diastolic SR Ca2+

leak causes mitochondrial Ca2+ overload and dysfunction in a murine
model of postmyocardial infarction HF. There are two forms of Ca2+

release channels on cardiac SR: type 2 ryanodine receptors (RyR2s)
and type 2 inositol 1,4,5-trisphosphate receptors (IP3R2s). Using mu-
rine models harboring RyR2 mutations that either cause or inhibit SR
Ca2+ leak, we found that leaky RyR2 channels result in mitochondrial
Ca2+ overload, dysmorphology, and malfunction. In contrast, cardiac-
specific deletion of IP3R2 had nomajor effect on mitochondrial fitness
in HF. Moreover, genetic enhancement of mitochondrial antioxidant
activity improved mitochondrial function and reduced posttransla-
tional modifications of RyR2 macromolecular complex. Our data dem-
onstrate that leaky RyR2, but not IP3R2, channels cause mitochondrial
Ca2+ overload and dysfunction in HF.
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Type 2 ryanodine receptor/Ca2+ release channel (RyR2) and
type 2 inositol 1,4,5-trisphosphate receptor (IP3R2) are the

major intracellular Ca2+ release channels in the heart (1–3).
RyR2 is essential for cardiac excitation–contraction (E–C) cou-
pling (2), whereas the role of IP3R2 in cardiomyocytes is less
well understood (3). E–C coupling requires energy in the form of
ATP produced primarily by oxidative phosphorylation in mito-
chondria (4–8).
Both increased and reduced mitochondrial Ca2+ levels have been

implicated in mitochondrial dysfunction and increased reactive ox-
ygen species (ROS) production in heart failure (HF) (6, 7, 9–17).
Albeit Ca2+ is required for activation of key enzymes (i.e., pyruvate
dehydrogenase phosphatase, isocitrate dehydrogenase, and
α-ketoglutarate dehydrogenase) in the tricarboxylic acid (also
known as Krebs) cycle (18, 19), excessive mitochondrial Ca2+

uptake has been associated with cellular dysfunction (14, 20).
Furthermore, the exact source of mitochondrial Ca2+ has not
been clearly established. Given the intimate anatomical and
functional association between the sarcoplasmic reticulum (SR)
and mitochondria (6, 21, 22), we hypothesized that SR Ca2+

release via RyR2 and/or IP3R2 channels in cardiomyocytes
could lead to mitochondrial Ca2+ accumulation and dysfunc-
tion contributing to oxidative overload and energy depletion.

Results and Discussion
Increased Mitochondrial Ca2+ in Failing Hearts. Cardiac mitochon-
drial Ca2+ (Fig. 1 A–D and Fig. S1) and ROS (Fig. 1E) were sig-
nificantly elevated in mice following myocardial infarction (MI).

To determine whether the observed mitochondrial Ca2+ overload
in failing hearts can be caused by SR Ca2+ leak via RyR2, we used a
murine model harboring a mutation that renders the channels leaky
(RyR2-S2808D) and a second model (RyR2-S2808A) with RyR2
channels protected against leak. Ca2+ sparks frequency (diastolic
openings of RyR2 channels that reflect SR Ca2+ leak) was signifi-
cantly increased (Fig. S2A), and SR Ca2+ load reduced (Fig. S2B) in
cardiomyocytes from RyR2-S2808D mice compared with WT and
RyR2-S2808A cardiomyocytes.
Notably, RyR2-mediated SR Ca2+ leak (Fig. S2) was associated

with increased mitochondrial Ca2+ (Fig. 1 A and D) and ROS
production (Fig. 1E). Constitutive cardiac SR Ca2+ leak via RyR2
(RyR2-S2808D mice) resulted in dysmorphic and malfunctioning
mitochondria (Fig. S3). We observed a marked reduction in mito-
chondrial size (Fig. S3D), aspect ratio (Fig. S3G), and form factor
(Fig. S3H) in left ventricular cardiomyocytes harboring leaky RyR2
channels, reflecting a low fusion-to-fission ratio. These data indicate
that intracellular Ca2+ leak via RyR2 correlates with augmented
mitochondrial fragmentation, strongly supporting a functional role
for Ca2+ in regulating mitochondrial morphological dynamism.
Importantly, our data showing increased cardiac mitochon-

drial Ca2+ in HF, determined in absolute values in isolated or-
ganelles (Fig. 1A) and confirmed in dynamic evaluations at the
cellular level (Fig. 1 B–D and Fig. S1), reconcile conflicting re-
ports concerning mitochondrial Ca2+ in failing hearts (7, 10, 12,
13, 15, 17).

Significance

We demonstrate that intracellular Ca2+ leak causes mitochon-
drial Ca2+ overload and dysfunction in postischemic heart failure
(HF). In particular, sarcoplasmic reticulum (SR) Ca2+ leak via type
2 ryanodine receptor (RyR2)—but not type 2 inositol 1,4,5-
trisphosphate receptor (IP3R2)—channels plays a fundamental
role in the pathophysiology of mitochondrial Ca2+ overload and
dysfunction in HF. We present here a previously undisclosed
molecular mechanism in HF with crucial implications in cardiac
physiology. Indeed, our data establish a feedback loop between
SR and mitochondria in which SR Ca2+ leak triggers mitochon-
drial dysfunction and increases the production of free radicals,
which in turn lead to posttranslational modifications of RyR2
and enhance intracellular Ca2+ leak, thereby contributing to
impaired cardiac function after myocardial infarction.
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Effects of Redox Imbalance on RyR2 Channel in Postischemic HF. We
have previously shown that protein kinase A (PKA) phosphoryla-
tion and oxidation of RyR2 channels cause SR Ca2+ leak and
contribute to HF progression (1, 2). HF-related PKA phosphory-
lation—in part also attributable to decreased cAMP type 4 phos-
phodiesterase, PDE4D3, in the RyR2 channel complex (23)—
nitrosylation, and oxidation of RyR2 were attenuated in a mouse
model (mCAT) with decreased ROS levels obtained via targeted
overexpression of human catalase in mitochondria (Fig. 2 A–D).
Reduced binding of the RyR2 stabilizing subunit calstabin2 (24)

to the channel due to RyR2 oxidation and PKA phosphorylation
causes spontaneous diastolic SR Ca2+ release contributing to car-
diac dysfunction in HF (1, 2). Genetically reducing RyR2 oxidation
(mCAT mice) or preventing RyR2 PKA phosphorylation (RyR2-
S2808A mice harboring RyR2 channels that cannot be PKA-
phosphorylated) improved calstabin2 and PDE4D3 binding to
RyR2 (Fig. 2 A–F) and cardiac performance (Fig. 2G and Table S1)
after MI. Mitochondrial morphology (Fig. 3 A–I and Fig. S4)
and function (Fig. 3 J–M and Table S2) were also improved in
mCAT mice.
Oxidative overload in cardiomyocytes originates from multiple

sources, including mitochondria, NAD(P)H oxidase, xanthine
oxidase, and uncoupled nitric oxide synthase (16, 25, 26).
Mitochondrial-derived ROS are elevated during cardiac over-
load or ischemic stress (4, 26, 27). Mitochondrial membrane
potential, Δψm, is closely linked to Ca2+ levels and to mito-
chondrial ROS production; indeed, depolarized mitochondria
produce more ROS, leading to further organelle depolarization,
resulting in a vicious cycle. The decrease in Δψm observed in
mitochondria from RyR2-S2808D ventricular cardiomyocytes
(Fig. S3J) is consistent with a progressive decline in Δψm due

to increasing [Ca2+] in cardiac mitochondria and is most likely
due to elevated cytosolic [Ca2+] caused by RyR2-mediated SR
Ca2+ leak (10). Supporting this view, mitochondria exposed to
elevated [Ca2+] exhibit reduced Δψm, due to the large mito-
chondrial Ca2+ current generated during local [Ca2+] transients (28).
Ventricular cardiomyocytes harboring constitutively leaky

RyR2 channels exhibited a reduction in mitochondrial ATP
content and generation (Fig. S3 L and M), consistent with
previous observations in failing human hearts (6). Further
studies are needed to investigate in detail other systems, in-
cluding neurohormonal and (epi)genetic mechanisms, endoplas-
mic reticulum (ER) stress, necrosis/apoptosis, and autophagy, that
might participate in the regulation of bioenergetic homeostasis in
HF (5, 6, 19, 25, 29).

Distinctive Roles of RyR2 and IP3R2 in the Pathophysiology of
Mitochondrial Dysfunction in HF. To determine the source of SR
Ca2+ leak that causes mitochondrial overload in failing hearts,
we investigated the roles of the two major Ca2+ release channels
on myocardial SR: RyR2 and IP3R2 (1).
We generated a murine model (IP3R2CVKO) in which IP3R2

expression was specifically ablated in ventricular cardiomyocytes
via Cre/Lox recombination (Fig. S5 A–E). IP3R2CVKO mice sur-
vived to adulthood without alterations in baseline myocardial
function, and there was no up-regulation of the other two isoforms
of IP3R (IP3R1 and IP3R3) (Fig. S5 F and G). Ca2+ sparks, SR
Ca2+ load (Fig. S6), mitochondrial Ca2+ level (Fig. S6C and Fig.
S7 A and B), and ROS production (Fig. S6D) were not signifi-
cantly changed in IP3R2CVKO ventricular cardiomyocytes evalu-
ated both in sham or post-MI mice. Myocardial mitochondria
from IP3R2CVKO mice were normal (Fig. 4), and there was no
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Fig. 1. Increased mitochondrial Ca2+ in post-MI heart failure. (A) Direct measurement of total Ca2+ content in mitochondria isolated from sham or failing
ventricular samples of 6-mo-old WT, RyR2-S2808A, RyR2-S2808D, mCAT, and mCAT × RyR2-S2808D mice. Mitochondria were purified from ≥6 mice in each
experimental group. (B–D) Mitochondrial Ca2+ dynamics in response to 3 Hz in cardiomyocytes (n = 22–35) enzymatically isolated from at least 7 mice per
group isolated from the indicated groups. (E) Mitochondrial ROS generation in ventricular cardiomyocytes isolated from the indicated mice using the mi-
tochondria-targeted fluorescent indicator of superoxide production MitoSOX Red; n > 120 ventricular myocytes from ≥4 mice in each group. Data shown
represent mean ± SEM from triplicate experiments. *P < 0.05 vs. WT; #P < 0.05 vs. RyR2-S2808D, ANOVA, Tukey–Kramer post hoc test; !P < 0.05 vs. SHAM, two-
tailed t test. AU, arbitrary units; ROS, reactive oxygen species.
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major effect on acute HF progression (Fig. S7C and Table S1).
Further investigations are warranted to explore the potential role
of IP3R2 in ischemia/reperfusion and in long-term ischemic HF,
especially given the reported involvement of IP3R2 in advanced
stages of HF (30).

Prevention of RyR2 Posttranslational Modifications Attenuates
Mitochondrial Dysfunction in HF. Mitochondrial ROS levels were
markedly reduced in cardiomyocytes isolated from mCAT × RyR2-
S2808D mice [mice expressing leaky RyR2 channels (RyR2-S2808D)
crossed with mCAT mice] compared with RyR2-S2808D littermates,
both in HF and sham conditions (Fig. 1E). Moreover, RyR2 oxidation
and nitrosylation were significantly decreased in left ventricular sam-
ples from mCAT × RyR2-S2808D mice compared with RyR2-

S2808D littermates (Fig. 2 A–C). SR Ca2+ leak (Fig. S2) and mito-
chondrial Ca2+ accumulation (Fig. 1 A–D and Fig. S1) observed
in RyR2-S2808D were significantly reduced after crossing with
mCAT mice. Additionally, post-MI, HF progression was mark-
edly attenuated in mCAT × RyR2-S2808D mice (Fig. 2G and
Table S1). These data show that mitochondria are a critical
source of ROS that oxidizes RyR2 and promotes SR Ca2+ leak in
failing hearts although there are likely additional sources of
ROS, such as xanthine oxidase, that are significantly increased in
failing hearts (Fig. S8).
Genetic ablation of the RyR2 PKA phosphorylation site at

Ser2808 attenuated cardiac mitochondrial dysmorphology after MI
(Fig. 3 B and F–I) and reduced mitochondrial ROS levels (Fig. 1E),
indicating that, in addition to oxidation, PKA phosphorylation

A B
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D

F

Fig. 2. Posttranslational modifications of RyR2 complex and HF progression post-MI. (A) Biochemical evaluation of RyR2 macromolecular complex in left
ventricular samples from sham and heart failure (HF) mice. To determine channel oxidation, the carbonyl groups in the protein side chains of immuno-
precipitated RyR2 were derivatized to 2,4 dinitrophenylhydrazone (2,4 DNPH) by reaction with 2,4 dinitrophenylhydrazine. The 2,4 DNPH signal associated
with RyR2 was determined by anti-DNP antibody (specificity for RyR2 was achieved due to immunoprecipitation of the protein). Anti-Cys NO antibody analysis
of immunoprecipitated RyR2 was used to measure RyR2 nitrosylation. Quantification of RyR2 oxidation (B), Cys-nitrosylation (C), phosphorylation at Ser2808

(D), PDE4D3 (E), and calstabin2 (F) bound to RyR2; note that constitutive phosphorylation of Ser2808, mimicked by the aspartate residue substitution in RyR2-
S2808D mice, cannot be detected. Data shown represent mean ± SEM from triplicate experiments. *P < 0.05 vs. WT; #P < 0.05 vs. RyR2-S2808D, ANOVA,
Tukey–Kramer post hoc test; !P < 0.05 vs. SHAM, two-tailed t test. (G) Progressive cardiac dysfunction after myocardial infarction (MI) assessed by serial
echocardiographic analyses. LVEF, left ventricular ejection fraction. Data are shown as mean ± SEM; *P < 0.05 vs. WT; #P < 0.05 vs. RyR2-S2808D; ANOVA
repeated measures; n = 16–20 per group. AU, arbitrary units. See also Table S1.
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of RyR2 channel promotes SR Ca2+ leak and mitochondrial
dysfunction. Indeed, RyR2-S2808A ventricular cardiomyocytes
exhibited reduced mitochondrial Ca2+ uptake (Fig. 1 B–D and

Fig. S1) and increased mtDNA levels (Fig. 3K). We also ob-
served a trend toward ameliorated Δψm dissipation (Fig. 3J)
and increased ATP content and synthesis (Fig. 3 L and M).

A
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C

D

E

F

G

H

I

J

K

L

M

Fig. 3. Leaky RyR2 channels and mitochondrial dysfunction in heart failure. (A–E) Representative transmission electron micrographs of cardiac mitochondria post
myocardial infarction fromWT (A), RyR2-S2808A (no leak) (B), RyR2-S2808D (leaky) (C), mCAT (D), mCAT × RyR2-S2808D (E), n = 5 per group. (Magnification: A–E,
15,000×; Insets, 50,000×.) (Scale bars: 500 nm.) Note the diffuse myofibrillar disarray. (F–I) Quantification of ultrastructural mitochondrial alterations depicted in
A–E. Mitochondrial size (F) and cristae density (G). Numbers in the bars indicate the number of mitochondria analyzed. Quantification of mitochondrial number
per image (H) and percentage of abnormal mitochondria per image at 15,000× (I). Relative number of damaged mitochondria was quantified by blinded ob-
servers from 8 to 10 images from different fields. Data are shown as mean ± SEM, *P < 0.05 vs. WT; #P < 0.05 vs. RyR2-S2808D, ANOVA, Tukey–Kramer post hoc
test. (J) Assessment of the inner mitochondrial membrane potential (Δψm); the arrow denotes addition of H2O2 (100 μM). FCCP, carbonylcyanide-p-trifluoro-
methoxy-phenyl-hydrazone. The * indicates significant difference (P < 0.05, ANOVA repeated measures, Tukey–Kramer post hoc test) of the WT group (n = 8)
compared with RyR2-S2808D (n = 7), mCAT × RyR2-S2808D (n = 7), and mCAT (n = 6), or between RyR2-S2808D and mCAT × RyR2-S2808D groups. (K) Mito-
chondrial DNA (mtDNA)/nuclear DNA (nDNA) copy number and (L) ATP content assessed in left ventricle (n = 8 per group). (M) Measurement of ATP synthesis
rates in cardiac mitochondria isolated from failing hearts of the indicated groups. ATP synthesis was driven by complex I (pyruvate/malate, 5 mM) and complex II
(succinate 5 mM). The specificity of the measurements was verified using inhibitors (0.5 μM) of respiratory complex, as indicated (n = 3 per group, triplicate
measurements per sample). All data are shown as mean ± SEM, *P < 0.05 vs. WT; #P < 0.05 vs. RyR2-S2808D, ANOVA, Tukey–Kramer post hoc test.
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Fig. 4. Cardiac ablation of IP3R2 does not rescue mitochondrial abnormalities observed in failing hearts. (A–D) Representative transmission electron
micrographs of cardiac mitochondria in SHAM conditions (A and B) and post myocardial infarction (C and D) from IP3R2fl/fl (A and C ) and IP3R2CVKO

mice (B and D), n = 5 per group. (Magnification: A–D, 15,000×; Insets, 50,000×.) (Scale bars: 500 nm.) (E–J) Morphometric analysis of mitochondrial
ultrastructure. Mitochondrial size (E ) and cristae density (F ). Quantification of mitochondrial number per image (G) and percentage of abnormal
mitochondria per image at 15,000× (H). Evaluation of aspect ratio (I) and format form (J) (see SI Materials and Methods for details). (K ) Mitochondrial
DNA (mtDNA)/nuclear DNA (nDNA) copy number assessed in left ventricular tissue. (L) Assessment of ATP content in left ventricle (n = 6 per group)
and (M ) measurement of ATP synthesis rates in isolated mitochondria in sham conditions and 4 wk after coronary artery ligation, as described in Fig.
3M. All data are shown as mean ± SEM, *P < 0.05 vs. SHAM; two-tailed t test. Numbers in the bars indicate the number of mitochondria analyzed.
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RyR2-S2808A mice harboring nonleaky RyR2 channels exhibi-
ted reduced depletion of calstabin2 from the RyR2 complex in
HF (Fig. 2 A and F), and significantly less RyR2 oxidation and
nitrosylation (Fig. 2 A–C) and reduced post-MI HF progression
(Fig. 2G and Table S1).
Taken together, our experimental findings demonstrate that

SR Ca2+ leak via RyR2, but not IP3R2, channels plays a crucial
role in the pathophysiology of mitochondrial Ca2+ overload and
dysfunction in HF. Our data suggest a feedback loop between SR
and mitochondria in HF in which SR Ca2+ leak triggers mito-
chondrial dysfunction and increases ROS production, which in
turn can further oxidize RyR2 and enhance intracellular Ca2+

leak, contributing to impaired cardiac function post-MI.

Materials and Methods
The targeted deletion of IP3R2 in ventricular cardiomyocytes was obtained by
flanking exon 3 of IP3R2with loxP sites (Fig. S2). Mice harboring the IP3R2flox/flox

allele were bred with MHC-Cre transgenic mice to obtain a cardiac ventricular-
specific ablation of IP3R2. A detailed description of materials and methods for
in vivo experiments (31–35), isolation of adult cardiomyocytes (34, 36), isolation

of mitochondria (37), assessment of mitochondrial dynamics, Ca2+ content,
and membrane potential (34, 37), real-time RT-qPCR (38, 39), immunoprecipi-
tation/immunoblot, and electron microscopy (40) can be found in SI Materials
and Methods.

Ethical Approval. All studies were performed according to protocols approved
by the Institutional Animal Care and Use Committee (IACUC) of Columbia
University.

Statistics. All results are presented as mean ± SEM. Statistical analysis was
performed using an unpaired two-tailed t test (for two groups) and one-
way ANOVA with Tukey–Kramer post hoc test (for groups of three or
more) unless otherwise indicated. P values of less than 0.05 were considered
significant.
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