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Abstract

Goal—Chest auscultation constitutes a portable low-cost tool widely used for respiratory disease 

detection. Though it offers a powerful means of pulmonary examination, it remains riddled with a 

number of issues that limit its diagnostic capability. Particularly, patient agitation (especially in 

children), background chatter, and other environmental noises often contaminate the auscultation, 

hence affecting the clarity of the lung sound itself. This paper proposes an automated multiband 

denoising scheme for improving the quality of auscultation signals against heavy background 

contaminations.

Methods—The algorithm works on a simple two-microphone setup, dynamically adapts to the 

background noise and suppresses contaminations while successfully preserving the lung sound 

content. The proposed scheme is refined to offset maximal noise suppression against maintaining 

the integrity of the lung signal, particularly its unknown adventitious components that provide the 

most informative diagnostic value during lung pathology.

Results—The algorithm is applied to digital recordings obtained in the field in a busy clinic in 

West Africa and evaluated using objective signal fidelity measures and perceptual listening tests 

performed by a panel of licensed physicians. A strong preference of the enhanced sounds is 

revealed.

Significance—The strengths and benefits of the proposed method lie in the simple automated 

setup and its adaptive nature, both fundamental conditions for everyday clinical applicability. It 

can be simply extended to a real-time implementation, and integrated with lung sound acquisition 

protocols.
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I. Introduction

The use of chest auscultation to diagnose lung infections has been in practice since the 

invention of the stethoscope in the early 1800s. It is a diagnostic instrument widely used by 

clinicians to “listen” to lung sounds and flag abnormal patterns that emanate from 

pathological effects on the lungs. While often complemented by other clinical tools, such as 

chest radiography or other imaging techniques, as well as chest percussion and palpation, the 

stethoscope remains a key diagnostic device due to its portability, low cost, and its 

noninvasive nature. Chest auscultation with standard acoustic stethoscopes is not limited to 

resource-rich industrialized settings. In low-resource high-mortality countries with weak 

health care systems, there is limited access to diagnostic tools like chest radiographs or basic 

laboratories. As a result, health care providers with variable training and supervision rely 

upon low-cost clinical tools like standard acoustic stethoscopes to make critical patient 

management decisions. Despite its universal adoption, the use of the stethoscope is riddled 

by a number of issues including subjectivity in interpretation of chest sounds, interlistener 

variability and inconsistency, need for medical expertise, as well as vulnerability to ambient 

noise which can mask the presence of sound patterns of interest.

The issue of environmental noise contaminations is of particular interest, especially in busy 

clinics and rural health centers where a quiet examination environment is often not possible, 

background chatter and other environmental noises are common, and patient agitation 

(especially in children) contaminate the sound signal picked up by the stethoscope. This 

distortion affects the clarity of the lung sound, hence limiting its clinical value for the health 

care practitioner. It also impedes the use of electronic auscultation combined with 

computerized lung sound analysis which are gaining traction in an effort to remedy the 

inconsistency limitations of standard (acoustic) stethoscope devices and to provide an 

objective and standardized interpretation of lung sounds [1]–[3]. However, these automated 

approaches have mainly been validated in well-controlled or quiet clinical settings with 

adult subjects. The presence of background noise impedes the applicability of these 

algorithms or leads to unwanted false positives [4].

The current study investigates the use of multiband spectral subtraction to address noise 

contaminations in busy patient-care settings, where prominent subject-centric noise and 

room sounds corrupt the recorded signal and mask the lung sound of interest. The setup 

employs a simple digital stethoscope with a mounted external microphone capturing the 

concurrent environmental or room noise. The algorithm focuses on two parallel tasks: 1) 

suppress the surrounding noise; 2) preserve the valuable lung sound content. While spectral 

subtraction is a generic signal denoising approach, its applicability to the problem at hand is 

nontrivial in two ways: First, although the signal of interest (i.e., lung sounds) has relatively 

well-defined characteristics [5], [6], unknown anomalous sound patterns reflecting lung 

Emmanouilidou et al. Page 2

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pathology complicate the analysis of the obtained signal. These adventitious patterns vary 

from quasi-stationary events, such as wheezes to highly transient sounds such as crackles 

[7], [8]. They are unpredictable irregular patterns whose signal characteristics are not well 

defined in the literature [9]–[11]. Yet, any processing needs to faithfully preserve these 

occurrences given their presumed clinical and diagnostic significance. Second, noise is 

highly nonstationary and its signal characteristics differ in the degree of overlap with the 

signal of interest. Noise contaminations can include environmental sounds picked up in the 

examination room (chatter, phones ringing, fans, etc.), patient-specific noises (child cry, 

vocalizations, agitation), or electronic/mechanical noise (stethoscope movement, mobile 

interference).

This paper tries to balance the suppression of the undesired noise contaminations while 

maintaining the integrity of the lung signal along with its adventitious components. The 

multiband spectral scheme presented here carefully tunes the critical parameters in spectral 

subtraction in order to maximize the improved quality of the processed signal. The 

performance of the proposed approach is validated by formal listening tests performed by a 

panel of licensed physicians as well as objective metrics assessing the quality of the 

processed signal. Sections II and III describe the theory and implementation details of the 

proposed algorithm. Section IV discusses the formal listening experiment setup. Evaluation 

results are described in Section V, including comparisons to existing methods. We finish 

with a general discussion of the proposed approach in Section VI.

II. Multiband Spectral Subtraction

Spectral subtraction algorithms have been widely used in fields of communication and 

speech enhancement to suppress noise contaminations in acoustic signals [12], [13]. The 

general framework behind these noise reduction schemes can be summarized as follows: let 

y(n) be a known measured acoustic signal of length N and assume that it comprises of two 

additive components x(n) and d(n), corresponding respectively to a clean unknown signal we 

wish to estimate and an inherent noise component which is typically not known. In many 

speech applications, the noise distortion is estimated from silent periods of the speech signal 

that are identified using a voice activity detector [13]. Alternatively, the noise distortion can 

be estimated using a dual or multimicrophone setup, where a secondary microphone picks 

up an approximate estimate of the noise contaminant. Here we employ the latter, a dual-

microphone setup capturing both the internal signal coming from the stethoscope itself, and 

the external signal coming from a mounted microphone. The external signal is assumed to 

be closely related to the actual noise that contaminates the lung signal of interest, and shares 

its spectral magnitude characteristics with possibly different phase profiles due to their 

divergent traveling trajectories to the pickup microphones.

Here noise is assumed to have additive effects on the desired signal and originate through a 

wide-sense stationary process. Without loss of continuity, we alleviate the stationarity 

requirements for the noise process, and assume a smoothly varying process whose spectral 

characteristics change gradually over successive short-time periods. In this paper, such noise 

signal d(n, τ) represents the patient- or room-specific noise signal; x(n, τ) denotes the 
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desired unknown clean lung sound information, free of noise contaminations; and y(n, τ) 

denotes the acoustic information captured by the digital stethoscope

(1)

τ is used to represent processing over short-time windows w(n). In other words, x(n, τ) = 

x(n)w(τ − n) and similarly for y(n, τ) and d(n, τ). For the corresponding frequency-domain 

formulation, let X(ω, τ) denote the discrete Fourier transform (DFT) of x(n, τ), implemented 

by sampling the discrete-time Fourier transform at uniformly spaced frequencies ω. Letting 

Y (ω, τ) and D(ω, τ) be defined in a similar way for y(n, τ) and d(n, τ), (1) becomes: |Y (ω, 

τ)|ej φ y (ω, τ) = |X(ω, τ)|ej φ x (ω, τ) + |D(ω, τ)|ej φ d (ω, τ). Short-term magnitude spectrum |

D(ω, τ)| can be approximated as  using the signal recorded from the external 

microphone. Phase spectrum φd (ω, τ) can also be reasonably replaced by the phase of the 

noisy signal φy (ω, τ) considering that phase information has minimal effect on signal 

quality especially at reasonable signal-to-noise ratios (SNR) [14]. Therefore, the denoised 

signal can be formulated as

(2)

The same formulation can be extended to the power spectral density domain by making the 

reasonable assumption that environmental noise d(n, τ) is a zero-mean process, uncorrelated 

with the lung signal of interest x(n, τ)

(3)

Building on this basic spectral subtraction formulation to synthesize the desired signal, we 

extend this design in a number of ways

1) Extending the subtraction scheme into multiple frequency bands 

. This localized frequency treatment is especially crucial given the 

variable, unpredictable, and nonuniform nature of noise distortions that affect the lung 

recording (see [15] for a discussion of signal characteristics of noise contaminants). 

Looking back in (3), the subtraction term  can be weighted differently across 

frequency bands by constructing appropriate weighting rules (δk) that highlight the most 

informative spectral bands for lung signals.

2) Altering the scheme to weight the subtraction operation across time windows and 

frequency bands by taking into account the current frame’s SNR.

3) Reducing the residual noise in the signal reconstruction by smoothing Y (ω, τ) 

estimate over adjacent frames.

Therefore, for frame τ and frequency band ωk, the enhanced estimated signal spectral 

density is given by
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(4)

Bar notation  signifies a smooth estimate of Y (ωk, τ) over adjacent frames. αk,τ is 

an oversubtraction factor adjusted by the current frame’s SNR, for each band ωk and frame 

τ. δk is a spectral weighting factor that highlights lower frequencies typically occupied by 

lung signals [5, 16] and penalizes higher frequencies where noise interference can spread. 

Partial noise is then added back to the signal (5) using a weighing factor γτ ∈ (0, 1) to 

suppress musical noise effects [12], [17]. The final estimate  is resynthesized using the 

inverse DFT and overlap and add method across frames [13]

(5)

III. Methods

Lung signals were acquired using a Thinklabs ds32a digital stethoscope at 44.1-kHz rate, by 

the Pneumonia Etiology Research for Child Health (PERCH) study group [18]. Thinklabs 

stethoscopes used for the study were mounted with an independent microphone fixed on the 

back of the stethoscope head, capturing simultaneous environmental contaminations without 

any hampering of the physician’s examination. Auscultation recordings were obtained from 

children enrolled into the PERCH study with either World Health Organization-defined 

severe and very severe clinical pneumonia (cases) or community controls without clinical 

pneumonia [19] in a busy clinical setting in Basse, Gambia in West Africa. A total of 22 

infant recordings among hospitalized pneumonia cases with an average age of 12.2 months 

(2–37 months) were considered. Following the examination protocol, nine body locations 

were auscultated for a duration of 7 s each. The last body location corresponded to a cheek 

position and is not used in this study.

Noise contaminations were prominent throughout all recordings in the form of ambient 

noise, mobile buzzing, background chatter, intense subject’s crying, musical toys in the 

waiting room, power generators, vehicle sirens, or animal sounds. Patients were typically 

seated in their mothers’ lap and were quite agitated, adding to the distortion of auscultation 

signal.

A. Preprocessing

All acquired signals were low-pass filtered with a fourth-order Butterworth filter at 4 kHz 

cutoff, downsampled to 8 kHz, and centered to zero mean and unit variance. Resampling can 

be justified by guidelines of the CORSA project of the European Respiratory Society [16], 

as lung sounds are mostly concentrated at lower frequencies.

A clipping distortion algorithm was then applied to correct for truncated signal amplitude 

(occurring when the microphone reached maximum acoustic input). Although clipped 

regions were of the order of a few samples per instance, they produced very prominent 
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signal distortions. The algorithm identifies regions of constant (clipped) amplitude, and 

replaces these regions using cubic spline interpolation [20].

B. Implementation

The proposed algorithm employs a wide range of parameters that can significantly affect the 

reconstructed sound quality. An initial evaluation phase using informal testing and visual 

inspection reduced the parameter space. The preliminary assessment of the algorithm 

suggests that 32 frequency bands were adequate, using frequency-domain windowing to 

reduce complexity. Since the algorithm operates independently among bands, their 

boundaries can affect the final sound output. Two ways of creating the subbands were 

explored: 1) logarithmic spacing along the frequency axis and 2) equienergy spacing. The 

latter spacing corresponds to splitting the frequency axis into band regions containing equal 

proportions of the total spectral energy. Other band splitting methods were excluded from 

analysis after the initial assessment phase.

An important factor related to the frequency binning of the spectrum is the weighing among 

frequency bands, regulated by factor δk in (4). Since interfering noise affects the spectrum in 

a nonuniform manner, we imposed this nonlinear frequency-dependent subtraction to 

account for different types of noise. It can be thought of as a signal-dependent regulator, 

taking into account the nature of the signal of interest. Lung sounds are complex signals 

comprised of various components [16], [21], [22]: normal respiratory sounds typically 

occupy 50–2500 Hz; tracheal sounds reach energy contents up to 4000 Hz, and heart beat 

sounds vary within 20–150 Hz. Finally, wheeze and crackles, the commonly studied 

adventitious (abnormal) events, typically have a range of 100–2500 and 100–500 Hz, 

respectively. Other abnormal sounds like stridor, squawk, low-pitched wheeze or cough, all 

exhibit a frequency profile below 4 kHz. The motivation for appropriately setting factor δk is 

to minimize distortion of lung sounds that typically occupy low frequencies and penalize 

noise occurrences with strong energy content at high frequencies [15]. Our analysis 

suggested two value sets for parameter δk in Table I. In logarithmic spacing, subbands F17, 

F25, F26, and F27 correspond to 80, 650, 850, and 1100 Hz, respectively. In equienergy 

spacing, Fm corresponds to the mth subband whose frequency ranges are signal dependent; 

F17, F25, and F26 roughly correspond to 750, 2000, and 2300 Hz. Comparing the proposed 

sets, δ(1) resulted in stronger suppression of high-frequency content.

This nonlinear subtraction scheme was further enforced by the frequency-dependent 

oversubtraction factor αk,τ defined in (6) which regulates the amount of subtracted energy 

for each band, using the current frame’s SNR. Larger values were subtracted in bands with 

low a posteriori SNR levels, and the opposite was true for high SNR levels. This way, rapid 

SNR level changes among subsequent time frames could be accounted for. On the other 

hand, such rapid energy changes were not expected to occur within a frequency band, 

considering the natural environment where recordings took place; thus, the factor αk,τ could 

be held constant within bands. Such frame-dependent SNR calculations could also remedy 

for a type of signal distortion known as musical noise, which can be produced during the 

enhancement process.
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(6)

The window length for short-time analysis of the signal was another crucial parameter that 

can result in noticeable artifacts, since a long-time window might violate the stationarity 

assumptions made in Section II. Following the initial algorithm assessment phase, we 

proposed two ways of short-time processing: 1) 50-ms window (N = 400) and 90% overlap; 

and 2) 80-ms window (N = 640) with 80% overlap. Hamming windowing w(n) was applied 

in the time waveform to produce all frames. Negative values possibly arising by (4) were 

replaced by a 0.001% fraction of the original noisy signal energy, instead of using hard 

thresholding techniques like half-wave rectification.

Finally, the enhancement factor γτ for frame τ in (5) was an SNR-dependent factor and was 

set closer to 1 for high SNRτ, and closer to 0 for low SNRτ values. For the calculation of 

, the smooth magnitude spectrum was obtained by weighting across ±2 time 

frames, given by  with coefficients W = [0.09, 0.25, 

0.32, 0.25, 0.09].

C. Postprocessing

Typically, time intervals where the stethoscope is in poor contact with the subject’s body 

tended to exhibit insignificant or highly suppressed spectral energy. After the application of 

the enhancement algorithm, intervals with negligible energy below 50 Hz were deemed 

uninformative and removed. A moving average filter smoothed the transition edges.

IV. Human Listener Experiment

The listening experiment was designed with a two-fold purpose: 1) evaluate the 

effectiveness of the proposed enhancement procedure and 2) evaluate the effect of the 

proposed parameters including frequency band binning, window size, and customized band-

subtraction factor δk,τ on the perceived sound quality. All methods were designed within the 

scope of the PERCH study and approved by the Johns Hopkins Bloomberg School of Public 

Health Institutional Board of Review (IRB).

A. Participants

Eligible study participants were licensed physicians with significant clinical experience 

auscultating and interpreting lung sounds from children. A total of 17 physicians (6 pediatric 

pulmonologists and 11 senior pediatric residents) were enrolled, all affiliated with Johns 

Hopkins Hospital in Baltimore, MD, USA, with informed consent, as approved by the IRB 
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at the Johns Hopkins Bloomberg School of Public Health, and were compensated for 

participation.

B. Setup

The experiment took place in a quiet room at Johns Hopkins University and was designed to 

last for 30 min, including rest periods. Data recorded in the field in the Gambia clinic were 

played back on a computer to participants in the listening experiment. Participants were 

asked to wear a set of Sennheiser PXC 450 headphones and listen to 43 different lung sound 

excerpts of 3 s duration each. The excerpts originated from 22 distinct patients diagnosed 

with World Health Organization-defined severe or very severe pneumonia [19]. For each 

excerpt, the participant was presented with the original unprocessed recording, along with 

four enhanced versions A, B, C, D. These enhanced lung sounds were obtained by applying 

the proposed algorithm with different sets of parameter values, as shown in Table II. In 

order to increase robustness of result findings, the experiment was divided into two groups 

consisting of eight and nine listeners, respectively. Each group was presented with a 

different set of lung sound excerpts, making sure that at least one excerpt from all 22 distinct 

patients were contained within each set. In order to minimize selection bias, fatigue, and 

concentration effects, the sound excerpts were presented in randomized order for every 

participant. The list of presented choices was also randomized so that, on the test screen, 

choice A would not necessarily correspond to algorithmic version A for different sound 

excerpts, and similarly for choices B, C, and D.

Listeners were given a detailed instruction sheet and presented with one sound segment at a 

time. They were asked to listen to each original sound and the enhanced versions as many 

times as needed. Listeners indicated their preferred choice while considering the 

preservation or enhancement of lung sound content and breaths, and the perceived sound 

quality. Instructions clearly stated that this was a subjective listening task with no correct 

answer. If participants preferred more than one options, they were instructed to just choose 

one of them. If they preferred all of the enhanced versions the same, but better than the 

original, an extra choice, “Any,” (brief for “Any of A, B, C, D”) was added.

C. Dataset

Data included in the listening experiment was chosen “pseudo-randomly” from the entire 

dataset available. Although initial 3-s segments were chosen randomly from the entire data 

pool, the final dataset was slightly augmented in order to include: 1) abnormal occurrences 

comprising of wheeze, crackles or other; 2) healthy breaths; and 3) abnormal and normal 

breaths in both low- and high-noise environments. A final selection step ensured that 

recordings from different body locations were among the tested files.

V. Results

The validation of the proposed enhancement algorithm requires a balance of the audio signal 

quality along with a faithful conservation of the spectral profile of the lung signal. It is also 

important to consider that clinical diagnosis using stethoscopes is ideally done by a 

physician or health care professional whose ear has been trained accordingly, i.e., for 
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listening to stethoscope-outputted sounds. Any signal processing to improve quality should 

not result in undesired signal alterations that stray too far from the “typical” stethoscope 

signal, since the human ear will be interpreting the lung sounds at this time. For instance, 

some aspects of filtering result in “tunnel hearing” effects, which would be undesirable even 

if the quality is maintained. In order to properly assess the performance of the proposed 

algorithm, we used three forms of evaluations: visual inspection, objective signal analyses, 

and formal listening tests, as detailed below. We also used the field recordings employed in 

the current study to compare the performance of existing enhancement algorithms from the 

literature.

A. Visual Inspection

Fig. 1 shows the time–frequency profile of four lung sound excerpts appearing per column. 

Typical energy components that emerge from such spectrograms are the breaths and heart 

beats, producing repetitive patterns that follow the child’s respiratory and heart rate—[see 

(a) and (b)]. Such energy components are well preserved in the enhanced signals (bottom). 

Middle rows depict concurrent noise distortions captured by the external microphone. 

Contamination examples include (a) mobile interference and (b)–(d) background chatting or 

crying, which have successfully been suppressed or eliminated, providing a clearer image of 

the lung sound energies.

B. Objective Validation of Processed Signals

To further assess improvements on the processed signals, objective methods were used to 

compare the signals before and after processing. Choosing an evaluation metric for 

enhancement is a nontrivial issue; many performance or quality measures commonly 

proposed in the literature often require knowledge of the true clean signal or some estimate 

of its statistics [23]. This is not feasible in our current application: biosignals, such as lung 

sounds, have both general characteristics that can be estimated over a population, but also 

carry individual traits of each patient that should be carefully estimated. It is also important 

to maintain the adventitious events in the lung sound while mitigating noise contamination 

and other distortions. To provide an objective assessment of the proposed method, we 

employed a number of qualitative and quantitative measures coming from 

telecommunication and speech processing fields but adapted to the problem at hand. The 

metrics were chosen to assess how much shared information remains in the original and 

enhanced signals, relative to the background noise recording. While it is important to stress 

that these are not proper measures of signal quality improvement, they provide an 

informative assessment of shared signal characteristics before and after processing.

1) Segmental Signal-to-Noise Ratio (fSNRseg): Objective quality measure estimated over 

short-time windows accounting for signal dynamics and non-stationarity of noise [13]
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with , where wk represents the 

weight for frequency band k,  represents the processed signal, and X typically represents 

the clean (desired) signal. As mentioned above, in this paper, X will represent the 

background noise, since the clean uncontaminated signal in not available. SNRF is 

calculated over short-time windows of 30 ms to account for signal dynamics and non-

stationarity of noise using a Hanning window. For each frame, the spectral representations 

X(k, τ) and  are computed by critical band filtering. The bandwidth and center 

frequencies of the 25 filters used and the perceptual (Articulation Index) weights wk follow 

the ones proposed in [24] and [13]. Using the described method, fSNRseg value can reach a 

maximum of 35 when the signals under comparison are identical. Comparatively, a 

minimum value just below −8 can be achieved when one of the signals comes from a white 

Gaussian process.

2) Normalized-Covariance Measure (NCM): A metric used specifically for estimated speech 

intelligibility (SI) by accounting for audibility of the signal at various frequency bands. It is 

a speech-based speech transmission index measure capturing a weighted average of a signal 

to noise quantity SNRN, where the latter is calculated from the covariance of the envelopes 

of the two signals over different frequency bands k [25] and normalized to [0,1]. The band-

importance weights wk followed ANSI-1997 standards [26]. Though this metric is speech-

centric (as many quality measures in the literature), it is constructed to account for audibility 

characteristics of the human ear, hence reflecting a general account of improved quality of a 

signal as perceived by a human listener

3) Three-Level Coherence Speech Intelligibility Index (CSII): The CSII metric is also a SI-

based metric based on the ANSI standard for the speech intelligibility index (SII). Unlike 

NCM, CSII uses an estimate of SNR in the spectral domain, for each frame τ = 1,…,T : the 

signal-to-residual ; the latter is calculated using the roex filters and the magnitude-

squared coherence followed by [0,1] normalization. A 30-ms Hanning window was used and 

the three-level CSII approach divided the signal into low-, mid-, and high-amplitude regions, 

using each frame’s root-mean-square level information [13], [27]

All metrics generally require knowledge of the ground truth undistorted lung signal, which 

is not available in our setup. In this paper, we apply them to contrast how much information 

is shared between the improved and the background (noise) signal, relative to the 
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nonprocessed (original) auscultation signal. Specifically, each metric was computed between 

the time waveforms of the original y(n) and the background noise  signals, then 

contrasted for the enhanced  and the background  signals. The higher the achieved 

metric value, the “closer” the compared signals are, with respect to their sound contents. Fig. 

2(a) shows histogram distribution results for each metric: fSNRseg yielded, on average, a 

value of 1.02 between the original and the noise signals, likely reflecting leak through the 

surrounding environment to the internal microphone. Such measure was reduced to −0.44 

when contrasting the improved with the noise signal indicating reduced joint information. 

The two distributions were statistically significantly different (paired t-test: t-statistic = 

15.99 and p-value pt = 3E − 13; Wilcoxon: Z-statistic = 4.5 and p-value pw = 8E − 6) 

providing evidence that the original signal was “closer”—statistically—to the surrounding 

noise, relative to the enhanced signal. Significant difference was also observed in all other 

metrics [see Fig. 2(a)] with NCM (pt = 1E − 10; pw = 2 E − 6) , CSIImed (pt = 1E − 10; pw = 

3 E − 5), and CSIIhigh (pt = 7E − 10; pw = 7E − 6).

C. Listening Experiment

While objective signal metrics hint to significant improvements in the original recording 

postprocessing, the way to effectively validate the denoising value of the proposed algorithm 

along with its clinical value for a health care professional is via perceptual listening tests by 

a panel of experts. Following the methods described in Section IV, the perceived quality of 

the processed signals was assessed with formal listening evaluations. Fig. 2(b) summarizes 

the opinions of the panel of experts. Considering all listeners and all tested sound excerpts, 

the bars indicate the percentage of preference among the available choices. Bar plots were 

produced by first forming a contingency table per listener, counting his/her choice 

preferences, and then averaging across listeners. The vertical lines depict the standard 

variation among all listeners. The listed choices on the x-axis correspond one by one to the 

ones presented during the listening test, where choice Any of A, B, C, D has been 

abbreviated to Any. An extra panel [A to Any] is added here illustrating preference 

percentages for any enhancement version of the algorithm, irrespective of choice of 

parameters. On average, listeners prefer mostly choice Any (34.06% of the time), followed 

by choices B and C. Overall, listeners prefer the enhanced signal relative to the original 

unprocessed signal 95.08% of the time. Considering responses across groups of listeners, 

results are consistent across Group 1 and Group 2. A statistical analysis across the two 

groups using a parametric t-test and a nonparametric Wilcoxon rank sum test shows no 

difference among the two populations except possibly for choice D. The corresponding p-

values for the t-test and the Wilcoxon test (pt, pw) are: for choice Original: (0.28, 0.23); 

choice A: (0.37, 0.52); choice B: (0.74, 0.62); choice C: (0.33, 0.74); choice D: (0.08, 0.10); 

choice Any: (0.11, 0.05); and choice [A to Any]: (0.28, 0.23).

Analyzing the results, choice C is preferred over B when the test sound consists of a low or 

fade normal breath. To better understand this preference, it is important to note that 

algorithm C is relaxed for higher frequencies due to the δk parameter. Qualitatively, all low-

breath excerpts retained the normal breath information after noise suppression, but with an 

added soft-wind sound effect. This wind distortion or hissing was at a lower frequency range 
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for algorithm B and proved to be less pleasant than the one produced by algorithm C, which 

ranged in higher frequencies. This observation was consistent across different files and 

listeners. Looking further into algorithm C,a larger preference variation was noticed for 

Group 2 when compared to Group 1. This variation was found to be produced by two 

participants who preferred C over any other choice 35% of the time and both preferred the 

original only in two cases.

The original recording was preferred 4.9% of the time. While this percentage constitutes a 

minority on the tested cases, a detailed breakdown provides valuable insights on the 

operation of the enhancement algorithm. In most cases, it is determined that low-volume 

resulting periods affect the listeners’ judgments.

1) Clipping distortions make abnormal sound events even more prominent. Clipping 

tends to corrupt the signal content and produce false abnormal sounds for loud breaths. 

However, when such clipping occurs during crackle events, it results in more distinct 

abnormal sounds, which can be better perceived than a processed signal with muted 

clipping. For two such sound files in Group 1, 2/8 users prefer the original raw audio 

and for one such file in Group 2, 2/9 prefer the original.

2) Child vocalization are typically removed after enhancement. Since the algorithm 

operates with the internal recording as a metric, any sound captured weakly by the 

internal but strongly by the external microphone is flagged as noise. One such file in 

Group 2 leads 4/9 users to prefer the original sound: a faint child vocalization is highly 

suppressed in the enhanced signal. As users are not presented with the external 

recording information, it can be hard to tell the origin of some abnormal sounds that 

overlap with profiles of abnormal breaths. Nevertheless, a postanalysis on the external 

microphone shows that this is indeed a clear child vocalization.

3) Reduced normal breath sounds. The proposed algorithm has an explicit subtractive 

nature; the recovered signal is, thus, expected to have lower average energy compared 

to the original internal recording. Before the listening test, all recordings are amplified 

to the same level; however, isolated time periods of the enhanced signal are still 

expected to have lower amplitude values than the corresponding original segment, 

especially for noisy backgrounds. This normalization imbalance has perceivable effects 

in some test files. For auscultation recordings in lower site positions, breath sounds can 

be faintly heard, and the subtraction process reduces those sounds even further. Two 

such cases were included in the listening test, where suppression of a loud power 

generator noise resulted in a faded postprocessed breath sound. In this case, listeners 

preferred the original file where the breath sounds stronger than the processed version.

A finalized enhancement algorithm is proposed consisting of parametric choices that 

combine versions B and C. The smoother subtraction scheme enforced by factor δ(2) is kept 

along with the equilinear model of frequency band splitting using a 50-ms frame size 

window. An informal validation by a few members of the original expert panel confirms that 

the combined algorithm parameters result in improved lung sound quality and preservation 

of low breaths.
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D. Relation to Previous Work

A proper comparison to existing noise suppression methods for auscultation signals is 

largely limited due to the scarce literature on this topic, especially when dealing with busy 

real-life environments, particularly in pediatric patients. Published methods typically 

consider auscultations in soundproof chambers, highly controlled environments with low 

ambient or Gaussian noise [28]–[29]. Moreover, the term noise often refers to suppressing 

heart sounds in the context of healthy lung sound analysis [30], [31], or to separate normal 

airflow from abnormal explosive occurrences [32], [33]. Extending results from published 

studies to realistic settings is nontrivial, particularly in nonhealthy patients where abnormal 

lung events occur in an unpredictable manner and whose signal characteristics may overlap 

with those of environmental noise.

Here, we contrast our results with the performance of a published lung sound enhancement 

scheme [34], which mainly focuses on the postclassification of auscultation sounds, rather 

than the production of improved-quality auscultation signals to be used by health care 

professionals in lieu of the original recording. The authors adopted the speech-based spectral 

subtractive scheme of Boll [35], which has well documented shortcomings [36], [37]. For a 

fairer comparison, we used a more robust instantiation of speech-based spectral subtraction, 

proposed in [13] and [38], which we call here speechSP. We contrasted our proposed 

method with speechSP, maintaining the same window size, window overlap factor, and 

number of frequency bands of Section III-B; both algorithms were applied on the same 

preprocessed signals after downsampling, normalizing, and correcting for clipping 

distortions.

A visual inspection of the speechSP method is sufficient to observe the notable resulting 

artifacts. Fig. 3(a) illustrates an example comparing the two methods when applied on the 

same auscultation excerpt. SpeechSP algorithm highly suppressed the wheezing segment 

around 2 s in Fig. 3(a), along with the crackle occurrences around 0.5 and 3.5 s. In this 

example (and all cases in the current study—not shown), the speechSP method suffered 

from significant sound deterioration; and in the majority of cases, the speechSP-processed 

signal was corrupted by artifacts impeding the acoustic recognition of alarming adventitious 

events. Overall, the combination of visual inspection, signal analysis and informal listening 

tests, clearly indicates that speechSP maximizes the subtraction of background noise 

interference, at the expense of deterioration of the original lung signal as well as significant 

masking of adventitious lung events. Both effects are largely caused by its speech-centric 

view which considers specific statistical and signal characteristics for the fidelity of speech 

that do not match the nature of lung signals.

Next, we compared the proposed method to active noise cancellation (ANC) schemes. Such 

algorithms typically focus on noise reduction using knowledge of a primary signal and at 

least one reference signal. Here, we consider the case of a single reference sensor and use a 

feed-forward Filtered-X Least Mean Squared algorithm (FX-LMS). FX-LMS has been 

previously used for denoising in auscultation signals recorded in a controlled acoustic 

chamber with simulated high-noise interference [39]. Here, we adopt an implementation of 

the normalized LMS (NLMS) as in [39] and [40]. Using all signals of the study, we tested 

Emmanouilidou et al. Page 13

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the effectiveness of the NLMS in suppressing external noise interference. The filter 

coefficients were optimized in the MSE sense with filter tap-order NLMS varying between 

[4,…, 120], step size ηLMS varying between [1E − 8, … , 2] and denominator term offset 

step size CLMS in [1E − 8, … , 1E − 2]. A representative example is shown in Fig. 3(b); zero 

initial filter weights were assumed with the optimal solution occurring for (NLMS, ηLMS, 

CLMS) = (90, 5E − 7, 1E − 8). Our results indicate that NLMS fails to sufficiently reduce the 

effect of external noise, especially in low SNR instances or during abrupt transitions in 

background interferences.

As previously noted in [40], difficult acoustic environments typically pose a challenge to 

ANC methods for auscultation where ambient recordings are rendered ineffective as 

reference signals. This limitation is due to a number of reasons [41]. First, the presence of 

uncorrelated noise between the primary and reference channels largely affects the 

convergence of NLMS and the performance of the denoising filter. Nelson et al. [40] have 

indeed demonstrated that using an external microphone is suboptimal in case of auscultation 

recordings, proposing use of accelerometer-based reference mounted on the stethoscope in 

line with the transducer, a nonfeasible setup for our study. Furthermore, iterative filter 

updates in the NLMS are heavily dependent on the statistics of the observed signal and 

reference noise [42]. Abrupt changes in signal statistics pose real challenges in updating 

filter parameters fast enough to prevent divergence [43], [44]. This is particularly true in 

field auscultation recordings where brusque changes in the signal often occur due to poor 

body seal of the stethoscope—caused by child movement or change of auscultation site. 

Noise sources are also abruptly appearing and disappearing from the environment (e.g., 

sudden patient cry, phone ring); hence, posing additional challenges to the convergence of 

the algorithm without any prior constraints or knowledge about signal statistics or 

anticipated dynamics. Furthermore, unfavorable initial conditions of the algorithm can 

highly affect the recovered signal and lead to intractable solutions.

VI. Discussion

In this paper, the task of suppressing noise contaminations from lung sound recordings is 

addressed by proposing an adaptive subtraction scheme that operates in the spectral domain. 

The algorithm processes each frequency band in a nonuniform manner and uses prior 

knowledge of the signal of interest to adjust a penalty across the frequency spectrum. It 

operates in short-time windows and uses the current frame’s signal-to-noise information to 

dynamically relax or strengthen the noise suppression operation. As is the case with most 

spectral subtraction schemes, the current algorithm is formulated for additive noise and is 

unable to handle convolutive or nonlinear effects. A prominent example of such distortions 

are clipping effects which are processed separately in this paper and integrated with the 

proposed algorithm.

The efficiency and success of the proposed algorithm in suppressing environmental noise, 

while preserving the lung sound content, was validated by a formal listening test performed 

by a panel of expert physicians. A set of abnormal and normal lung sounds were used for 

validation, chosen to span the expected variability in auscultation signals, including the 

unexpected presence of adventitious lung events and low breath sounds. The expert panel 
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judgments reveal a strong preference for the enhanced signal. Post hoc analysis and informal 

followup listening tests suggest that simple volume increase can help to balance few cases 

where the desired lung sound is perceived as weak.

Over the last years, an augmented literature has emerged on lung sound processing with the 

aid of computerized analysis. Most popular work has been on airflow estimation, feature 

extraction, and detection of abnormal sounds and classification, while recordings were 

acquired in quiet or soundproof rooms to overpass the inherent difficulty of noisy 

environments. In this context, noise cancellation typically refers to heart sound suppression 

and a wide range of techniques have successfully been used: high-pass filtering, adaptive 

filtering, higher-order statistics, independent component analysis, or multiresolution analysis 

[30], [32], [45]. On the other hand, very few studies address ambient noise in lung sound 

recordings and results are typically presented on a small number of sounds, using graphical 

methods or informal listening [33], [46]. This paper focuses on real-environment noise 

cancellation, applicable to both normal and abnormal respiratory sounds, and evaluated on a 

large scale by objective/quality measures and a panel of expert physicians.

The strengths and benefits of the proposed paper lie in the simple automated setup and its 

adaptive nature; both are fundamental conditions for applicability in everyday clinical 

environments, especially in crowded low-resource health centers, where the majority of 

childhood respiratory morbidity and mortality takes place. By design, the proposed approach 

can be simply extended to a real-time implementation and integrated with lung sound 

acquisition protocols. By improving the quality of auscultation signals picked-up by 

stethoscopes, the proposed study hopes to provide medical practitioners with an improved 

recording of lung signals that minimizes the effect of environmental distortions and 

improves and facilitates the interface between auscultation and automated methods for 

computerized analysis and recognition of auscultation signals.
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Fig. 1. 
Spectrogram representation of four lung sound excerpts. Top panel: internal microphone; 

middle panel: external microphone recording; bottom panel: signal as outputted by spectral 

subtraction algorithm B. The quasi-periodic energy patterns, more pronounced in (a) and (b), 

correspond to the breathing and heart cycles and are well preserved in the enhanced signal. 

(a) Electronic interference contaminations and (b) soft background cry have successfully 

been removed. Panels (c) and (d) show cases heavily contaminated by room noise and loud 

background crying which have substantially been suppressed using the proposed algorithm. 

Notice how concurring adventitious events were kept intact in (c) at 1.5–3 s and in (d) at 

0.6–0.8 s . The period at the beginning of (d) corresponded to an interval of no contact with 

the child’s body and was silenced after the postprocessing algorithm.

Emmanouilidou et al. Page 20

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
(a) Average results with error bars on the evaluation of objective, quality, and intelligibility 

measures for original noisy signal (left bar) and the enhanced signal (right bar), compared 

with noise as the ground truth. Enhanced signals were found to be more “distant” 

representations of the noise signals. Stars indicate statistically significant differences. (b) 

Average responses of the listening text where bars indicate the preference percentage per 

choice. Left: overall results, comparing average preference of the original sounds versus 

preference of any of the enhanced versions. Panel [A to Any] includes choices {A, B, C, D, 

Any}; Right: the breakdown among all choices. Choice Any of A,B,C,D has been abbreviated 

to Any.
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Fig. 3. 
Spectrogram illustrations comparing the proposed method with (a) speechSP and (b) FX-

LMS applied on the same sound excerpt. SpeechSP suppresses important lung sounds like 

crackle patterns (black circles) and wheeze pattern (blue circle). FX-LMS convergence is 

challenged by both the parametric setup and the complex, abrupt noise environment 

resulting in non-optimal lung sound recovery. Colormap is the same as Fig. 1.
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TABLE I

TWO PROPOSED SETS OF VALUES FOR δk

fk band range δk
(1)

 value δk
(2)

 value

(0, F17 ] 0.01 0.01

(F17 , F25 ] 0.015 0.02

(F25 , F26 ] 0.04 0.05

(F26 ,F27] 0.2 0.7

else 0.7 0.7
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TABLE II

IMPLEMENTATION DETAILS BEHIND ALGORITHMS A, B, C, D RUNNING ON DIFFERENT SHORT-TIME ANALYSIS WINDOWS, FREQUENCY BAND SPLITTING 

AND SELECTION OF THE BAND-SUBTRACTION FACTOR δk

A B C D

Window (ms) 50 50 50 80

Band Split log equilinear log log

Selection δk δk
(1) δk

(1) δk
(2) δk

(1)

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2016 September 01.


