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Abstract

A main goal of the U.S. Tox21 program is to profile a 10K-compound library for activity against a 

panel of stress-related and nuclear receptor signaling pathway assays using a quantitative high-

throughput screening (qHTS) approach. However, assay artifacts, including nonreproducible 

signals and assay interference (e.g., autofluorescence), complicate compound activity 

interpretation. To address these issues, we have developed a data analysis pipeline that includes an 

updated signal noise–filtering/curation protocol and an assay interference flagging system. To 

better characterize various types of signals, we adopted a weighted version of the area under the 

curve (wAUC) to quantify the amount of activity across the tested concentration range in 

combination with the assay-dependent point-of-departure (POD) concentration. Based on the 32 

Tox21 qHTS assays analyzed, we demonstrate that signal profiling using wAUC affords the best 

reproducibility (Pearson's r = 0.91) in comparison with the POD (0.82) only or the AC50 (i.e., 

half-maximal activity concentration, 0.81). Among the activity artifacts characterized, cytotoxicity 

is the major confounding factor; on average, about 8% of Tox21 compounds are affected, whereas 

autofluorescence affects less than 0.5%. To facilitate data evaluation, we implemented two 

graphical user interface applications, allowing users to rapidly evaluate the in vitro activity of 

Tox21 compounds.

Keywords

qHTS data analysis; in vitro activity profiling; Tox21; concentration-response curve

Corresponding Author: Jui-Hua Hsieh, Division of the National Toxicology Program, National Institute of Environmental Health 
Sciences, Mail Code K2-17, Research Triangle Park, NC 27709, USA. jui-hua.hsieh@nih.gov. 

Supplementary material for this article is available on the Journal of Biomolecular Screening Web site at http://jbx.sagepub.com/
supplemental.

Declaration of Conflicting Interests: The authors declared no potential conflicts of interest with respect to the research, authorship, 
and/or publication of this article.

HHS Public Access
Author manuscript
J Biomol Screen. Author manuscript; available in PMC 2015 September 14.

Published in final edited form as:
J Biomol Screen. 2015 August ; 20(7): 887–897. doi:10.1177/1087057115581317.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://jbx.sagepub.com/supplemental
http://jbx.sagepub.com/supplemental


Introduction

Tox21 is a U.S. federal interagency collaboration involving the National Institute of 

Environmental Health Sciences (NIEHS)/National Toxicology Program (NTP), the U.S. 

Environmental Protection Agency's (EPA's) National Center for Computational Toxicology, 

the U.S. Food and Drug Administration, and the National Center for Advancing 

Translational Sciences (NCATS). Currently, a major effort is screening a 10K-compound 

library against a panel of assays related to stress and nuclear receptor signaling pathways.1

Tox21 employs a quantitative high-throughput screening (qHTS) approach to test 

compounds at multiple concentrations as opposed to using a single concentration typical for 

HTS in drug discovery. This facilitates the detection of weakly active compounds, an 

important outcome because such compounds may also cause adverse health outcomes in 

vivo, especially under chronic exposure conditions.2 Moreover, systematic activity profiling 

across a broad range of concentrations might help elucidate the complex interactions 

between chemicals and diverse biological networks.

Ideally, “actives” in qHTS assays are (1) reproducible in the same assay across experimental 

runs3 and (2) relevant to the pathway of interest.4 Several approaches for activity 

classification have been developed to analyze qHTS data5–9; however, these approaches 

tend to focus on the first criterion more than the second criterion. Each criterion links to 

different challenges of hit calling. For criterion 1, the challenge is to distinguish robust from 

nonrobust signals and involves the identification and removal of nonreproducible artifacts 

such as noise and technical artifacts at the well or plate level.6,10,11 Increased attention is 

now directed at criterion 2,12 in which the challenge is to identify compound-dependent 

assay interference (i.e., reproducible artifacts).13 Tox21 qHTS technologies rely heavily on 

sensitive light-based detection methods using either fluorescence (e.g., β-lactamase reporter) 

or luminescence (e.g., luciferase reporter). For example, in activation-type assays, 

autofluorescent compounds or stabilizers of luciferase could result in reproducible, strong 

signals that are false-positives. Similarly, for inhibition-type assays, it can be difficult to 

separate compound-induced cytotoxicity from the response of interest. Counterscreens can 

help to identify compounds that interfere with the assay.13 Among the Tox21 assays, 

counterscreens to identify autofluorescent and cytotoxic compounds are used. In addition, it 

is useful to flag those compounds with substructures that tend to be promiscuous in HTS 

assays.14,15 Thus, the challenge is to effectively integrate knowledge from multiple sources.

Moreover, there are limitations inherent to the qHTS pipeline analysis approaches currently 

used for activity profiling. The Curve Class approach5 developed at NCATS has been 

widely used for prioritizing actives in qHTS data; it provides a categorical activity outcome 

(i.e., Curve Class, representing curve data quality) and other activity metrics including 

efficacy (i.e., Emax, maximal elicited response) and the AC50 (i.e., half-maximal response 

concentration). Although a categorical activity outcome is easy to interpret, it is not ideal for 

numerical activity ranking. Furthermore, the AC50 by itself might be inadequate when 

profiling compounds with widely differing efficacies (i.e., compounds with the same AC50 

value but different efficacies should be treated differently) or could be inaccurate when 

based on concentration-response curves with poor data quality.16 The three-stage approach7 

Hsieh et al. Page 2

J Biomol Screen. Author manuscript; available in PMC 2015 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



developed by Shockley for qHTS data adopts a monotonicity model but without considering 

the impact of outlier data. Thus, the approach might not accurately handle severely 

nonmonotonic curves, which could happen in qHTS data due to, for example, cytotoxicity or 

interference with protein trafficking.

To address these issues, we developed a data analysis pipeline for evaluating Tox21 qHTS 

data. Although specific for such data, some of the pipeline's components can be applied to 

other concentration-response screening projects. We applied the pipeline to data from 32 

assays covering 20 pathways of interest. We found that signal reproducibility greatly 

improved after removing the nonreproducible artifacts, whereas, as expected, the number of 

compounds classified as active was reduced after taking cytotoxicity and autofluorescence 

into account. Finally, to facilitate Tox21 data exploration, we designed graphical user 

interfaces (GUIs) for the activity profiling data analyzed by the pipeline.

Methods

Tox21 10K Library

The Tox21 10K library (http://www.epa.gov/ncct/dsstox/sdf_tox21s.html) includes three 

sublibraries, each provided by a separate Tox21 partner, and collectively consists of 

∼10,500 substances (∼8300 unique compounds). The sublibraries were named EPA, NPC 

(National Institutes of Health Chemical Genomics Center Pharmaceutical Collection), and 

NTP. Each of the sublibraries contains three 1536-well compound plates (A, B, C), and each 

compound plate was screened at 15 concentrations on three independent runs (Suppl. Fig. 

S1). In total, 405 plates (3 agencies × 3 compound plates × 3 screening plates × 15 

concentrations) were used in the analysis, resulting in at least ∼30,000 (10,000 substances 

screened on 3 separate days) concentration-response curves for each assay.

Tox21 Assays

At the time of this analysis, the Tox21 10K compound library had been screened in 32 

assays covering 20 different pathways related to stress response and nuclear receptor 

activity. The names of these 20 pathways are provided in Table 1. The assays are classified 

into three groups: (1) activation-type assays (10), (2) inhibition-type assays (8), and (3) 

cytotoxicity assays (14). These Tox21 qHTS assays use either fluorescence (e.g., β-

lactamase reporter) or luminescence (e.g., luciferase reporter) technology. The luciferase 

reporter gene assay has only one assay readout; however, the β-lactamase report gene assay 

has two assay readouts: background (channel 1, ch1) and gene expression readout (channel 

2, ch2), which are used to calculate a ratio (ch2/ch1) for analysis. The complete assay names 

as well as their classification can be found in Supplemental Table S1.

Pipeline Components

The concentration-response data preprocessed (normalization and pattern correction) by 

NCATS were used for pipeline analysis (Fig. 1a). This pipeline consisted of components at 

the plate level (signal noise filtering, curation, and quantification), at the substance/source 

level (assay interference identification), and at the compound level (hit calling/ranking). The 

source code of plate-level component (Curvep) can be found in GitHub (Curvep: https://
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github.com/sedykh/curvep). The components at other levels were implemented in R (version 

3.01) and Konstanz Information Miner (KNIME, http://knime.org, version 2.92). The data 

processed by the pipeline and the source code in each component can be found in the Odum 

Institute Dataverse Network (http://arc.irss.unc.edu/dvn/dv/curvepwauc). The 

documentation of each component for Tox21 data can be found in the Supplementary 

Material.

Plate-Level Components

Signal noise filtering and curation—We processed the normalized concentration-

response data using an established qHTS noise-filtering algorithm (Curvep).11 Curvep 

adjusts data points that violate monotonic concentration-response pattern and suppresses 

near-baseline noise using a user-defined baseline noise threshold (THR). To obtain optimal 

baseline noise threshold values for Curvep, a range of THR values was tested. The range was 

estimated by the assay-dependent standard deviation (SD) parameter (Suppl. Table S1), 

which is the standard deviation of the responses (after normalization and pattern correction) 

in the DMSO control plates in each qHTS assay. After Curvep, the curves were labeled 

either as clean signals or as having nonreproducible artifacts. The common nonreproducible 

artifacts in qHTS curves were pin-tool compound carryover across assay plates, baseline 

shift, and false spikes (Suppl. Fig. S3a, e, f; Table 2). A pattern recognition algorithm (i.e., 

signal curation) has been newly implemented into Curvep (Supplemental Material, Methods) 

to handle these artifacts.

Signal quantification—A new parameter, weighted version of the area under the curve 

(wAUC), was introduced to quantify the strength of the assay signal after noise filtering and 

curation by Curvep. The wAUC is the product of the point of departure (POD) and the 

AUC, normalized by the test concentration range (eq 1).

(1)

The POD is defined as the concentration at which the response exceeds the assay-dependent 

noise threshold and is calculated by linear interpolation between the two concentration 

points, where their range of response includes the noise threshold. All molar concentrations 

(M) were converted using the negative logarithm with base 10; thus, higher POD values 

were equivalent to more potent responses. For compounds classified as inactive over the 

concentrations tested (i.e., flat curves), the highest tested concentration was used as the 

POD. Although there was no direction on the “strength” of the signal, we used positive 

values for increasing signals and negative values for decreasing signals when analyzing data 

at the source level.

Substance/Source-Level Components

Assay interference identification—Not all signals could be directly translated as 

activities. We flagged signals that might be caused by compound-dependent assay 

interference (i.e., reproducible artifacts that include autofluorescence, cytotoxicity, 

contradictory readout, and reverse signal; Table 2). The data from the fluorescence-based 
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assays (PubChem AID 720674, 720675, 720678-720787, https://pubchem.ncbi.nlm.nih.gov/

pcassay/), which were conducted in two cell lines (HepG2 and Hek293) and cell-free 

medium, were used to identify autofluorescent compounds. A substance is flagged as 

autofluorescent in β-lactamase assays if its ch2, ratio, and autofluorescence counterscreen 

data all have activity higher than the minimum activity (wAUC > T1, see the “Hit Calling/

Ranking” section). A substance is flagged as having a contradictory readout if the directions 

of the wAUC signals in ch2 and ratio readouts do not correspond. Reverse signal refers to 

those compounds that show decreasing/increasing signals (judging by wAUC value) in 

activation/inhibition–type assays, respectively, irrelevant to the designed direction. Also, for 

each inhibition-type assay, a cytotoxicity assay was multiplexed in the same well. We 

flagged decreasing signals that may be caused by cytotoxicity if the POD separation 

between the inhibitory signal and the cytotoxicity signal is insignificant (PODprimary – 

PODviability < 0.5, p > 0.05, Student t test). Selection of the 0.5 log10 unit was based on the 

average potency value variation of the plate positive controls.

Compound-Level Components

Hit calling/ranking—We classified the compounds into active, marginal active, inactive, 

and inconclusive (i.e., assay interference) based on their flags and two assay-dependent 

wAUC thresholds (T1 and T2; Fig. 1b). T1 and T2 are two thresholds that are intended to 

account for the minimum required activity and biological relevance, respectively. T1 is 

defined as a value equal to the mean plus 3 standard deviations (SD) of the wAUC 

distribution from the simulated curves with a single-point response. The single-point 

responses ranged from 2.5 SD to 3 SD of responses in the DMSO control plates with an 

incremental step equivalent to 0.1. The POD values ranged between the last two highest 

concentrations with an incremental step equivalent to 0.01. The wAUC values were 

calculated from the enumeration of these hypothetical curves. T2 is defined as the median 

wAUC value of the curves, which have half-maximal response concentration (AC50) values 

less potent than 10 μM, a cutoff often used to prioritize activity in biochemical assays.17 

Depending on the direction of the signal (i.e., either increasing or decreasing), signals with 

wAUC > T1 but ≤ T2 are labeled as weak. Signals with wAUC > T2 are labeled as strong. If 

the weak and strong signals are not flagged for assay interference, they are labeled as 

marginal active and active, respectively.

Data Collapsing in the wAUC Pipeline

At the substance/source level, the wAUC values from the three runs for each substance are 

first collapsed using the median value. Each substance is further labeled as normal, 

autofluorescent (β-lactamase reporter gene assay only), contradictory (β-lactamase reporter 

gene assay only), or cytotoxic (inhibition-type assays) based on data from multiple readouts/

assays. The substances with labels other than normal are classified as exhibiting assay 

interference. Then, at the compound level, different substances corresponding to the same 

compound are analyzed. When discordant labels occur, the compound is flagged as having 

assay interference if >50% of the samples have assay interference. The wAUC values are 

then collapsed using the mean value. POD values are collapsed likewise after excluding 

inactive sources.
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Activity Normalization

To facilitate interassay comparison, we rescaled the wAUC values in each of the assays to 

[0, 1]. Because values on the wAUC scale (0, ∞) are, in theory, not bound from above, we 

used logistic function transformation, which retains the relative order of values but binds 

them to a finite scale. We applied the following modified logistic function to convert the 

wAUC values to give less weight to the weak signals (eq 2).

(2)

where x is the raw wAUC value in an assay and T1 and T2 are the two assay-dependent 

wAUC thresholds (see above). C ensures the lowest and highest values of f(x) are, 

respectively, 0 and 1.

GUIs

To facilitate data exploration, two GUIs were constructed with the R Shiny package.18 The 

first is to visualize the qHTS data processed by the pipeline. The second is to visualize the 

Tox21 concentration-response data. The two GUIs are deployed in the RStudio Shiny server 

(Tox21 qHTS assays: signal/activity profiling, http://spark.rstudio.com/moggces/profiling/; 

Tox21 concentration-response data visualization: http://spark.rstudio.com/moggces/

plotting/). The source code can be found in Github (https://github.com/moggces/

ActivityProfilingGUI/archive/v1.0-beta.zip and https://github.com/moggces/

CurveVisualizationGUI4Tox21/archive/v1.0-beta.zip).

Results and Discussion

Pipeline Summary

Our pipeline (Fig. 1a) starts with qHTS signal extraction and signal quantification. A noise-

filtering algorithm, Curvep,11 was applied first to enforce monotonic behavior of the 

responses. The use of Curvep instead of response-fitting methods (e.g., Hill or logistic 

function17) obviates the receptor saturation binding assumption. This was followed by a new 

signal curation protocol to identify nonreproducible artifacts such as false spikes (Table 2) 

based on their response patterns. False spikes belong to the group of nonmonotonic 

responses (“U-shape”). The U-shape curve violates the monotonicity assumption and 

represents mostly nonreproducible artifacts in qHTS assays. However, some of them could 

be real signals based on the presence of the same spikes in the three runs, which is a unique 

advantage of Tox21 qHTS data.

After noise filtering and signal curation (artifact cleaning), we adopted an area-under-the-

curve (AUC) approach, which has been employed in in vitro chemosensitivity assays19,20 to 

quantify signals. However, this approach depends on the range of the test concentrations 

used (i.e., a wider range would tend to yield larger AUC values). Thus, we designed a new 

activity metric, called a weighted version of area-under-the-curve (wAUC), which combines 

the AUC with the POD to estimate activity. The AUC quantifies a compound's total effect 

across the concentrations tested, whereas the POD estimates the concentration at which the 
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compound begins eliciting an effect above the assay-specific noise level. Unlike AUC, the 

wAUC allows for the ability to compare compounds tested over different concentration 

ranges. Also, the wAUC can be used to compare curves with widely differing efficacies as 

well as to quantify activity in cases in which a curve's maximal response asymptote is 

unavailable or when the responses may be too low to provide enough support for accurate 

curve fitting (Table 2, “weak” signals). Both of the last two situations make estimation of 

the half-maximal response concentration (AC50) difficult. Also, the wAUC makes it 

straightforward to profile “no effect” curves (for which wAUC = 0). Using the 10K library 

data, we compared the wAUC with AC50 data from high-quality curves defined by the 

Curve Class approach21 (Suppl. Table S2; Suppl. Fig. S5). For inhibition-type assays, the 

average Pearson's r value is 0.84; for the activity-type assays, the average Pearson's r value 

is 0.72. This is likely due to many curves with differing maximal responses in activation-

type assays, which is accounted for by the wAUC but not by AC50 approach. Thus, ranking 

using wAUC could provide results similar to using AC50 alone yet with the efficacy factor 

included, which could be more informative in the activation-type assays.

Compound autofluorescence and cytotoxicity are known issues for activation-type, 

fluorescence readout assays and inhibition-type assays, respectively.13 Compounds 

autofluorescent at the appropriate wavelengths would induce increasing signals in 

fluorescence-based assays, whereas cytotoxic compounds can cause decreasing signals 

coinciding with its pathway-related signal (Table 2). Thus, after robust signals are identified, 

we incorporated data from autofluorescence and pathway-specific cytotoxicity assays to flag 

signals that are likely caused by assay interference. Two additional flags were created (Table 

2) to deal with contradictory readout and reverse signal response curves. The contradictory 

readout is a specific issue in assays with multireadouts (e.g., ch2, ch1, and the ratio data in 

the β-lactamase assays). Although ratio data help reduce background variation, signal 

directions between the ratio data and reporter gene expression readout (ch2) can be 

incongruent (e.g., due to cytotoxicity). The reverse signal flag simply labels signals that are 

in a direction inconsistent with assay expectations (e.g., decreasing signal in an agonist 

assay, increasing signal in an antagonist assay). We expect that assay interference is not 

limited to these four types and that more interference flags will likely be identified in the 

future.

Finally, based on the wAUC and the assay interference labels, a compound hit calling/

ranking schema was designed. The compounds that were not considered to have assay 

interference were classified as active, marginal active, or inactive, depending on their 

strength of activity (i.e., wAUC), whereas compounds identified as assay interference were 

labeled as inconclusive. To facilitate interassay comparison, we rescaled the unbounded raw 

wAUC values to [0, 1] in each assay (see the “Methods” section). The relationship between 

the raw wAUC values and the normalized wAUC value is provided in Supplemental Figure 

S6.

Signal Curation Improves Assay Reproducibility

We compared the wAUC reproducibility between the three replicates of each of the nine 

compound plates (three [NTP, EPA, NPC] agency libraries × three [A, B, C] compound 
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plates; Suppl. Fig. S1) based on six baseline noise thresholds (THR ranging from 0.5 SD to 3 

SD) using three signal-processing protocols (i.e., including neither noise filtering nor signal 

curation [no treatment], with noise filtering only, and with noise filtering plus signal 

curation). The Pearson correlation coefficient (Pearson's r) was used to quantify the degree 

of wAUC reproducibility. The median and 25th percentile of the Pearson's r values from the 

pairwise comparison between three replicates (in total, 27 values) were used to represent the 

reproducibility for a particular threshold. For the protocol without additional signal 

treatment, we calculated the wAUC directly from the normalized, “raw” responses based on 

different baseline noise thresholds; thus, different POD values were used to weight the 

AUC. We then plotted the results for the three classes of assays (activation, inhibition, or 

cytotoxicity). For the cytotoxicity-type assays, plotting by either the median Pearson's r 

value or the 25th percentile Pearson's r value, there was a clear improvement in 

reproducibility between stages: lowest reproducibility using the protocol with no treatment, 

highest reproducibility using the protocol of noise filtering plus curation, and in-between 

reproducibility using the protocol of noise filtering only (Fig. 2a). Generally, a plateau of 

Pearson's r values was reached by using 2 SD or 2.5 SD as the THR. A similar but less 

obvious trend was observed in the inhibition-type assays (Suppl. Fig. S7a). For the majority 

of the cytotoxicity and inhibition-type assays, large reproducibility improvement was 

observed after applying the protocol with noise-filtering features, suggesting that there was a 

high amount of noise in these data, which was also reflected in their larger SD values. For 

activation-type assays, because they contained less noise (smaller SD), we saw only 

marginal improvement (Suppl. Fig. S7b). However, reproducibility results are more variable 

when using the protocol of no treatment (i.e., large Pearson's r difference between median 

and the 25th percentile Pearson's r value). Based on our analysis, the new protocol (noise 

filtering plus signal curation) improved reproducibility, and the 2 SD or 2.5 SD thresholds 

were optimal for Curvep to achieve the balance between signal reproducibility and signal 

preservation.

In addition, we compared the reproducibility between three batches across 32 assays using 

the wAUC method (2.5 SD as THR) proposed in this study with two commonly used activity 

metrics: the POD (2.5 SD as THR) and AC50. The AC50 values were obtained from the 

NCATS curve-fitting protocol based on the Hill model, and for each curve, a Curve Class, 

which represents the data quality, was assigned. By using the Curve Class, we filtered AC50 

values into two groups: high quality (Curve Class = 1.1, 1.2, 2.1, 2.2, −1.1, −1.2, −2.1, and 

−2.2) and medium quality (any curve with non–Curve Class 4). For those curves with no 

AC50 calculated (no significant activity observed at any test concentration), inactive (Curve 

Class = 4), and the filtered curves, the last tested concentration is used as their AC50. For the 

32 assays, the Pearson's r value based on different activity metrics between plates was 

calculated, and the median value (out of 27 pairwise plate comparisons) from each assay 

was collected. The distribution of the 32 values was presented as a box-and-whisker plot 

(Fig. 3). The wAUC metric affords superior reproducibility (median Pearson's r value = 

0.91) followed by POD (0.82) and AC50 (0.81 [AC50 from high-quality curves only] and 

0.66 [AC50 from high- and marginal-quality curves]). The result suggests that the reliability 

of AC50 depends largely on curve data quality, whereas wAUC is more robust and thus 

more suitable for activity profiling.
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Good Reproducibility of Tox21 Assays

By using noise filtering plus signal curation with a threshold of 2.5 SD (corresponding to the 

fifth green point in each assay; Fig. 2a), we compared the overall wAUC reproducibility 

between assays as well as the reproducibility among the nine compound plates. The 

maximum Pearson's r value from the three pairwise plate replicate comparisons (Fig. 2b) 

was chosen to represent the reproducibility of the compound plate, because the median 

wAUC value was used to collapse the three-run data (e.g., often two runs correlate well; the 

third poorly correlated with both, so collapsing by the median yields data close to the first 

two runs, corresponding to the maximum correlation). In general, the reproducibility of three 

replicate runs in the Tox21 assays was excellent after signal noise filtering plus curation, 

with median Pearson's r values >0.9. The mitochondria membrane potential (MMP) assay 

(cytotoxicity), estrogen receptor (ER) or androgen receptor (AR) antagonism assays 

(inhibition), and proliferator-activated receptor gamma agonism assay (activation) were the 

four exceptions, with median Pearson's r values between 0.85 and 0.9. The results suggest 

that the nature of those assays does not fully reflect on the SD value in DMSO plates, and a 

higher THR value for Curvep may be needed to clean the data. For the reproducibility of 

plates, the NTP and EPA plates generally tended to have lower reproducibility when 

compared with the NPC plates. This observation could be due to the composition of these 

two libraries (i.e., mainly environmental compounds, which tend to be more reactive than 

pharmaceuticals predominant in NPC plate). Based on quantitative signal measurement 

(wAUC), this analysis provides additional quality control on the assays and compound 

plates.

Signal versus Activity

We defined signals as the responses induced by compounds in the assay system and 

activities as the signals that are relevant to the pathway of interest. In Supplemental Table 

S3, we show the percentages of the four signal types for each assay, including strongly 

activated/inhibitory signal and weakly activated/inhibitory signal. For all of the assays, 

although each was optimized for a particular direction of signal, both directions of signals 

were observed. In Table 3, we present the fractions of four activity types including active, 

marginal active, inactive, and inconclusive for the 20 pathways of interests. The 

inconclusive activity could be of four kinds: autofluorescence, contradictory readout, 

cytotoxicity, and reverse signal (see the “Methods” section). Cytotoxicity is the major 

confounding factor in inhibition-type assays; on average, about 8% (∼664/8306, based on 

eight assays) of all compounds are affected, which amounts to ∼50% of the compounds with 

decreasing signal. In the β-lactamase reporter gene assays, where ratiometric data analysis 

was used, the percentage of contradictory readout was as high as 5.6% (∼465/8306, based 

on nine β-lactamase assays). In addition, although the reporter gene expression readout had 

been normalized, we still observed an average of 3% (∼249/8306, based on nine assays) 

reverse signals, especially in the MMP assay. However, the ability of compounds to increase 

MMP has been reported.22 For autofluorescence, less than 0.5% (∼42/8306, based on nine 

assays) of the compounds were affected in the β-lactamase reporter gene assays. After 

removing the signals that might be caused by assay interference, the hit rate of some assays 

dropped greatly. For example, the TR antagonism assay had the highest potential hit rate 
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(strong (–): 12.8%; 1064/8306). However, after eliminating inhibitory signals that might be 

caused by cytotoxicity, the hit (active) rate dropped to 3% (244/8306). The hit (active) rate 

of most pathways was between 1.5% (∼125/8306) and 4.5% (∼374/8306). Six pathways fell 

out of this range: ER agonism (full-length receptor, 8%; 660/8306), MMP (6.6%; 549/8306), 

and aryl hydrocarbon receptor agonism (6.5%; 542/8306) were the three assays with the 

highest active hit rates, whereas DNA stalled replication fork damage (1.2%; 98/8306), 

DNA double-strand break damage (1.1%; 92/8306), and TR agonism (0.6%; 47/8306) were 

the three assays with the lowest hit rates.

GUI Functionality

In the profiling GUI, the user is able to input a selected set of chemicals in Tox21 library 

with their predefined classes (e.g., results in an in vivo assay with three classes: positive, 

negative, and untested). The GUI then automatically clusters the compounds based on their 

similarity of chemical structures (defined by Leadscope's structure fingerprints23 and default 

clustering setting: average linkage hierarchical clustering analysis with a similarity cutoff of 

0.7). Then, the user can view and explore the relationship between in vitro, in vivo (i.e., the 

predefined class), and the chemical structures, presented as a heat map. The columns of the 

heat map (i.e., chemicals) can be rearranged based on signal/activity similarity (hierarchical 

clustering with average linkage), toxicity score (sum of activities), or chemical structure 

similarity. Also, results incongruent across the multiple substances of the same compound 

will be labeled. Thus, it is easy to identify compounds with potential chemical quality issues. 

The data and the heat map can be downloaded by the user for further analysis. In the curve 

visualization GUI, the user is able to input various types of chemical IDs (e.g., CAS and 

Tox21 ID) in addition to selected pathways. The GUI will report relevant activity 

information at the plate level and arrange the curves at the substance level. The user has the 

option to toggle on/off the information on batches and readouts, to plot the curves by various 

methods (i.e., raw data, Curvep method, Hill function), and to view curves of compounds 

from different pathways in overlay or parallel mode.

In summary, we have developed a pipeline for analyzing Tox21 qHTS data. The pipeline 

includes the components that remove nonreproducible artifacts by a new signal-processing 

protocol, flag assay interference by incorporating available counterscreen data, and perform 

compound hit calling/ranking based on wAUC values. We demonstrated that the wAUC 

method provides improved reproducibility in comparison with the more traditional metrics 

(i.e., the POD and the AC50) and is thus more useful for activity profiling. Also, because the 

efficacy factor is included in the wAUC metric, ranking using the wAUC is likely preferable 

to using AC50 alone, especially in the activation-like assays, in which the actives tend to 

have varied efficacy. Although the pipeline is specific for Tox21 10K qHTS data, the signal-

processing protocol for nonreproducible artifacts can be directly used for other 

concentration-response data. In addition, we think it is important to account for assay 

interference in all qHTS data, especially cytotoxicity in inhibition-type assays, which can 

affect a significant fraction of the potential hits. As a caveat, because the pipeline is used for 

activity profiling of potential toxicants, it is more lenient toward the presence of false-

positives, as reflected in the setting of thresholds and the procedure used in data collapsing, 

which are designed to include more potential active compounds. For example, the 
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information of wAUC or label variation between multiple substances of the same compound 

could be used to exclude less confident actives. To further facilitate Tox21 data exploration, 

the GUI applications were designed to visualize the compound activity data analyzed by the 

pipeline and are particularly suitable for activity profiling of a set of focused compounds.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Quantitative high-throughput screening profiling pipeline. (a) Blue components represent 

the analysis at plate level, magenta components represent the analysis at the source level, 

and the green component represents the analysis at compound level. (b) Compound hit 

calling/ranking schema.
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Figure 2. 
Assay reproducibility by weighted version of the area under the curve (wAUC). (a) 

Comparison of cytotoxicity assays based on three signal-processing protocols as a function 

of Curvep baseline noise threshold (THR). The solid/dashed line represents the median/25th 

percentile of 27 Pearson's r values (3 agencies × 3 compound plates × 3 screening plates). 

(b) Reproducibility within compound plates presented as highest Pearson's r for three 

corresponding screening-plate comparisons. Note: NTP_C plate in TR activation-type assay 

is removed (Pearson's r = 0.35) to give higher resolution to the plot.
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Figure 3. 
The signal reproducibility between nine plates and three batches across 32 assays using 

different activity metrics (weighted version of the area under the curve (wAUC), point of 

departure (POD), and AC50) is presented as box-and-whisker plots. Each box-and-whisker-

plot is constructed based on 32 median Pearson's r values from pairwise plate comparisons 

of each assay. The outliers shown in the plots are all viability assays: mitochondria 

membrane potential (high-quality AC50), glucocorticoid receptor antagonism (medium-

quality AC50), and androgen receptor (full-length) antagonism (POD).
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Table 1

Pathways screened in the Tox21 assays.

Pathway Type Toxicity Pathway Abbreviation PubChem Assay ID

Stress response Induced stabilization of the ATAD5 protein in Hek293 
cells

atad5 720516

Induced stabilization in HCT-116 cells p53 720552

DNA damage (stalled replication fork [srf] formation) in 
DT40 cells

dna_damage (srf) 743014, 743012

DNA damage (double strand break [dsb] formation) in 
DT40 cells

dna_damage (dsb) 743015, 743012

Mitochondria membrane potential in HepG2 cells mitotox 720637

Nuclear receptors Androgen receptor (AR) (partial receptor) agonism and 
antagonism in Hek293 cells

ar_agonism/ar_ antagonism (hek293) 743053, 743063

AR (full receptor) agonism and antagonism in MDA-
kb-2 cells

ar_agonism/ar_ antagonism (mdakb2) 743040, 743054

Aryl hydrocarbon receptor (AHR) (full receptor) agonism 
in HepG2 cells

ahr 743122

Estrogen receptor (ER) alpha (partial receptor) agonism 
and antagonism in Hek293 cells

er_agonism/er_ antagonism (hek293) 743077, 743078

ER alpha (full receptor) agonism and antagonism in BG1 
cells

er_agonism/er_ antagonism (bg1) 743079, 743091

Glucocorticoid receptor (GR) (full receptor) agonism and 
antagonism in HeLa cells

gr_agonism/gr_ antagonism 720719, 720725

Peroxisome proliferator-activated receptor gamma 
(PPARg) (partial receptor) in Hek293 cells

pparg_agonism 743140

Thyroid receptor (TR) (full receptor) agonism and 
antagonism in GH3 rat cells

tr_agonism/tr_antagonism 743066, 743067

Other Inhibition of aromatase in MCF-7 cells aromatase 743139
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Table 2

Challenges in quantitative high-throughput screening data analysis.a.

Challenge Description True Signal/Activity False Signal/Assay Interference

Nonmonotonic curve: U-shape

Identification of weak signal N/A

Assay interference: cytotoxicity

Assay interference: autofluorescence

Assay interference: contradictory readout

Assay interference: reverse signal

a
Ratio or luc, main readout in either β-lactamase assay or luciferase assay, respectively; ch1, channel 1, the background in bla (β-lactamase assay) 

assay; ch2, channel 2, the signal channel in bla assay; via, cell viability; autofluor, autofluorescence; er, estrogen receptor; ar, androgen receptor; 
pparg, peroxisome proliferator-activated receptor gamma. Numbers represent different batches.
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