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Abstract

Research by Huck and McLean (1975) demonstrated that the covariance-adjusted score is more 

powerful than the simple difference score, yet recent reviews indicate researchers are equally 

likely to use either score type in two-wave randomized experimental designs. A Monte Carlo 

simulation was conducted to examine the conditions under which the simple difference and 

covariance-adjusted scores were more or less powerful to detect treatment effects when relaxing 

certain assumptions made by Huck and McLean (1975). Four factors were manipulated in the 

design including sample size, normality of the pretest and posttest distributions, the correlation 

between pretest and posttest, and posttest variance. A 5 × 5 × 4 × 3 mostly crossed design was run 

with 1,000 replications per condition, resulting in 226,000 unique samples. The gain score was 

nearly as powerful as the covariance-adjusted score when pretest and posttest variances were 

equal, and as powerful in fan-spread growth conditions; thus, under certain circumstances the gain 

score could be used in two-wave randomized experimental designs.

Questions about the measurement of change in experimental and quasi-experimental designs 

are not new. At the heart of this matter often lies the question, what is the most appropriate 

way to analyze data between two points in time? This question may lead to many answers, 

and has been treated by Tucker, Damarin, and Messick (1966), Lord (1967, 1969), Cronbach 

and Furby (1970), and Rubin (1974). More recently, Rogosa, Brandt, and Zimowski (1982), 

Rogosa and Willett (1985), and Willett and Sayer (1994) provided general guidelines into 

the realm of statistical analysis of pretest-posttest data; yet despite such provisions, no 

consensus has yet been reached as to which statistical method is the most appropriate. The 

answer to this simple question traditionally comes in two forms, either the simple difference 

score (also synonymous with change and gain score) or the covariance-adjusted score. 

Relatively few guidelines exist about the appropriateness of both statistical techniques given 

the question of interest to the researcher, making it difficult to advocate for the utility of 

either.

When the effectiveness of an implemented treatment is of interest, two observation studies 

are reported quite frequently in the literature. Such a design may seem naturally appealing as 

two waves denote a starting and ending point to one’s study. Although advances in research 

methodology have resulted in more studies employing multiwave designs to improve the 

reliability of assessing treatment effects, the two-wave study remains a prevalent modality. 

In fact, when reviewing commonly used designs for assessing treatment effects from 2002 to 
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2007 in the Journal of Educational Psychology and Developmental Psychology, a variety of 

methods were utilized. A search for studies which assessed change or growth in these two 

journals yielded a total of 61 growth-based studies, of which 44% (n = 27) used a 

randomized pretest-posttest experimental design. Across these randomized experiments, 

researchers used three primary analytic procedures to answer questions about differences in 

change between groups. Analysis of covariance (ANCOVA) was the most prevalent method 

used (n = 12), followed by repeated measures ANOVA (n = 10), and posttest ANOVA (n = 

5) designs. The findings suggested that not only are pretest-posttest designs widely utilized 

in randomized experiments, but that researchers were nearly as likely to utilize a gain score 

analysis as they were a covariance-adjusted score.

The Difference Score

The creation of the simple difference score was one of the earliest methods used to analyze 

data measured over multiple time points (Lord, 1956, 1958). The difference score is 

appealing because it provides, in the natural metric units of the measure, the raw gain 

observed by individuals, and is expressed as

(1)

representing that individual i has changed between the pretest (X1) and posttest (X2). 

Although it has been a viable option for researchers to use in two-wave designs, Cronbach 

and Furby (1970) condemned its use. Reactions from this paper were so strong that most 

believed the idea that the difference score was an inherently poor method and that 

alternative methods of analysis should be considered. More recently, research from Rogosa 

et al. (1982) and Rogosa and Wilett (1983) refuted the criticisms by Cronbach and Furby, 

and demonstrated that the difference score is, in fact, unbiased, valid, and reliable. Despite 

this evidence, the idea that the difference score is unfair has continually prevailed (Zumbo, 

1999).

Data Analysis Choice in the Randomized Experiment

When one is concerned about the power to detect an effect in a randomized study, Huck and 

McLean (1975) demonstrated that the covariance-adjusted score typically outperforms the 

gain score, and is a more sensitive test for detecting treatment effects. Such conclusions 

were based on the assumption that the between-group pretest means are equal as a function 

of the random assignment. When random assignment of units to conditions occurs, the 

between-group sum of squares (SS(bg)) from the covariance-adjusted analysis becomes the 

same as the sum of squares from the gain score analysis. The within-group sum of squares 

for the covariance-adjusted score (SSωg(RΔXi)) is defined as

(2)

where bω is the pooled within-group regression coefficient. When bω≠1, the effect size for 

the covariance-adjusted score (i.e., RΔXi) will be greater than the effect size from the gain 

score analysis; however, when bω = 1, the gain score will be at least as powerful as RΔXi 
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because both will have the same SS(bg) in the numerator and SSωg in the denominator of the 

F ratio.

Although researchers have used such proofs as evidence to use RΔXi several important 

assumptions are made when doing so; namely, that the data are normally distributed and that 

the pretest and posttest variances are equal. Such assumptions are often untenable, as data 

rarely have skew and kurtosis values of zero. Similarly, the assumption that pretest and 

posttest variances are equal implicitly states that the observed reliability of scores at both 

times is also equal, which further suggests that true score variances are equal; this also may 

not necessarily reflect the properties of data. Furthermore, when variances are assumed to be 

equal and one is interested in the power to detect an effect, the conclusion that RΔXi is more 

powerful than ΔXi does not generalize to the situation where fan-spread growth is observed. 

Fan-spread growth is defined by increasing variance from pretest to posttest, and it may be 

stated that the degree to which the covariance-adjusted score is more powerful than the gain 

score in this condition is a mathematical uncertainty. Stoolmiller and Bank (1995) reported 

that when variances increased from pretest to posttest, the gain score model tended to be 

more powerful than the covariance-adjusted score model at detecting effects, but when 

variances were equal the covariance-adjusted score was more powerful. As the latter finding 

was in congruence with the mathematical proofs, it is apparent that much is still unknown 

about the performance of RΔXi and ΔXi under certain conditions, thus precluding a 

comprehensive discussion of the relative efficiency of each statistical technique.

Although power to detect statistically significant effects is an optimal choice when making a 

decision about the method of analysis, virtually none of the recent commentaries on the gain 

score or covariance-adjusted score have discussed this component. Evidence such as 

Equation 2 has shown algebraically that the covariance-adjusted score is more powerful than 

the gain score, yet this assumes normally distributed data and equal pretest and posttest 

variances. Williams and Zimmerman (1996) noted a consistent lack of data-based 

investigations into the performance of the two statistical techniques, centering instead on 

theoretical and methodological considerations (e.g., Cronbach & Furby, 1970). As such, it is 

important to empirically test circumstances under which the gain score and covariance-

adjusted score might be differentially powerful when the assumptions of Equation 2 are 

relaxed, to provide researchers a more comprehensive idea of how the choice of data 

analysis procedures will influence power to detect effects in their data.

METHOD

Data Simulation Design

The primary aim of the study was to use data simulation to assess the performance of the 

gain and covariance-adjusted scores under realistic data conditions to answer questions of 

interest. Monte Carlo simulation studies are useful in assessing outcomes that may not be 

easily or directly evaluated using a theoretical or mathematical approach. This method 

provided a venue for assessing quantitative questions of interest without collecting data, and 

allowed for the manipulation of key moments and factors of interest (Fan et al., 2000).
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Selection of Manipulated Variables and Data Considerations

Normality—The dispersion of data in a population is an indication of the degree to which 

the population might be normally distributed. Non-normality may exist in a population for a 

number of reasons, such as units in the population which deviate from the mean more 

drastically then other units (i.e., skew). Skew is typically present in most data, yet few 

researchers test for the degree to which skew may impact their data structure. Malgady 

(2007) noted that little attention in psychological literature is given to skew, and rarely 

accompanies common descriptive statistics (i.e., mean and standard deviation). Ignoring this 

type of asymmetry in one’s sample data can lead to biased estimates of the mean. Using the 

Fleishman (1978) power transformation, normality was manipulated by adjusting a 

multivariate normal data set to have skew properties of ±.5 and 1, reflecting mild and large 

violations of normality.

Sample size—The relationship between sample size and power has been well documented 

(e.g., Cohen, 1988), and as one increases their sample size, power typically increases. 

Although increased power is expected as a function of the main effect of sample size 

manipulation, simulations have examined how sample size interacts with other manipulated 

variables (Zimmerman, 1987, 2003). In the context of this study, it was expected that as 

normality and sample size interacted, the covariance-adjusted or simple difference scores 

could be differentially powerful. To this end, group sample sizes of 20, 30, 50, 200, and 500 

were chosen as to reflect conditions where a study would have a small, medium, or large 

sample.

Pretest-posttest correlation—The relationship between initial and final status is an 

important factor to use in the context of the proposed simulation study, as it is inversely 

correlated with individual differences in change. Large individual differences are marked by 

a low pretest-posttest correlation, whereas small interindividual differences in change are 

evidenced by increasingly large stability coefficients. Pretest-posttest correlations are also 

directly related to the functional form of change, and as the correlation increases, either fan-

spread growth or no growth forms may be observed. It was expected that when the pretest-

posttest correlation was large, the covariance-adjusted score would be a more powerful 

analysis of treatment effects than the gain score when a normal distribution was observed 

and variances between the pretest and posttest were equal. Conversely, when the correlation 

was small and the correlation between initial status and change was positive, the simple 

difference score was expected to be more powerful. The correlation between pretest and 

posttest was controlled using small (.20), moderate (.40, .60), and large (.80) values to 

reflect the degree of interindividual differences.

Correlation between initial status and change—The functional form of change over 

time is a key part of the simulation to better understand the utility of the simple difference 

and covariance-adjusted scores. Although research has primarily focused on the negative or 

zero correlation between initial status and change, the stringent assumption of equal 

variances at the pretest and posttest precluded an understanding of the power of the two 

analytic strategies. Based on findings from Stoolmiller and Bank (1995), it was expected 

that when the correlation between initial status and change (i.e., ρ(X1ΔX)) is positive, the 
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simple difference score would be more powerful than covariance-adjusted score. 

Conversely, when the correlation between initial status and change was zero or negative, the 

covariance-adjusted score would be more powerful to detect effects. Rogosa (1995) 

previously showed that the functional form of change over time can be defined by changing 

variances from the pretest to the posttest. Fan-spread growth is defined by increasing 

variance, mastery learning is defined by decreasing variance, and parallel growth by equal 

variances; therefore, ρ(X1ΔX) was set at −.30 to mastery learning condition, ρ(X1ΔX) = .00 was 

used to define parallel growth conditions, and fan-spread growth was described with ρ(X1ΔX) 

= .30.

Data Generation Procedures

Replicates for the simulation were created using the interactive matrix language procedure 

(PROC IML) in SAS (version 9.1.3 for Windows). Reliability of the gain score or 

covariance-adjusted score was not proposed to be directly manipulated in the study; 

however, without any manipulation or introduction of measurement error, a simulation will 

generate conditions where the reliability of scores is equal to 1.0. This would not reflect 

typical occurrences in researcher’s data; thus, it was important to set the reliability of the 

pretest and posttest at a reasonable level. Reliability of .80 is considered to be an acceptable 

level for research decisions (Nunnally & Bernstein, 1994), and the data were manipulated to 

achieve this threshold.

The relationship among the posttest variance (σ2), ρ(X1ΔX), and ρ(X1X2) is such that ρ(X1X2) 

must be greater than ρ(X1ΔX) in order for σ2 to be a positive, meaningful value. As such, 

although the levels of the simulation factors constituted a 5 × 5 × 4 × 3 factorial design, 

resulting in 300 unique conditions, this relationship between ρ(X1X2) and ρ(X1ΔX) limited 

certain conditions from occurring (e.g., ρ(X1X2)= .30 and ρ(X1ΔX)) = .20). To this end, when 

mastery learning occurred, conditions for skew, sample size, and average treatment effect 

were observed over all levels of ρ(X1X2)). When parallel growth was observed, conditions 

were estimated for ρ(X1X2) = .40, .60, and .80. Finally, for fan-spread growth, conditions 

were estimated for ρ(X1X2) = .60 and .80. Therefore, a mostly crossed simulation design 

totaling 226 unique conditions was run, with each one generating 1,000 samples. A total of 

226,000 unique samples were generated from the simulation.

Data Analysis

Estimation of effect and statistical tests—The covariance-adjusted score was 

estimated using the general linear model procedure (PROC GLM) in SAS, whereas the gain 

score was estimated by using the MIXED procedure in SAS. Under each simulated 

condition, it was important to check that the results from the simulation approximated the 

population values that were manipulated for each factor. Descriptive statistics of the average 

ρ(X1X2), ρ(X1ΔX), pretest skew, and posttest skew may be used to demonstrate an 

incongruence between the observed results and specified population values. Such 

discrepancies could indicate incorrect data generation or programmatic misspecification of 

the simulation. The conditions under which each statistical technique had greater power to 

detect effects was studied by using the probability values from the F-tests in the ANCOVA 

and repeated measures ANOVA. The proportion of occurrences for the estimation of a 
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significant effect for the interactions among the manipulated factors by both approaches was 

compared.

RESULTS

Simulation Manipulation Check

When comparing the sample replication values from the simulation results to the fixed 

population values of the manipulated variables, the mean replication estimates from the 

simulation were either identical or closely approximated the specified population value. The 

largest deviation of a mean sample replication from a population value were the pretest and 

posttest skews of ±1.0, which were .04 units away from specified values, but were not 

considered to be a great enough deviation to have significantly altered the results from the 

simulation.

Type I Error Rates

The probability of rejecting the null hypothesis when it is actually true (i.e., Type I error) 

was important to consider when describing results from the simulation. These values were 

estimated under the conditions where the average treatment effect was zero. Mean 

replication values for both statistical techniques under this condition should be .05, as no 

treatment effect should exist in the sample estimates where the population specification was 

0. Results for the gain and covariance-adjusted scores showed that the mean Type I error 

rate for the simulation was .05. In addition, the Type I error rate was not different from .05 

across any of the factors being manipulated.

Procedural Differences in Estimation of Power

Figure 1 demonstrates the mean power rates between the two analyses across the three 

variance conditions (Figure 1A), the four levels of ρ(X1X2) (Figure 1B), and the five levels of 

skew (Figure 1C), when averaged over all sample size conditions. Over the levels of the 

variance conditions (Figure 1A), the covariance-adjusted score had a strong advantage in 

power when mastery learning was observed (.69) compared to the gain score (.60) averaged 

over all other conditions. In the parallel growth condition, the covariance-adjusted score (.

61), held a slight advantage over the gain score (.59), whereas both analyses produced equal 

levels of power under the fan-spread growth condition (.48). When considering the levels of 

the pretest-posttest correlation, the covariance-adjusted score was more powerful than gain 

by .08 when ρ(X1X2) = .20, and as the correlation increased the differences decreased to .01 

when ρ(X1X2) = .80. Across all skew conditions, the covariance-adjusted score was more 

powerful by an average of .055, with relatively similar differences between the two 

procedures when data were either positively or negatively skewed.

As might be expected, these patterns in the mean power between the two analyses in 

mastery learning conditions across the full sample were more strongly differentiated in 

smaller group sample sizes compared to larger samples (Figure 2). Although the relative 

power differences in the mastery learning conditions (Figure 2A) was .18 and .15 when N = 

20 or 30 (respectively), this difference shrank to .11 and .06 when N = 100 or 200, 
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respectively. In the context of parallel growth or fan-spread growth, regardless of the sample 

size, the mean power differences varied very little.

In addition to inspecting differences in power for the main effects of the factors, it was 

important to also examine how the gain and covariance-adjusted scores operated when 

looking at how the levels of ρ(X1X2) and skew each performed over the levels of ρ(X1ΔX) for 

the full sample. The relationship between ρ(X1ΔX) and ρ(X1X2) showed similar results as when 

the main effect of only ρ(X1X2) was examined; that is, the largest differences in mean power 

between the two analyses were maximized at the lowest level of ρ(X1X2) (Figure 3). The 

average difference in the mastery learning condition for the full sample was .10, compared 

with .026 for the parallel growth condition, and .005 for the fan-spread growth condition. 

This trend continued when disaggregated by the different sample sizes, with the largest 

observed difference (i.e., .21) occurring in the mastery learning condition when N = 20 and 

ρ(X1X2)) = .20.

When considering the relationship between skew and ρ(X1ΔX) (Figure 4), the results in the 

mastery learning condition suggested, regardless of the magnitude or direction of skew that 

the mean differences between the analyses were the same. Similarly, very little variability 

was observed in mean differences across skew conditions for parallel growth, with 

differences ranging from .02 to .03, as well as for fan-spread growth, where the differences 

were .00 across all levels of positive and negative skew.

DISCUSSION

One of the most important decisions a researcher needs to consider when conducting a two-

wave randomized experiment is the type of statistical technique to use. To date, many 

experimenters have been convinced by a relatively small number of published articles that 

the gain score should be discarded and that they should opt to use the covariance-adjusted 

score in an ANCOVA model. It is interesting to note that regardless of the theoretical 

debates that have occurred in the literature, recent publications of pretest-posttest designs 

demonstrate that researchers are almost equally likely to use the gain score as they are the 

covariance-adjusted score. No consideration was given in these studies as to why a 

particular statistical technique was chosen, indicating that a bridge may not yet exist 

between the theory of analyzing data in pretest-posttest designs and its application in 

experimental designs. Outside of Rogosa et al.’s (1982) work pertaining to the reliability of 

the gain score, few diverse arguments have been made concerning the circumstances under 

which the gain score should be used.

The key issue with both approaches is to gain a better understanding of the conditions under 

which each may maximize a particular outcome (e.g., reliability, power). Most studies have 

focused on conditions where each should be used when the reliability of the score produced 

by the analysis is the most important. Based on calls from Zumbo (1999) and Rogosa (1995) 

to increase the number of simulation studies, this study examined the circumstances under 

which the simple difference and covariance-adjusted scores may be differentially powerful 

in randomized experiments when a pretest-posttest design is used. Results sought to extend 

findings from Stoolmiller and Bank (1995), who indicated the gain score may be more 
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powerful when fan-spread growth was observed, whereas the covariance-adjusted score may 

be more powerful when mastery learning occurred. What has not yet been fully developed is 

what power differences may exist when variances are unequal and/or data are non-normally 

distributed. Thus, this study was conducted to provide further data and information about the 

choice of data analysis when such conditions exist.

Findings from the simulation indicated that of all the manipulated factors, the relative power 

differences between the analyses were differentiated by the level of the correlation between 

initial status and change. The hypothesis that the covariance-adjusted score would be more 

powerful than the gain score with mastery learning was strongly supported, with average 

differences of .10 observed across levels of the other factors. Moreover, the covariance-

adjusted score had nearly 17% more power than the gain score. Conversely, in the fan-

spread growth condition, where the gain score was expected to be more powerful, results 

suggested that both analyses were equally powerful. Although the gain score did not prove 

to be more powerful where it was expected, a more interesting result was observed in the 

parallel growth condition. Although the covariance-adjusted score was indeed more 

powerful than the gain score, when variances were equal at two time points the magnitude 

could be construed as practically unimportant. With only a 3% advantage for the covariance-

adjusted score when averaged across all samples, one is left wondering about the practical 

value of such a difference.

As distributions became increasingly non-normal, regardless of direction, the covariance-

adjusted score demonstrated greater power over the gain score. In these non-normal 

conditions, the relative difference between the two statistical techniques was .05. This 

magnitude was similar to the difference that was observed when data were normally 

distributed; thus, whether data were skewed or not typically did not impact the level of 

difference in power between the covariance-adjusted and gain scores. When considering 

ρ(X1X2), the general finding was that a greater discrepancy in power was observed as the 

correlation became weaker. Such a result was not surprising given the earlier discussion in 

which the structure of the simulation required a larger ρ(X1X2) than ρ(X1ΔX). Power 

differences when ρ(X1X2) = .20 pertained specifically to the mastery learning condition, 

ρ(X1X2)= .40 was specific to mastery learning and parallel growth, and ρ(X1X2) = .60 and .80 

were relative to all three variance conditions. As observed from the results, the differences 

in power between the covariance-adjusted and gain scores are small when averaged over all 

three variance conditions.

This observation is seemingly in contrast with the previous expectation that in the presence 

of a small ρ(X1X2) the gain score would be more powerful. Rather than examining the mean 

power differences averaged over the three variance conditions, when the findings were 

viewed across each level of ρ(X1X2), the covariance-adjusted score was more powerful 

(range = .06), yet when the ρ(X1X2) and ρ(X1ΔX) interacted, the relative differences in power 

from the smallest to largest pretest-posttest correlation was much smaller than when 

averaged. That is, the range for mastery learning was .05, .03 for parallel growth, and .01 for 

fan-spread growth. Disaggregating the results demonstrated that the covariance-adjusted 

score was, in fact, more powerful when the correlation was at least moderate across the three 

ρ(X1ΔX) conditions.

Petscher and Schatschneider Page 8

J Educ Meas. Author manuscript; available in PMC 2015 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although the findings in the mastery learning and fan-spread growth conditions shed light 

on the research that has suggested differential power might exist between ANCOVA and 

repeated measures ANOVA models, the lack of a strong difference when variances were 

equal and the ρ(X1ΔX) = 0 was of interest. Although the findings relative to power differences 

provided support for the difference that Equation 2 suggests (i.e., ANCOVA can be 

expected to have greater power when pretest and posttest variances are equal), the 

magnitude of the difference was questionable. This might be partly explained by the special 

condition of homogeneous growth that was considered in this study. When parallel growth 

was observed, both analyses were nearly equally powerful at detecting average treatment 

effects, both when the main effect of skew was considered, as well as when deviations from 

normality were observed. As the variances increased from pretest to posttest, and fan-spread 

growth occurred, the gain score was also approximately equal in power to the covariance-

adjusted score, with a mean difference of .00. In the context of non-normality and fan-spread 

growth, the differences by sample size were actually closer than when skew was not zero, 

suggesting that increasing deviations from normality results in smaller discrepancies in 

mean power between procedures.

These findings are of practical value to researchers because they show that regression-based 

measures of change practically differ from difference scores, but that the magnitude of the 

difference is largely related to ρ(X1ΔX). In the context of parallel growth, the difference in 

power between analytic approaches was relatively small in magnitude. It is worth attempting 

to understand how this finding fits with previous research from both Huck and McLean 

(1975) and Maxwell and Delaney (2004), both of which demonstrate greater power for 

covariance-adjusted scores; yet neither suggested what the expected relative magnitude of 

the difference should be. Equation 2 shows less error in the covariance-adjusted score 

compared to the simple difference score, but it is plausible that this may be the case when 

equal variance but heterogeneous change occurs between two time points. As the current 

simulation only studied equal variance and homogeneous change, it might be expected that 

when this condition holds, the covariance-adjusted score retains a slight, but practically 

unimportant advantage in power.

Guidelines for Researchers

When individuals are randomly assigned to conditions and the reliability of the pretest and 

posttest are approximately .80, as a general rule of thumb researchers should utilize the 

covariance-adjusted score when maximizing power is of interest. The ANCOVA was most 

powerful when mastery learning occurred, especially under conditions with small sample 

sizes. Regardless of the level of the pretest-posttest correlation or the amount of skew 

present in the data, the covariance-adjusted score consistently produced greater power than 

the gain score. The small differences in power between the two analyses that occurred in the 

parallel growth and fan-spread growth conditions may not be considered practically 

important; however, the lack of instances where the gain score demonstrated greater power 

precludes a strong recommendation for the gain score. Although the relative power 

differences between the two analyses decreases in the parallel growth and fan-spread growth 

conditions, it is still large enough that one does not necessarily need to consider the ratio of 
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pretest variance to posttest variance when making a decision about the choice of analyses in 

the context of a two-wave randomized experiment.

Despite the equal power across procedures in the fan-spread growth condition and nearly 

equal power in the parallel growth condition, it should be of interest to reevaluate the recent 

trends in publication of pretest-posttest experimental designs. Based on the recent set of 

publications, many researchers do not report reasons for choosing an ANCOVA or repeated 

measures ANOVA analysis. Without such a rationale, it is difficult to understand for what 

reasons each may have been utilized for the randomized experiments. None of the reviewed 

publications mentioned the relationship between initial status and change, so it may be 

apparent that this was not a consideration when choosing the method of data analysis. 

Although some may certainly use the information from measurement literature to guide the 

selection of an appropriate analysis, others may choose their method based on recent or 

often-published practices. To this end, by using the covariance-adjusted score across a 

variety of data structures, very little, if any, power would be lost with a straightforward 

application. Although correlations between initial status and change not studied here could 

potentially produce an advantage of the gain score in power, a general applied framework 

based on the results from the simulations in these studies would advocate that the 

covariance-adjusted score in the ANCOVA model is the best analysis to apply. Although 

nearly half of recently published reports used a repeated measures ANOVA to answer 

questions of effectiveness in randomized pretest-posttest designs, they may have been able 

to achieve greater power to detect smaller effects by using the covariance-adjusted score 

from an ANCOVA design.
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Figure 1. 
Mean power differences for variance conditions (A), levels of pretest-posttest correlation 

(B), and levels of skew (C).
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Figure 2. 
Mean power differences within mastery learning (A), equal variance (B), and fan spread (C) 

by group sample sizes.
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Figure 3. 
Mean power differences within mastery learning (A), equal variance (B), and fan spread (C) 

by pretest-posttest correlation.
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Figure 4. 
Mean power differences within mastery learning (A), equal variance (B), and fan spread (C) 

by levels of skew.
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