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Abstract

When functioning properly, the intestine is one of the key interfaces between the human body and 

its environment. It is responsible for extracting nutrients from our food and excreting our waste 

products. It provides an environment for a host of healthful microbes and serves as a first defense 

against pathogenic ones. These processes require tight homeostatic controls, which are provided 

by the interactions of a complex mix of epithelial, stromal, neural and immune cells, as well as the 

resident microflora. This homeostasis can be disrupted by invasive microbes, genetic lesions, and 

carcinogens, resulting in diseases such Clostridium difficile infection, inflammatory bowel disease 

(IBD) and cancer. Enormous strides have been made in understanding how this important organ 

functions in health and disease using everything from cell culture systems to animal models to 

human tissue samples. This has resulted in better therapies for all of these diseases, but there is 

still significant room for improvement. In the United States alone, 14000 people per year die of C. 

difficile, up to 1.6 million people suffer from IBD, and more than 50000 people die every year 

from colon cancer. Because these and other intestinal diseases arise from complex interactions 

between the different components of the gut ecosystem, we propose that systems approaches that 

address this complexity in an integrative manner may eventually lead to improved therapeutics 

that deliver lasting cures. This review will discuss the use of systems biology for studying 

intestinal diseases in vivo with particular emphasis on mouse models. Additionally, it will focus on 

established experimental techniques that have been used to drive this systems-level analysis, and 

emerging techniques that will push this field forward in the future.
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1. Introduction

1.1 Why use systems biology to study intestinal health and disease?

Evolution, due to its non-directed, non-design-driven nature, has generated substantial 

complexity in biological systems. Even the fundamental unit of biology, that of a cell, 

consists of many components that interact with each other to form dynamic complex 

networks.1 Additional types of complexity emerge at the organ level in vivo. In the intestine, 

the in vivo environment is characterized by interactions between epithelial, immune, muscle, 

neural and stromal cells, as well as interactions between these cell types and extracellular 

matrix components, secreted factors, and micro-organisms (Fig. 1). The reductionist view of 

biology maintains that the functional output of a single component or pathway dictates 

phenotypic behaviors. This view is drawn from in vitro cell culture experiments where 

simplicity is imposed by controlling individual components one at a time. However, because 

of the interconnectivity between components of in vivo biological systems, the effects of 

single perturbations are propagated throughout interaction networks.2 Hence, macroscopic 

phenotypic outcomes, like those involved in diseases, can be viewed as network state effects 

versus single pathway effects.

Complexity of the intestinal system is best demonstrated by the interaction between the 

multitudes of bacterial species in the gut. Using a conservative estimate of ∼500–1000 

species in the gut3 with ∼5000 genes per species, the combinatorial potential of interaction 

is enormous. Combinatorial complexity is a feature of evolution for maintaining the stability 

of biological processes in the face of constant perturbations – a property known as 

robustness.4,5 Maintaining a homeostatic network of interactions within bacterial 

communities prevents colonization of the gut by harmful foreign pathogens via mechanisms 

of competitive exclusion, stimulation of host immunity, and direct antagonism.6 These 

mechanisms are difficult to appreciate without considering the underlying combinatorial 

complexity at the systems-level, and thus, remain far from full characterization.

Systems biology is an approach to studying biological and biomedical problems from an 

integrative perspective. There are three main ways in which a systems approach can be 

useful. First, large scale data collection and network level analysis are ideally suited for 

screening for molecules and pathways that contribute to a given phenotype or can be 

targeted to produce a desired outcome. Second, these networks can be viewed as phenotypes 

in and of themselves and can be used prognostically or diagnostically to determine the 

effects of an intervention on a pathway of interest. Third, network-level analyses facilitate 

the identification of unexpected effects resulting from a perturbation. This may be extremely 

useful in identifying pathways to drug resistance, and in identifying secondary targets that 

will subvert the resistance mechanisms.

An ideal outcome of a systems-level investigation would consist of a model that represents 

all of the species in a system and their interactions. Furthermore, it would describe how 

particular network states relate to given outcomes. By knowing how the pieces of the 

network relate to one another and how those relationships relate to particular outcomes, the 

network could be engineered in order to produce a desired outcome. This could be used for 

deriving combinations of therapies that target not just proteins or pathways, but entire 
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network states, and by extension, phenotypic outcomes. While this represents the ideal 

outcome of systems-level analysis, in actual practice, researchers are still building the 

experimental and analytical tools that would enable the production of complete models.

The barriers to a true systems-level understanding are many. The first barrier is technical: 

even with advances in data collection, it is impossible to measure all of the components of a 

system that may contribute to a given outcome. RNA-based techniques bring us closest, with 

typical RNAseq (RNA sequencing) platforms capable of measuring hundreds of thousands 

of transcripts down to the level of splice variants.7 Mass spectrometry has vastly accelerated 

our ability to interrogate protein abundance,8,9 however there are many important low-

abundance or poor-flying proteins that evade detection by the current state-of-the-art 

techniques. Fluorescence imaging facilitates temporal interrogation of signaling, but only a 

very limited number of analytes can be assessed at a time. The second barrier to a full 

systems understanding is analytical: as we increase the dimensionality of our measurement 

space, we must adapt our analytical frameworks to deal with this increased complexity. To 

be truly useful in generating actionable hypotheses, these analytical frameworks must not 

only be comprehensive, but predictive as well. Unfortunately, as more species are included 

in a network, it becomes increasingly difficult to predictively model their mechanistic 

interactions. From current sampling of mathematical models constructed from biological 

data (Fig. 2), a general tradeoff can be observed between the mechanistic resolution of a 

model and the number of experimental conditions required to constrain each model 

parameter. To reduce the degrees of freedom and draw mechanistic conclusions from high 

dimensional data, the number of experimental conditions must increase in order to 

differentiate between correlative and causative interactions.

This is one of the main reasons that systems biology has been carried out primarily in vitro. 

Practically speaking, it is cheaper, faster and easier to get consistent results with large 

numbers of experimental perturbations using cell culture models than it is by using in vivo 

models or by testing human specimens. For these reasons, in vitro systems biology is 

extremely powerful for developing the experimental and analytical tools necessary for 

systems analysis. Furthermore, the large-scale connectivity networks that have been 

developed form the backbone of mechanistic systems models used for in vivo studies. 

However, while in vitro systems biology is extremely useful for understanding intra-cellular 

signaling networks, it is very difficult to mimic the full range of inter-cellular interactions 

that ultimately control outcome in living tissues. Even improved culture methods that 

involve multiple cell types and three-dimensional structure often fail to fully capture the 

behavior of a living tissue or organ. Lau et al. provided a powerful example of unexpected 

inter-cellular interactions driving tissue behavior when they found that a lack of adaptive 

immune cells increased apoptosis in response to TNF-α (tumor necrosis factor alpha) in the 

intestinal epithelium.10 Ultimately, this was the result of a compensatory proinflammatory 

environment (as underscored by IFN-γ – interferon gamma) induced by other epithelial and 

immune cell subtypes in the tissue. While IFN-γ and TNF-α have been shown to cooperate 

to induce apoptosis in vitro, the increased IFN-γ and the mechanisms that induce its 

production would not have been predicted by current state-of-the art cell culture models. 

While this paper speaks to the importance of using systems approaches to identify 
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unexpected and novel tissue responses, part of the reason the modeling was able to produce 

actionable hypotheses was that the number of analytes (cytokines, immune cells, epithelial 

response) was relatively few for a systems study. Identifying the key components of a 

network and their mechanistic interactions becomes increasingly difficult as the number of 

analytes increases. Still, this paper provides a valuable example of the importance of using 

in vivo models when investigating tissue-level behavior using a systems approach.

In the same way that we think about molecular context in a cellular system, we must think 

about the tissue context when we try to expand to an organ or organismal system. While the 

outcome of activating a given pathway may be modified by the activities of other pathways, 

cell contact, or nutrients in an in vitro setting, an in vivo system is affected by these plus 

many other factors. Spatial and biophysical constraints, the presence of other cell types, 

access to oxygen, and the presence of microbes are just a few of the additional factors that 

may drive cellular, organ and organismal behavior. This complexity provides one of the 

strongest arguments for the need for systems approaches in studying intestinal diseases, 

however, it is also one of the chief obstacles to creating meaningful, actionable models. 

Even comparatively simple in vitro systems cannot be mechanistically modeled at the scale 

of many thousands of molecular species. This difficulty is further compounded by the 

complexity of the in vivo tissue environment. While the ultimate goal of producing 

computable systems-level models at the tissue and organismal scale may be out of reach 

with current measurement and analytic techniques, systems-level correlative studies have 

already been powerful tools for hypothesis generation and have enhanced our knowledge of 

human gastrointestinal function and disease.10,11 In this review we will discuss some of the 

ways that even incomplete models have provided key insights into intestinal disease, with 

particular emphasis on the measurement techniques that generate systems scale data, and the 

mouse as a model system, which has been an invaluable tool for generating hypotheses 

using systems-level measurement and analysis.

1.2 Mouse as a model system for in vivo systems analysis

Every system used to understand human health and disease has its advantages and 

disadvantages. Though human subjects certainly provide the best reflection of human 

physiology, patient tissue is not always readily available or sufficiently robust for 

experimental purposes. On the other end of the spectrum, cell lines are far more readily 

available and provide some of the same network architecture observed in human beings. 

However, since they lack many of the critical features of physiological space, they are not 

always an ideal platform for simulating human disease. Model organisms, such as rodents or 

zebrafish, have long been used to model human disease.12 These animal models have 

provided the means for numerous breakthroughs yet there can be significant drawbacks in 

their use that should be kept in mind.

First, we want to touch upon the use of humans as a model system for studying intestinal 

biology. A major challenge for performing human studies is the deficiency of well-defined 

experimental controls. The natural genetic variation present in human populations adds 

tremendous confounding variation to biological phenotypes. Specifically in regards to the 

gut, environmental factors such as dietary influences on the microbiome can further 
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confound biological variation.13 Human social behavior, such as mental state and smoking 

habits, provides additional sources of variation and can also lead to non-compliance during 

intervention studies.14,15 Of course, the amount of variation that can be tolerated within 

human studies depends upon the phenotype being examined. A well-controlled study by Wu 

et al. examined the change in microbiome when human subjects were fed restricted diets 

while retained in a hospital setting for 10 days. Although changes in microbial species were 

examined, these changes were far outweighed by inter-individual variation, suggesting the 

genetics and environmental histories of the subjects play much more significant roles than 

the intervention.16 Evidence from twin studies suggests that there is an important component 

of heritability in Crohn's disease.17 Yet, similar concordance is not present for either 

severity or progression of disease.17,18 Furthermore, monozygotic twins display much less 

concordance in ulcerative colitis.19 While genetic variation can often be a confounding 

factor in studying human disease directly, approaches such as Genome Wide Association 

Studies (GWAS) leverage this natural variation in order to identify rare and complexly 

interacting genes and genomic regions associated with a given phenotype. For example, IBD 

GWAS have been fruitful in identifying 163 disease-associated loci.20,21 However due to 

many non-genetic variations within human populations, larger and larger sample sizes (some 

numbering in tens of thousands of patients) are required to find rare or interacting disease 

alleles.22 Furthermore, although these analyses identify regions of the genome that are 

correlated with disease, follow up work, often using cell and animal models, is required in 

order to confirm a given gene as the driver of the genetic association.

At present, rodents and zebrafish are the prevailing model organisms utilized in studying 

gastrointestinal disorders. Various features of the zebrafish have made them a desirable 

candidate for modeling GI illnesses such as CD (Crohn's disease) and UC (ulcerative 

colitis).23,24 For instance, organism transparency during the larval stage lends itself to 

sophisticated imaging techniques.25 Additionally, zebrafish are extremely fecund and long-

term maintenance is relatively inexpensive. Their gastrointestinal tract is very similar to the 

human small and large intestine and the adult zebrafish possess an innate and adaptive 

immune system with many features resembling its human counterpart.26 The high degree of 

gene and protein homology have led to the use of zebrafish as an important tool for the study 

of IBD susceptibility genes. This platform could also prove beneficial for high-throughput 

screening of compounds suitable for IBD treatment.23 An important caveat, however, is that, 

while the immune system is fully developed by adulthood, at this stage in their life cycle, the 

organism is no longer transparent. This greatly minimizes one of the aforementioned 

benefits of this model organism, which is the ease of real-time in vivo imaging. Moreover, 

the current protocols for modeling IBD in zebrafish are mostly limited to the use of 

chemicals known as “haptens,” such as TNBS (trinitrobenzenesulfonic acid) and 

oxazolone.27 Though chemically inducing IBD is a laborious process, zebrafish larvae 

subjected to these treatments will develop many of the same histological characteristics of 

IBD observed in mice and humans.25 These include neutrophil infiltration, altered intestinal 

lipid metabolism, and goblet cell hypertrophy. However, the inflammatory response via 

haptens is not a perfect representation of human disease since, at this life stage, the zebrafish 

adaptive immune system is not fully functional.12 More critically, these haptens do not 

cause epithelial cell damage, an important hallmark of human UC and CD.25,27 

Lyons et al. Page 5

Integr Biol (Camb). Author manuscript; available in PMC 2016 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Additionally, the experimental tools such as surface protein antibodies and associated 

reagents are less developed for zebrafish than for mice or humans.

Non-human primates, such as the rhesus macaque and the common marmoset, are 

immunologically and biologically closer to humans, certainly more so than rodents or 

zebrafish. The rhesus macaque and the cotton-top tamarin, a marmoset native to Colombia, 

are both known to develop spontaneous colitis when housed in captivity and display an 

increased incidence of chronic diarrhea.12,28 Primate models have been especially useful in 

the evaluation of gene therapy techniques and other intervention methods for IBD. In 

addition, the use of primate models has provided insight on the effect of sexual dimorphism 

in the development of IBD.29 However, these organisms have many obvious drawbacks to 

their use, chiefly the increased expense and effort related to their care. Similarly most work 

in primate models has been primarily observational and limited to studying the pathology of 

spontaneous incidence of chronic inflammation. The dearth of genetic tools is a critical 

drawback of this model organism.

Ultimately, given trade-offs in cost versus homology, the mouse still represents the best 

model system for addressing questions of intestinal disorder via systems approaches. Mouse 

models are relatively inexpensive, have a strong experimental tool kit, and reflect many 

aspects of human immune and gastrointestinal physiology. Additionally, numerous genetic 

and chemical models have been developed to study various aspects of gut health and 

disease, including stem cell function,30 inflammation,31 and cancer32 (Table 1). In the IBD 

field, for instance, there are five main classes of mouse models available for the study of GI-

related inflammation.12 These include chemical induction models, cell transfer models, 

spontaneous models, congenital models, and genetically engineered models. Certainly no 

other organism has an equally well-developed assortment of IBD and GI tumor models.

However, it is important to bear in mind that researchers must always exercise caution when 

extrapolating from mouse models to human physiology. There are numerous examples of 

mouse models failing to accurately reflect human biochemistry and disease.33,34 For 

instance, the development of intervention methods for IBD have often yielded conflicting 

results in human and mouse. Experimental therapies that have proven efficacious in rodents 

have not always proven equally effective in clinical trials using human patients.12 

Additionally, significant evidence has implicated the importance of strain differences and 

diet modulation in murine research.35–39 Modeling chronic human diseases may also be 

limited by the relatively short lifespan of mice. Specifically, late stage metastasis in colon 

cancer has been difficult to model with the mouse, perhaps due to insufficient time to 

accumulate mutations given similar mutation and cell division rates in the mouse as 

human.40 With mice or any other model system, it is imperative to perform complementary 

studies in humans to confirm critical findings. We believe that systems approaches will be 

invaluable in this regard since they provide a more global outlook on a given health or 

disease state, enabling a more thorough comparison of how a mouse model may succeed or 

fail to reflect the human condition.

Below we will describe some of the powerful ways in which systems biology has been 

applied to mouse models of human intestinal biology. In particular, we will focus on the 
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experimental techniques that have fueled this growing field and will propel it forward in the 

future (Table 2). We believe that this growing field, especially when combined with in vitro 

and human data, has tremendous promise for improving our understanding of intestinal 

diseases ranging from infection to inflammation to cancer. This enhanced understanding 

should provide insight into novel methods of treating diseases at the whole organ level, 

hopefully leading to better therapeutic outcomes for human patients.

2. Tools for generating network-scale datasets from mouse tissues

2.1 RNA tools

Quantitative, network-scale studies of mammalian tissues have been ongoing since the early 

2000s via the use of gene expression arrays.41 Of all the measurement techniques for 

interrogating biological systems, nucleic acid-based platforms including gene expression 

array and RNAseq provide the most comprehensive sampling. However, because gene 

expression is one level removed from the cellular machinery – the proteins and their 

modifications – that control function, signatures derived from these studies are correlative 

but do not necessarily reflect the causative factors that affect phenotypes. As such, these 

techniques have been most useful for classifying samples and for candidate gene 

identification. In the intestine for example, genes involved in neoplasia have been identified 

by comparing expressed genes between ApcMin (adenomatous polyposis coli multiple 

intestinal neoplasia) tumors and adjacent normal tissues.42 However, to best leverage the 

large scale of RNA-based measurements, computational tools for inferring signaling activity 

based on these profiles must be used. Using computational algorithms such as gene ontology 

enrichment43,44 and Gene Set Enrichment (GSEA),45 it is possible to identify not only the 

individual genes that are shared or differ, but also to infer biological processes and pathways 

that contribute to different phenotypic outcomes between samples.46 These techniques can 

be used for generating biological insights from multiple expression profile comparisons, for 

example, for distinguishing shared or divergent gene modules between mouse models and 

the human diseases they represent. This is important both as a basic scientific question and 

in choosing the best mouse to represent different aspects of human physiology or disease.

Gene expression analysis, when applied to small amounts of tissue, has the potential to 

expand current understanding of important biological phenomena. For instance, this 

technique could be of particular value in identifying and characterizing rare but significant 

cell populations, such as stem cells or circulating tumor cells.47,48 However, validation of 

single cell mRNA sequencing has not been without its challenges. Currently, many mRNA-

sequencing protocols require anywhere from 1 ng to 10 ug of sample RNA.47 Acquiring 

RNA quantities on the nano- or microgram level is often unfeasible for single-cell 

transcriptomic analysis.49 As sufficient RNA cannot be directly obtained, a variety of 

protocols have been developed to sufficiently amplify the RNA pool in order to carry out 

next generation sequencing. mRNA transcripts undergo reverse transcription, after which 

double-stranded cDNA is amplified and fragmented for sequence library generation.50 RNA 

amplification methods, however, vary in their workflow and can introduce variation in the 

downstream sequencing analysis.47 In order to identify gene expression at single cell 

resolution, amplification protocols and sequencing approaches must be capable of accurately 
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recapitulating the transcriptomic profile of individual cells. However, various factors should 

be taken into consideration when interpreting data from single cell sequence libraries. For 

instance, stochastic loss of low abundant transcripts is common when transcribing or 

amplifying cDNA.51 Insufficient amplification and subsequent transcript fragmentation can 

impede read coverage of rare transcripts. This ultimately results in enrichment of high 

abundant transcripts and skewing of the generated sequence library. Moreover, amplification 

also tends to induce a bias by preferentially enriching towards the 3′-end of transcripts. 

Generated fragments do not uniformly sample across the whole length of the transcript.50 As 

a result, having adequate read coverage for long transcripts becomes increasingly 

challenging as the levels of input RNA decrease. The 3′-end bias also impedes the detection 

of alternatively spliced isoforms of RNA transcripts.

While the development of RNA amplification methods has brought the field closer to 

accurate representation of transcriptomics of single cells, there is still significant room for 

improvement. Smart-seq, for instance, has demonstrated the capacity to overcome some 

common limitations of RNA amplification. Smart-seq works by converting poly(A)+ RNA 

to full-length cDNA via SMART (Switching mechanism at 5′ end of RNA template) 

switching technology.49 The addition of non-template “anchor sequences” to full-length 

cDNA enables efficient primer extension.49 PCR amplification generates sufficient cDNA to 

then construct Illumina-based sequence libraries. Application of this technique to early 

mouse embryos has revealed the presence of random monoallelic gene expression in 

embryonic and mature mammalian cells.51 Moreover, in comparison to various other mRNA 

amplification protocols adapted for single cells, Smart-seq technology provides improved 

read coverage and enables quantitative assessment of single cell transcriptomes.49 This 

improved read coverage augments identification and assessment of alternatively spliced 

exons and mRNA isoforms. However, there is still a sensitivity threshold where Smart-seq 

fails. For instance, this platform possesses limited ability to accurately and efficiently read 

transcripts longer than 4 Kb, which can minimize its utility in certain contexts.50 

Furthermore, Smart-seq still demonstrates significant PCR biases during its amplification 

steps. Highly abundant transcripts are preferentially enriched while rarer transcripts are 

lost.50,51 Optimization of this and other amplification techniques remains vital for better 

characterization of single cell transcriptomes.

2.2 Protein tools

While RNA-based measurement techniques are extremely powerful for generating global 

patterns of expression, most of the cellular work is carried out by proteins. Fortunately, the 

number of tools becoming available to assess protein levels and modification at a large scale 

in tissues are increasing rapidly.52 Candidate approaches such as reverse phase protein 

lysate arrays53 and microwestern arrays54 have all been applied to study cell culture 

phenomena at various multivariate scales. Furthermore, approaches such as multiplexed 

bead-based ELISA (enzyme-linked immunosorbent assay) have been used to study acute 

and chronic inflammation in the mouse as well as culture models.11,55,56 These technologies 

are candidate-based such that antibody probes can be selected to generate high confidence 

data, even for low abundance or post-translationally modified proteins. However, because of 
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their candidate-based nature, the investigator must have some prior knowledge of the 

important analytes to examine for each study.

Moving towards higher coverage, advances in mass spectrometry have enabled researchers 

to produce a more quantitative global understanding of protein abundance. The two most 

accurate techniques for measuring relative protein abundances between samples are SILAC 

(stable isotope labeling by/with amino acids in cell culture) and isobaric tagging (iTraq – 

isobaric tag for relative and absolute quantitation, TMT – Tandem mass tag). Both 

techniques work by differentially labeling proteins between samples with heavy metal 

isotopes and then analyzing all samples in one run. The main differences between the two 

techniques are the number of samples and the labeling procedure. For SILAC, proteins are 

tagged by providing isotopically labeled supplements live, such that the label is incorporated 

into proteins during metabolism. Because of the limited number of isotopes available for this 

type of labeling, only a few samples can be directly compared. Isobaric labeling is 

performed after removal of tissue, and, because there are more isobaric tags available, can 

be performed with up to 8 different samples in one run.57 SILAC has been applied to mouse 

models by feeding mice with a diet modified by isotope-labeled lysines. Using mass 

spectrometry, proteins that are differentially phosphorylated can be identified and quantified 

between different mice. This approach has been used for studying the signaling network 

alterations that occur during the progression of squamous cell carcinoma, using the 7,12-

dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) mouse 

model.58 Isobaric tagging methods have also been applied to mouse models, and have been 

used to identify novel biomarkers of colorectal cancer from ApcMin mice.59

Although mass spectrometry techniques allow for unbiased sampling of the proteome, this 

technique still carries certain limitations. For both SILAC and TMT labeling, only a few 

samples can be analyzed at a time. Without a sufficient amount of data points to constrain 

the large number of parameters measured, it is not possible to build sophisticated models 

that depict biological complexity. This situation is similar to early microarray analyses 

performed with few samples, but many measured genes. This problem cannot be solved by 

simply performing multiple runs because the coverage of proteins detected by mass 

spectrometry can vary from run to run. At last, mass spectrometry tends to favor highly 

abundant proteins, while low abundant, but important proteins, are not detected.60

3. Moving from bulk measurements to single cells

3.1 Flow cytometry based-approaches

Flow cytometry has been a powerful tool for moving from bulk measurements down to 

subpopulations or even single cells. This technique relies on fluidic systems to pass cells one 

at a time past lasers which can detect cell size and granularity as well as fluorescence 

derived from dyes or fluorophore conjugated antibodies. These properties allow flow 

cytometry to be used in one of 3 ways: (1) cell type identification and counting, (2) sorting 

cell mixtures into homogeneous populations or single cells for collection and downstream 

analyses, and (3) direct quantification of proteins in individual cells. The field of 

immunology has been built upon using flow cytometry to identify and enumerate specific 

immune cell subsets using cell type specific markers (1). In the intestine, flow cytometry has 
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been heavily used for profiling immune cells in the lamina propria. These include CD4+ 

(cluster of differentiation 4) helper, CD8+ cytotoxic T cells in response to food antigens in 

the gut,61 Foxp3+ (forkhead box P3) T regulatory cells (Tregs) induced by microbiota,62,63 

dendritic cell interaction with the intestinal epithelium,64 and various innate lymphoid cell 

subsets interactions with the microbiota,65–67 macrophages and Tregs.68 For intestinal 

epithelial cells, flow cytometry has mostly been utilized for sorting and collecting epithelial 

stem cell populations using surface markers such as CD24 and CD44 (2).69 Sorted intestinal 

cell populations can then be further analyzed, for example, by qPCR (quantitative 

polymerase chain reaction).70 Alternatively, using multiplexed flow cytometry, protein 

abundances can be determined within those populations directly (3). For example, tumor 

initiating potential of colorectal cancer cell subpopulations can be determined by the levels 

of a panel of cancer stem cell surface markers.71 Although the number of analytes has been 

limited by the number of unique fluorochromes and their spectral overlaps, the recent 

development of mass cytometry or Cytometry Time-of-Flight (CyTOF) has enabled the 

number of markers analyzed to increase several fold. This growing technology uses heavy 

metal-labelled reagents in lieu of fluorescently labelled antibodies. Because heavy metals 

have minimal mass overlap, up to 100 protein analytes can be identified and quantified in 

single cells.72 Another method that overcomes fluorescence spectral overlap is DNA 

conjugation coupled to Nanostring barcode detection,73 which has been used to detect over 

90 protein analytes in fine needle aspirates.74 These highly multiplexable technologies 

enable high resolution phenotypic profiling of individual cells, which can lead to significant 

biological insight into how multiple cell types contribute to a tissue phenotype at a systems-

level. Advantages of flow cytometry-based approaches include whole cell quantification 

(without sectioning cells into partial cell fragments as with in situ approaches), and the 

thorough sampling of cells from tissues. While these techniques can provide high-

dimensional information at the single-cell level, it should be noted that, once the tissue is in 

single cell suspension, all spatial information is lost.

3.2 In situ microscopy approaches

To maintain spatial information for single cell studies, microscopy-based approaches to 

quantify protein and nucleic acid analytes at single cell resolution are constantly being 

improved. Conventional and spectral deconvolution fluorescent microscopy, like flow 

cytometry, is limited by spectral overlap for accurate quantification. One strategy to enable 

high multiplexity with immunofluorescent microscopy is dye/reagent cycling. One example 

of this approach is the GE MultiOmyx™ technology, which utilizes chemical-based photo-

deactivation after every round of imaging to allow multiple antibodies conjugated to the 

same set of fluorochromes to be used in iterative cycles of staining. Using algorithmic 

software processing routines that register cells from different staining rounds and segment 

individual cells by sub-cellular markers, MultiOmyx has been used to quantify in excess of 

60 different protein analytes from single cells in formalin-fixed paraffin embedded tissue 

sections.75,76 Analogous to the development of CyTOF, the use of heavy metal-labelled 

reagents in conjunction with mass spectrometry-based imaging can also enable high 

multiplexity.77,78 A recent emerging imaging technology is to leverage tissue clearing 

strategies and biophysical matrices to preserve the 3-dimensional architecture of a cleared, 

transparent tissue for 3D imaging (CLARITY).79,80 Future developments of these promising 

Lyons et al. Page 10

Integr Biol (Camb). Author manuscript; available in PMC 2016 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



technologies for robust multiplex applications will further our understanding of spatial 

relationships and communication mechanisms between individual cells in tissue contexts.

Imaging gene expression has been made possible by RNA fluorescence in situ hybridization 

(FISH). RNA-FISH has been used for visualizing the expression of stem cell genes within 

the intestinal epithelium in native tissue context at single-cell resolution.81 Similar to protein 

immunofluorescence, RNA-FISH is also limited by the spectral properties of fluorochromes. 

To enable high multiplexity, the Church group has developed a rolling circle-based RNAseq 

method (fluorescent in situ RNA sequencing – FISSEQ), where amplification of the cDNA 

sequence as tandem repeats allows for multiple rounds of stripping and re-hybridization of 

probes with the same set of fluorochromes.82 Likewise, the Cai group has developed RNA 

in situ hybridization techniques that either use combinatorial fluorescence83 or sequential 

hybridization84 to generate barcodes and enable multiplex quantification of gene expression 

via imaging.

While in situ imaging approaches maintain spatial resolution, sophisticated and powerful 

image processing algorithms are required for segmenting individual cells for analysis. Since 

each tissue type has cells with different morphologies, these algorithms have to be tailored 

made. Furthermore, the accuracy of quantification is reduced since sectioned cell fragments 

are analyzed; it is very difficult to control how much of each cell is sectioned during the 

tissue preparation process. This problem is further compounded by the sampling of a 

localized population of cells via tissue sectioning, thus, important details of heterogeneity 

may be missing unless serial sectioning of the whole tissue is performed. Lastly, both flow 

cytometry and in situ techniques are endpoint assays, meaning that one cannot follow 

individual cells over time. This limitation hampers dynamic analysis of single cells because 

one cannot directly link early events to later phenomena.

3.3 Intravital imaging

At present, the only way to incorporate both spatial and temporal dynamics at the single cell 

level is via intravital imaging. Advances in imaging modalities such as two photon 

microscopy allow researchers to track populations of cells in vivo at depths of up to 1.6 

mm.85 This can be used to track cell migration in vivo in real time and can be used to 

construct detailed 3-dimensional images of tissues with higher clarity than techniques such 

as confocal microscopy. Another approach for intravital imaging is confocal endoscopy. For 

this procedure, a confocal microscope is mounted directly to an endoscope, which can be 

used to fluorescently image the colon.86,87 Coupled with emerging varieties of live-cell 

biosensors that measure, for example, Erk (extracellular-signal-regulated kinase) 

activation88 or cell proliferation,89,90 intravital imaging may be used for identifying and 

quantifying cell types in the mucosa of living, sedated animals. Intravital imaging has been 

used in the intestine to follow single stem cells through an abdominal window in 

combination with a confetti reporter driven by the stem cell marker Lgr5 (leucine-rich 

repeat-containing G-protein coupled receptor 5).91 This work provides strong evidence for a 

model called neutral competition. In this model, stem cells divide symmetrically but 

stochastically compete for space within the stem cell niche, such that differentiation and 

renewal occurs at equal probability to maintain homeostasis. This result confirms previous 
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mathematical modeling of stem cell neutral competition,92 where individual outcomes of 

cell fate follow a stochastic process but stem cell population dynamics provide deterministic 

outcomes. While studies such as these show that intravital imaging can be extremely 

powerful in revealing spatiotemporal dynamics within living tissues, these approaches are 

not yet amenable to network-level studies because they cannot detect more than a handful of 

colors/analytes at a given time.

4. Microbiome and metagenomics

In recent years, the improved cost and efficiency of next-generation sequencing platforms 

has greatly facilitated the study of the intestinal microbiome. This has vastly improved our 

ability to not only screen for and identify novel pathogens involved in gut diseases,93 but to 

study microbial communities at the population level as well. Due to the relative ease and 

lack of invasiveness of sample collection, compared to other systems approaches, 

microbiome studies are perhaps most amenable to human studies. Changes in intestinal 

microbiome have been associated with everything from obesity,94,95 to gestational 

diabetes,96 to schizophrenia97 in human subjects. Generally, these effects are correlated with 

population-level changes in microbial population. The use of mice may help in identifying 

which segments of these pathogenic communities are directly causative of disease and the 

mechanisms by which they wield their effects. One of the key methods by which this can be 

accomplished is through the use of gnotobiotic mice with humanized microbiomes.98,99 

Humanized mice are produced by maintaining recipient animals in germ-free conditions 

followed by transplantation with human fecal innoculates. Through this method, population 

level structure of the microbiome is maintained, although there may be changes at the 

species or OTU (operational taxonomic unit) level.98 These mice have been used to assess 

the microbiome's effects on traits such as obesity and susceptibility to infection by 

pathogenic bacteria such as Salmonella.100 It should also be noted that this same study 

indicates that the mouse immune system does not mature as fully when it develops in the 

presence of a humanized microbiome. Furthermore, the methods to correctly identify 

bacteria at the species lever are still in development and shotgun approaches can both over-

estimate species diversity101,102 and miss rare species that are present within samples.103 

While these mice can be very useful as hypothesis generators, as with all mouse models of 

human disease, results must be confirmed in human subjects before drawing any firm 

conclusions.

In addition to understanding the role of intestinal microbes in disease, there has been a great 

deal of interest in how the microbiome can be used to improve health. Intestinal microbiota 

are known to have important nutritional consequences, including vitamin synthesis and 

fermentation of complex dietary carbohydrates. In the colonic lumen, clostridia and 

bifidobacteria ferment dietary fiber into SCFAs (short chain fatty acids) such as butyrate, 

propionate, and acetate.104 Butyrate is a crucial component of the large intestine and 

contributes to colonocyte proliferation, differentiation, and maturation.105 Additionally, 

propionate is known to induce Foxp3+ IL-10-producing T regulatory cells via Ffar2 (free 

fatty acid receptor 2).105 Luminal levels of SCFAs play an important role in immune 

modulation, enteric neuron function,106 and epithelial cell maintenance. On a systems scale, 

metabolomics techniques such as correlative NMR (nuclear magnetic resonance) have been 
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used to profile the metabolic capability of the microbiome and its associations with 

pathologies such as infection.107 The metabolic potential of the microbiome can also be 

inferred simply from metabolic genes expressed, using meta-genomic analyses such as 

PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved 

states).107–109 However, clinical attempts to replace certain gut metabolites exogenously 

have been largely inconclusive, mainly due to the vast combinatorial complexity in the 

microbial metabolome. As with other forms of high-dimensional measurement such as 

RNAseq and microarray, the techniques used to identify microbial molecular species have 

outpaced the computational and statistical tools needed to fully model and understand the 

interactions present in the system. Improved computational tools will be necessary if the 

field is to move from higher-level understanding of populations of bacteria to mechanistic 

modeling of the genetic and metabolic interactions that define the microbial compartment.

Another approach that has not required gene-level understanding is replacement of the 

whole microbiome of a diseased individual with a healthy microbiome through fecal 

transplant. This approach has been extremely effective, particularly for treating infections 

like Clostridium difficile.110–112 Patients who have shown poor response to conventional 

antibiotics and exhibit relapsing infection, have shown profound responses to fecal 

transplantation from healthy donors. This technique has already been implemented very 

successfully with up to 90% cure rates,112–114 and studies in humanized mice may enable 

researchers to gain insight into the populations of bacteria that produce the best patient 

outcomes. Additionally, a recent paper from the Pamer group has shown how mouse models 

and meta-genomics can be used to identify single species, and particular metabolic functions 

of that species, that can enhance resistance to C. difficile infection.115 In this paper, the 

authors used a series of antibiotic perturbations to alter the microbiome of mice prior to 

challenge with C. difficile. By correlating the resulting microbiomes with susceptibility to 

infection and comparing that with patient data, the authors identified a different species of 

Clostridium with an important role in bile acid metabolism that provided resistance to 

infection. Approaches such as these may eventually enable researchers and clinicians to 

identify the key components of the microbiome that provide resistance to infection, and to 

begin standardizing this very powerful therapeutic tool.

5. Systems biology in mouse models

5.1 Advantages of genetic perturbations

One of the reasons that the mouse is such a powerful experimental tool is its genetic 

tractability and the large numbers of genetic models of human diseases that are already 

available to researchers (Table 1). Often based on human genetic data, mouse models have 

been generated that mimic features of intestinal inflammation and cancers. Intestinal-

specific expression or knockout can be controlled by techniques such as the Cre–Lox 

recombination system.116 Additionally, genes can be targeted by techniques such as RNA 

interference117,118 and CRISPR-CAS (clustered regularly interspaced short palindromic 

repeats-CRISPR associated).119 Using the experimental methods described above, these 

models can be used to generate systems-level understanding of the mechanisms of action of 
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genetic lesions associated with human pathologies, or to identify unknown genetic events 

that may drive these diseases.

Alongside traditional transgenic approaches, an emerging discipline known as systems 

genetics may provide additional clues as to the genetic origins of intestinal function. This 

approach generates variation in mouse models for systems-level studies by harnessing the 

natural variation between different strains of mice.120 Instead of strictly looking at genes and 

traits, for example, by using haplotype based computational genetic mapping,121 one can 

also leverage the natural variation in signaling sensitivity between different mouse strains to 

study network behaviors. Genetic variation between mouse strains can be used in lieu of 

targeted perturbations for systems-level studies. These variations can then be mapped back 

to pathways if genomic information is available. The Collaborative Cross, an effort to 

generate additional genomically characterized inbred lines from eight commonly used but 

diverse inbred mouse strains, will be a valuable resource in the future for studying mice with 

a spectrum of variation that can be leveraged for systems-level studies.122

5.2 Computational modeling of in vivo datasets

Many theoretical approaches have been developed over the years to model biological 

behaviors at multiple scales. Much effort has been dedicated to deriving insights from 

systems-level data generated from cell culture. However, in vivo systems are poor 

candidates for traditional approaches that assume changes in the network state occur through 

predictable continuous pathways in predetermined network topologies due to their inherent 

heterogeneity. Probabilistic approaches based upon statistics are more appropriate for 

analyzing data that are generated from in vivo organisms by experimental systems biology 

approaches. Here, we give a brief introduction to some of the modeling approaches used for 

in vivo systems data sets. For a more thorough review, see Wood et al. in this issue.

Dimension reduction statistical approaches—An elegant approach to interpreting 

large in vivo datasets is to classify or cluster phenotypic outcomes by measured components 

(protein/gene expression states, etc.) in multivariate space. A commonly used technique is 

principal component analysis (PCA), which uses a mathematical algorithm to reduce the 

dimensionality of the data while maintaining most of the variation in the dataset123 (Fig. 

3A). PCA introduces new variables called principal components that are linear combinations 

of the original variables. Principal components can be assessed by the amount of 

information (variance) captured, and, thus, plotting a few principal components with the 

maximal information content allows for the direct visualization of similarities and 

differences between samples in multi-dimensional space.123 A supervised version of PCA, 

which allows for correlation between independent and dependent variables, called partial 

least squares regression (PLSR), has been used successfully to infer how changes in 

signaling network are correlated with cell death and proliferative outcomes.11,124,125 Since 

PCA-based approaches use linear combinations of variables to form components, nonlinear 

relationships between the variables are not always apparent. t-SNE (t-distributed stochastic 

neighbor embedding) is a space-maintaining dimension reduction approach that preserves 

nonlinearity of the data.126 For visualization, SPADE (sequential pattern discovery using 
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equivalence classes)127 combines spanning tree analysis with clustering to delineate 

relationships between samples and/or cells.

Bayesian networks—Bayesian-based methods are stochastic methods used to determine 

model parameters from a posterior probability distribution derived from experimental 

data.128,129 These methods utilize a likelihood function that increases the predictability with 

the number of datasets used to train the system. Graph theory and probability meet in 

Bayesian methods where variables are represented as nodes and their relationships through 

acyclic edges. The Bayesian parameters can be modeled as discrete, continuous, or both, and 

temporally, the system can be modeled as static or dynamic. The result is an ensemble of 

feasible solutions that is more predictable and robust than a single best fit solution. Two 

popular and freely available software packages that incorporate Bayesian methods are 

SloppyCell and BioBayes.130,131

Logic modeling—An important goal of systems-level analysis is the derivation of a 

biological network's topology. Traditionally, a pathway's or network's topology is 

determined painstakingly from decades of experiments, which then are cataloged in the 

literature. Because the topology of a network can change depending on biological context 

(e.g., cell type), it is difficult to derive the correct network strictly from mining the literature. 

Logic-based modeling uses a technique borrowed from engineering that derives 

relationships from systems-level data with guidance from a prior knowledge network 

(PKN)132 (Fig. 3B). A PKN is first initiated by enumerating all components and connections 

that are included directly or indirectly in the data from the literature or databases. The PKN 

is then collapsed to exclude nodes and edges that have not been explicitly measured while 

maintaining logical consistency. Next, the modified PKN is fit to the experimental data 

using a logic-based objective function to determine an optimal set of networks, with each 

network in this set considered equally viable. Finally, the quality of each edge is statistically 

assessed by its representation in an ensemble of models. CellNetOptimizer is an example of 

a freely available logic-based modeling software.133

5.3 Considerations for systems biology studies in mice

Studying biological phenomena in in vivo settings provides the advantage of physiological 

significance and relevance. However, studying organisms in vivo presents its own set of 

challenges for the design of controlled experiments. While one can largely control for 

extrinsic factors like diet and drug treatments when doing mouse experiments, even inbred 

mice have additional sources of variation intrinsic to each animal such as sex and age that 

can affect the outcome of an experiment. These variations can sometimes override the 

effects of intended experimental perturbations. However, if one is aware of these variations 

from the outset of experimental design, one can adjust for these confounding effects with 

statistical analyses.134

Sex—The most obvious controllable variable is the sex of the animal. Aside from sex 

organ-specific differences, there are many physiological differences prescribed by the 

presence of a Y-chromosome. Examples include differences in hormone levels,135 neuronal 

development and responses affecting behavior,136,137 metabolism, and fat storage.138 A 
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particular hormonal influence that dramatically affects the interpretation of mouse studies is 

the use of tamoxifen to activate estrogen receptor-based inducible Cre recombinase, which 

can subsequently affect normal estrogen receptor function and hormonal balance. Tamoxifen 

use has also been associated with atrophy and metaplasia of the gastric epithelium,139 even 

in the absence of any floxed alleles.

Age—Aging is associated with cellular and physiological changes. As such, aging itself is a 

systems-level phenomenon that results from the integration of multiple inputs and outputs 

occurring at different levels. Changes in oxidative stress, endocrine functions, and 

metabolism occurring at the organismal level can have effects down to the cellular level. 

Stem cell function is drastically reduced in aged mice, resulting in defects in bone 

marrow140 and intestinal regeneration.141 The latter effect contributes to malabsorption of 

nutrients and subsequent changes in metabolism.142 Thymus involution occurs in early 

adulthood resulting in the exhaustion of T cells later in life, a major contributor to 

immunosenescence.143 Imbalance of the immune system with age can lead to chronic, low 

grade inflammation called “inflammaging”.144 Changes in the immune system, diet, and 

gastrointestinal environment with age lead to alterations in the microbiome.145,146 These are 

a few specific examples, but it should be borne in mind that the multitude of changes that 

occur with age may have profound effects on many biological processes.

Strain differences—Mice from different strains and sub-strains are produced via multiple 

generations of inbreeding. Their overall genetic compositions can vary significantly, with 

some even harboring homozygous recessive alleles and mutations. As such, phenotypes 

observed in one mouse strain either at steady state or under perturbation are very likely to be 

influenced by its genetic background. Thus, comparing the effect of a specific perturbation 

should be performed under one background or with added caution if performed across 

multiple backgrounds. An example of a strain-specific effect is the susceptibility to dextran 

sodium sulfate-induced colitis due to variation in immunity genes.147,148 As described 

above, systems genetics and strain-specific differences can be leveraged to link suites of 

genes to changes in phenotype.

Microbiome—Recent research has shed light on the drastic influences of the microbiome 

on vertebrate organism physiology, including metabolism and immunity. The establishment 

of the microbiome is a function of not only inherent features such as genetics, but the 

environment where the organism is housed and raised as well. Mice from the same strain 

exhibit different biological behaviors if they are acquired from different sources. For 

example, C57BL6 mice exhibit divergent Th17 (T helper 17) differentiation in the gut 

depending on whether they originate from Taconic Farms, Jackson Laboratories or Charles 

River.149 Human studies suggest that the adult microbiome is relatively stable,16 and is 

established through a chaotic process during the first year of life when dietary richness and 

environmental exposures are increased. Importantly, dizygotic twins show significant 

similarity in early temporal profile gut microbiome development, demonstrating the 

importance of early fostering.150 There has been evidence suggesting that the adult mouse 

microbiome is not as stable and can be changed within days.151 Cage specific effects are 

strong and can account for up to 30% of variation. These effects can be reduced by mixing 
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bedding and/or medium term co-housing for weeks, although these approaches may not 

result in perfect normalization.152 A better strategy may be to begin with littermates or germ 

free mice followed by co-housing, although only a limited number of mice can be studied by 

this strategy.

Circadian rhythm—The day-night cycle also greatly affects vertebrate organism 

physiology. For example, light–dark cycles neurologically affect feeding behaviors,153 and 

circadian genes like Bmal1 cyclically regulate cytokine secretion and immune 

function.154,155 Cyclic regulation of toll-like receptors can also affect bacterial pathogenesis 

and microbiome balance.156 To control for these variations, in vivo experiments should be 

performed and repeated at similar stages of the circadian cycle.

6. Discussion

Technological advances during the latter half of the 20th century enabled scientists to 

interrogate biological systems down to the molecular level and ushered in a golden age of 

reductionist biomedicine. By understanding how genes and proteins are structured and 

function at the molecular level, we have been able to design targeted therapies for many 

clinically important diseases including cancer,157 inflammation,158 and infection.159 While 

these reductionist approaches have been extremely successful in increasing life span and 

quality for many patients, there are many others for whom these treatments eventually fail. 

In colon cancer or IBD, treatments based on initiator genes and proteins often show periods 

of efficacy followed by relapse.160 In some cases this relapse is triggered by compensatory 

mutations within the target gene or pathway, while in other cases, mutations activating 

independent pathways or network adaptation without mutation can drive resistance. 

Understanding and targeting these compensatory mechanisms may prove effective in driving 

disease remission, with the caveat that these successes might be met with secondary 

resistance resulting in cyclical rounds of treatment and resistance.

Drugs that have even a partial effect or a short-term cure provide immense benefits to 

patients. However, better treatments and complete cures remain the goal for scientists, 

physicians and the patients they serve. For systems biologists, the best route to improving 

therapies is to view these diseases not from the perspective of the single genes and proteins 

that drive them, but from the integrative perspective of the whole disease network. This has 

been born out at the intracellular level using in vitro cell culture systems to map interaction 

networks and to identify network architectures that drive disease-related phenotypes. As our 

understanding of these architectures and the available tools for measuring nodes (whether 

they be at the level of RNA, protein or cell type) in vivo have improved, we are entering an 

era where we will possess an integrated understanding of disease and health at the organ and 

organismal level.

The field of systems biology, particularly in vivo, is still in its infancy and exactly how this 

type of understanding will translate to better therapies remains an open question. In the ideal 

scenario, computable tissue-level networks would be leveraged to design combination 

therapies capable of shifting a tissue from a disease state to a healthy one. Several systems 

biology driven companies have been founded based on the principles and techniques 
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described above, and have achieved success in bringing drugs to the clinic based on in vitro 

systems modeling.161 However, it is important to recognize that the field of systems biology 

is still growing and there are many limitations to reaching a fully realized systems 

understanding of any disease. At present, it is impossible to measure and meaningfully 

model all of the components of any given system. However, by incorporating as many of 

those system-level interactions as possible into our understanding of a given organ, we will 

be able to better design therapies that attack the disease network, and we will be able to 

better understand how the network responds to drive resistance.

Here, we have discussed some of the ways in which systems biology has been used to study 

intestinal disease in the mouse and some of the techniques that will drive this growing field 

forward in the future. This approach will be extremely useful in identifying paradigms of 

tissue-level systems behavior and in determining candidate networks that may be operative 

in human disease. Furthermore, systems-level understanding will enable us to calibrate our 

mouse models to determine which ones best recapitulate human tissue behavior and which 

parts of human networks are well-represented by a given model. This will be of benefit 

directly to systems biologists and to researchers utilizing mouse models for reductionist 

approaches. This knowledge can be leveraged to identify new therapeutic approaches for 

diseases affecting not only the intestine directly, but many diseases of distant organ systems 

that are caused or modified by intestinal health. While the field of in vivo systems biology is 

still in its infancy, there is every reason to hope that it will provide massive value not only to 

researchers, but also to patients suffering from diseases such as cancer, C. difficile infection 

and IBD.
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Insight, innovation, integration

We address the technological advances and challenges for investigating complex 

pathological phenomena occurring within the gut. The intestine can be studied as a 

complex system with three major domains: the intestinal epithelium, the immune system, 

and the gut flora. Complexity emerges from numerous interactions that occur within and 

between each of these domains. The murine intestine is the closest and most applicable 

mammalian experimental system to study human conditions. Innovative, “big data” 

experimental technologies to interrogate this complex system can be viewed as a 

continuum, from those with genome-wide coverage to those with cellular and spatio-

temporal resolution. We further discuss data integration techniques for deriving insight 

from large-scale data, and considerations for using mouse models as a platform for 

systems-level studies of human diseases.
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Fig. 1. 
Gut function and disease is governed by interactions between the epithelium, the immune 

system and the gut microflora. These interactions are mediated by cell–cell contact, 

cytokines, metabolites, and microbial products. We propose that an integrative systems 

approach that engages with this complexity is necessary to fully understand these 

interactions and their impact on gut homeostasis and disease. This figure lists some of the 

techniques that can be applied to systems-level studies in the gut. Techniques in the red box 

are amenable to studies of the microflora; techniques in the blue box are suitable for bulk 

measurements encompassing all components of the gut ecosystem; techniques in the green 

box are suitable for single cell or population-based analysis. Experimental approaches are 

listed in descending order of coverage with the number of unique analytes denoted by the 

color bar.

Lyons et al. Page 29

Integr Biol (Camb). Author manuscript; available in PMC 2016 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Increased mechanistic resolution of mathematical models require larger amounts of data to 

constrain each model parameter. The ratio of the number of parameters per model to number 

of experimental data points to build each model from a collection of mathematical models in 

the literature. 41,128,132,162–164
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Fig. 3. 
Quantitative modeling of multidimensional data. (A) Principal component analysis can be 

used for interpreting multivariate data by reducing dimensionality. In this simple example, 

cells are plotted (left plot) in 3D according to expression levels of three proteins. The grey 

ellipse encircles the axes that contain the most variation in the data, the principal 

components. The data aligned to the principal components in 2D (right plot) allows for 

easier visualization of the difference(s) in the data. In this case, the three cell states are more 

easily identified. (B) Logic-based modeling can be used for constructing a family of optimal 

models from a prior knowledge network (PKN) with a given set of inputs (green nodes) and 

observables (blue nodes). The PKN is compressed by removing all unobservables (grey 

nodes) while maintaining connectivity of nodes downstream. Grey arrows represent 

activation, while red arrows represent inhibition. To allow for all possible connections, the 

network is expanded. A family of optimal models is derived using experimental data.
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Table 1

Common mouse models of intestinal pathologies165–176

Model Disease modeled Location Details

Inflammatory bowel disease

DSS Chemical damage Colon Epithelial cell toxicity followed by 
bacterial penetration and 
inflammatory reaction165

TNBS Chemical damage Colon Mucosal barrier damage followed by 
increased antigenicity166

T-cell transfer Ulcerative colitis or Crohn's 
disease

Colon and ileum 1–3 month latency, high penetrance, 
severe mucosal inflammation. 
Crohn's-like cytokine profile; UC-like 
hyperproliferation, goblet cellloss167

IL-10−/− Crohn's disease (Colitis) Colon and cecum Variable mucosal inflammation 
dependent on microbiota, epithelial 
hyperplasia, inflammatory cell 
infiltration, loss of goblet cells168

TNFΔARE/+ Crohn's disease (Ileitis) Terminal ileum 
(proximal colon)

Severe ileal transmural inflammation, 
mucosal/submucosal infiltration of 
inflammatory cells, increased goblet 
cells169

Colorectal cancer

AOM/DSS Colonic adenocarcinoma Colon Tubular adenoma, dysplasia, and 
colitis with mucosal ulceration170

Lrig1CreERT2/Apcflox/+ Adenoma and adenocarcinoma Distal colon (small 
intestine)

Mainly distal colonic adenomas with 
high-grade dysplasia171

ApcMin/+ Adenoma Small intestine and 
colon

Low-grade adenoma mainly in the 
small intestine172

Fabpl-Cre; Apcflox/+; LSL-KrasG12D/+ Adenoma and adenocarcinoma Distal colon High-grade dysplasia173

Apcflox/+; LSL-K-rasG12D/+; adeno-cre 
after colonic abrasion

Adenoma and adenocarcinoma Distal colon Colonic tumors with high grade 
dysplasia and metastasis174

Infection models

Citrobacter rodentium Enteropathogenic E. coli (EPEC) 
and enterohemorrhagic E. coli 
(EHEC)

Colon and cecum Crypt hyperplasia, goblet cell loss, 
mucosal infiltration, diarrhea175

Salmonella-induced colitis (with 
antibiotic treatment)

Early (4–72 hours) intestinal 
events in salmonella infection

Colon and cecum Mainly in cecum, epithelial 
hyperplasia and erosion, acute 
inflammation, goblet cell lost176
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Table 2
A subset of multiplex and -omics experimental approaches for obtaining quantitative data 
for systems biology, with approximate numbers of analytes measured from cited 

studies10,41,54,76,83,177–187

Experimental approach Approximate number of analytes

Microbiome

Metagenomic sequencing177 4 × 106

Mass spectrometry178 500–6000

NMR179 500

Bulk cell analysis

RNASeq180 25 000

Microarray41 40 000

Mass spec (iTraq, SILAC)181 500–6000

Reverse phase protein array182 150

Multiplex bead based ELISA10 25–100

Microwestern array54 100

Single cell analysis

Flow sorting RNAseq183 10 000

Fluidigm single cell RNASeq180 6000

Fluidigm biomark184 96

CyTOF185 50

Multiplex imaging76 60

Multiparameter flow cytometry186 18

Multiplex RNA FISH83 30

Intravital imaging187 1–2
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