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Abstract

Cost-effective study design and proper inference procedures for data from such designs are always 

of particular interests to study investigators. In this article, we propose a biased sampling scheme, 

an outcome-dependent sampling (ODS) design for survival data with right censoring under the 

additive hazards model. We develop a weighted pseudo-score estimator for the regression 

parameters for the proposed design and derive the asymptotic properties of the proposed estimator. 

We also provide some suggestions for using the proposed method by evaluating the relative 

efficiency of the proposed method against simple random sampling design and derive the optimal 

allocation of the subsamples for the proposed design. Simulation studies show that the proposed 

ODS design is more powerful than other existing designs and the proposed estimator is more 

efficient than other estimators. We apply our method to analyze a cancer study conducted at 

NIEHS, the Cancer Incidence and Mortality of Uranium Miners Study, to study the risk of radon 

exposure to cancer.
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1. INTRODUCTION

Epidemiologic studies often require a long follow-up of subjects in order to observe 

meaningful outcome results. The cost for a large number of subjects and a long period of 

follow-up time could be prohibitively expensive. Research methods that look into new 

efficient statistical designs that will reduce the overall cost and improve the study power 
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under a fixed budget are always desired. For example, in the Cancer Incidence and Mortality 

of Uranium Miners Study conducted at the National Institution of Environment Health 

(Řeřicha et al., 2006), assembly of the life long record of radon exposure for a miner is a 

challenging and costly process. Investigators would like to maximize the study power for a 

given budget by strategically selecting the most informative study subjects.

The proposed ODS design for failure time data is a biased sampling scheme. Biased 

sampling schemes have long been recognized as cost-effective designs to improve the power 

of studies. Such biased designs include Case–Control designs for binary outcomes (e.g., 

Prentice & Pyke, 1979; Breslow & Cain, 1988; Weinberg & Wacholder, 1993; Breslow & 

Holubskov, 1997; Wang & Zhou, 2010), two-stage designs (e.g., White, 1982; Weaver & 

Zhou, 2005; Song, Zhou & Kosorok, 2009), and ODS for continuous outcomes (e.g., Zhou 

et al., 2002, 2007; Zhou, Qin & Longnecker, 2011).

The proposed ODS design is closely related to the well-known Case–Cohort design 

(Prentice, 1986) for the failure time data. The Case–Cohort design first samples a simple 

random sample (SRS) from the underlying population and in addition collects all remaining 

failures. This design is particularly effective when the failure rate is low and the number of 

failures is small (e.g., Self & Prentice, 1988; Cai & Zeng, 2004; Scheike & Martinussen, 

2004; Sun et al., 2004; Pan & Schaubel, 2008). Variations of the Prentice (1986) Case–

Cohort sampling scheme that further improve the efficiency of the designs include the 

stratified Case–Cohort design (e.g., Borgan et al., 2000), and generalized Case–Cohort 

design (e.g., Chen, 2001; Cai & Zeng, 2007; Samuelsen et al., 2007; Kang & Cai, 2009). In 

many studies where the failure rate may not be low and the number of failures is large, 

investigators may not have enough budget to sample all failures. Under these situations, it is 

still desirable to have a design that assembles covariates information for a subset of the 

failures that will increase the power of the study for a given overall budget.

The Cox proportional hazards model, which assumes the hazard ratio is constant, is 

commonly used in survival analysis and almost all of the aforementioned works are done 

under a Cox proportional hazards model framework. When the hazards ratio is varying as 

the study progresses, the additive hazards model, which assumes the hazards difference is 

constant, is a useful alternative to the Cox proportional hazards model (Cox & Oakes, 1984; 

Lin & Ying, 1994; Yip et al., 1999). Buckley (1984) demonstrated that the additive hazards 

model is biologically more plausible than the Cox proportional hazards model. In this paper, 

we propose an outcome-dependent sampling scheme for survival data under the additive 

hazards model and develop a weighted estimating equation approach to estimate the 

regression parameters for data generated under the proposed ODS design. The proposed 

design includes a SRS from the underlying cohort, as well as two supplemental samples: one 

from those who failed early and one from those who failed late. The intention of this 

sampling method is that if the exposure is related to the failure, then those who failed early 

and late will be more informative about the exposure-failure relationship. The Case–Cohort 

design can be viewed as a special case of the proposed ODS design with the selection 

probability of supplemental failure equal to 1. We show that parameter estimators have 

closed forms and are easy to compute. We provide theoretical formulas and computing 
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software to help investigators to compute and design an optimal ODS study with the same 

sample size.

The rest of the paper is organized as follows. In Section 2 we introduce the proposed ODS 

design for failure time data and discuss suitable weights for constructing the pseudo-score 

function to estimate the regression parameters. A Breslow-type estimator for the cumulative 

baseline hazard function is also given. The asymptotic properties of the proposed estimator 

is presented in Section 3. In Section 4 the asymptotic relative efficiency of the proposed 

estimator is compared to the pseudo-score estimator under the SRS with the same sample 

size. A formula for calculating the optimal allocation of subsamples is provided. Section 5 

presents a simulation study to evaluate the performance of the proposed methods. Section 6 

provides a real data analysis. Section 7 provides some concluding remarks and discussions. 

The proof for theoretical results are outlined in the Appendix.

2. DATA STRUCTURE AND PSEUDO-SCORE EQUATION

2.1. ODS Design and Data Structure

Suppose that there are N independent subjects in a large study cohort. Let T be the failure 

time and C be the potential censoring time for T . With right-censoring, we observe the 

vector (X, δ) with X = min(T, C) and δ = I(T ≤ C), where I(·) is the indicator function. Let 

Z(t) be a possibly time-dependent p-vector of covariates. We assume that T and C are 

independent conditional on Z(·). Suppose the hazard function of the failure time T 

conditional on Z(t) follows the additive hazards model:

(1)

where λ0(t) is the unspecified baseline hazard and β0 denotes the p-vector of unknown 

regression parameters.

We propose the following general failure time ODS design, which is a retrospective design 

and the covariates are only measured for the selected subjects. First, we draw a simple 

random subcohort (SRS) from the original cohort. Let ξi indicate, by the values 1 or 0, 

whether or not the i-th subject is selected into SRS. Assume the sample size of SRS is n0 

and n0/N → p. Secondly, we partition the domain of failure time T into a union of K̃ 

mutually exclusive intervals, Ãk = (ak–1, ak], k = 1,···, K̃, where {ak : k = 0, 1,···, K̃} are 

known constants satisfying: a0 = 0 < a1 <,···,< aK̃ = +∞. We select K exclusive intervals 

which are believed to be more informative to sample supplemental samples with K ≤ K̃. Let 

Al denote the selected exclusive interval, who is from the above partition of the failure time 

for l = 1,..., K. Then, the supplemental samples are selected from the subjects who occurs 

failure, are outside of SRS, and in each stratum Ak, k = 1,..., K. Let ηik denote whether or not 

the i-th subject from the stratum Ak is selected into the supplemental sample. Assume the 

size of supplemental samples selected form k stratum is nk, k = 1,···, K. Obviously, the above 

ODS design is applicable whether or not the disease rate is low and the number of failures is 

small.

Yu et al. Page 3

Can J Stat. Author manuscript; available in PMC 2015 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Let Nk and n0,k denote the size of the full cohort sample and the SRS sample falling into the 

k-th stratum and nk/{Nk – n0,k} → rk, k = 1,···, K. Denote , i.e., n is the total size 

of the SRS and supplemental samples. Let n/N → ρV (validation fraction), n0/n → ρ0 (SRS 

fraction) and nk/n → ρk, k = 1,···, K (supplemental fraction), respectively. Let 

, k = 1,···, K. Then from simple calculation, the relationship between 

(p, rk) and (ρV, ρ0, ρk) can be expressed as following:

(2)

The collection of samples from these two steps whose Z(·) value is observed is referred to as 

the validation sample. We refer to the collection of remaining subjects whose Z(·) value is 

not observed as the nonvalidation sample. Hence, the observable data structure of our. 

proposed failure time ODS is:

where V0, Vk and V̄ are the index for the SRS, supplemental sample from the stratum Ak and 

the nonvalidation sample, respectively. Note that (i) when K̃ = 1 and r1 = 1, our proposed 

failure time ODS design is the traditional Case–Cohort design. (ii) When K̃ = 1 and r1 ∈ (0, 

1), our proposed failure time ODS design is the generalized Case–Cohort design by Cai & 

Zeng (2007).

2.2. Weighted Pseudo-Score Estimator

Define Ni(t) = I(Xi ≤ t, δi = 1) and Yi(t) = I(Xi ≥ t). Let τ denote the study end time. If the 

data are completely observed, β0 of model (1) can be estimated by , the root of the 

following pseudo-score equation

(3)

where . Since not all observed data have the complete 

covariate history, we propose to apply the following inverse probability weight (IPW) (e.g., 

Horvitz & Thompson, 1951) to inference the data from an ODS design:

(4)

where  and . We don't sample the nonvalidation sample to 

observe their covariates. Therefore, the sampling probability of the nonvalidation sample 
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should be zero. The sampling probability of the supplemental sample in Ak is ρkρV/[πk(1 – 

ρ0ρV)], k = 1,..., K. In SRS, the sampling probability of censored subject is ρ0ρV and the 

sampling probability of failure is 1 if it belongs to stratum Ak, otherwise it is ρ0ρV. The 

above inverse probability weight (4) can achieve the following goals: (i) nonvalidation 

samples are eliminated by setting w = 0; (ii) the sampled censored subjects have the inverse 

of the sampling probability, (ρ0ρV)–1, as their weight; (iii) the sampled supplemental cases 

are weighted by πk(1 – ρ0ρV)/(ρ0ρV); (iv) the sampled subcohort cases are weighted by 1 if 

they belong to Ak (k = 1,···,K), and by (ρ0ρV)–1 otherwise.

We propose to estimate the true regression coefficients, β0, by solving the following 

weighted pseudo-score equation:

(5)

where . The resultant estimator has a closed 

form:

(6)

where  for a vector a.

For the cumulative baseline hazard function , it is natural to use the fol 

lowing estimator:

(7)

To ensure its monotonicity, we make a minor modification, which still preserves the 

asymptotic properties, that is . Following similar arguments as 

Lin & Ying (1994), we can show that  and  are asymptotically equivalent in 

the sense that .

3. ASYMPTOTIC PROPERTIES

To develop large sample theory for the proposed estimators, we first introduce the following 

notations:

Let e(t) = E[Y(t)Z(t)]/E[Y(t)]. For i = 1, ···, N, define
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We impose the following regularity conditions:

(C1) Λ0(τ) < ∞.

(C2) Pr(Y(t) = 1) > 0 for t ∈ (0, τ].

(C3)
.

(C4)
 is positive definite.

The conditions are similar to those in Theorem 4.1 of Anderson & Gill (1982). The 

asymptotic properties of  are stated in the following:

Theorem 1

Under the conditions (C1)-(C4), (i)(consistency) ; (ii) (asymptotic normality) 

 is asymptotically normally distributed with mean zero and variance 

matrix , where  is defined as in assumption (C4) 

and

Remark 1—The asymptotic variance of  consists that of full data pseudo-score 

estimator's variance  plus an extra term  due to ODS

Remark 2—For Case–Cohort sampling. design, K̃ = 1 and r1 = 1,

and this results is the same as the variance derived by Kulich & Lin (2004).

Remark 3—For generalized Case–Cohort design, K̃ = 1 and r1 ∈ (0, 1),
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and this result is the same as the variance derived by Cai & Zeng (2007).

Theorem 2

Under the conditions (C2)-(C4), the estimated variance matrixes , , 

 and , where

with

and

Proof—the consistency follows from the law of large numbers, the uniform consistency of 

 in Theorem 3 and the uniform convergence of Z̄
w(t) to e(t) are established in the 

Appendix.

Define  and ψ0(t) = E[Y(t)]. The follow theorem establishes the asymptotic 

property of the estimated cumulative baseline hazard function .

Yu et al. Page 7

Can J Stat. Author manuscript; available in PMC 2015 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Theorem 3

Under the assumptions (C1)-(C4), (i)(uniform consistency) 

; (ii)(asymptotic normality of ) 

, where  is defined in (7), converges weakly on [0, τ] to a 

zero mean Gaussian process with function at (s, t) is

where

The outline of the proofs of Theorem 1 and 3 are provided in the Appendix.

4. ASYMPTOTIC RELATIVE EFFICIENCY AND OPTIMAL ODS DESIGN

4.1. Asymptotic Relative Efficiency with SRS Design with Same Sample Size

In this section, we investigate the relative efficiency of the proposed estimator  to the 

competing estimator , where  is the pseudo-score estimator from the equation (3) 

based on the SRS design with the same sample size. We then use those results to derive an 

optimal sample size allocation for future study designs.

By Theorem 1, the asymptotic relative efficiency of  versus  is

(8)

where  is the total size of ODS sample. The formula of  can 

be re-written as:

(9)
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4.2. Optimal ODS Design

We consider the optimal subcohort allocation problem in the failure time ODS design under 

a fixed underlying cohort population and a fixed total budget. By optimality, we mean an 

allocation of n0, n1,...,nK such that the trace of matrix  achieves its 

minimum. Recall that n = n0 + n1 + ··· + nK is total validation size where Z is observed. Let 

N denote the total sample size of an underlying cohort population and $B denote total budget 

at the disposal of the study investigators. Assume that the unit cost is $C1 to observe (X, δ) 

and the unit cost is $C2 to observe (Z). For given B and N, the simple random sampling 

design can afford to sample (B – N × C1)/C2 = nSRS subjects for assess exposure Z. The ODS 

design, on the other hand, can afford to sample n0, n1,..., nK to assess exposure Z, where n0, 

n1,...,nK are bounded by condition

(10)

Our goal is finding the n0, n1,...,nK allocation, such that they satisfy (10), but also minimize 

the trace of . We assume that N, B, C1, C2 are all fixed, which is 

equivalent to the condition that ρV (ρV (ρV = (n0+n1+···+nk)/N) is fixed.

From the formula (9), we known that the trace of asymptotic relative efficiency, denoted by 

 can be written as:

(11)

where trace , trace 

, and trace , k = 

1,...,K are constant and they could be consistently estimated by replacing the means with 

their empirical counterparts from Theorem 2. Therefore,  is a function 

of ρV, ρ0 and ρi, 1 ≤ i ≤ K, which are dependent on our sampling scheme. It is desirable to 

choose values that minimize the trace of the asymptotic relative efficiency. For most ODS 

applications, the K̃ = 3 case is shown to be a practical and sufficient setting (Zhou et al., 

2007) and the Newton-Raphson algorithm could be used to get the optimal allocation of the 

subsamples. We will be happy to provide interested readers with the program code we wrote 

for this
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4.3. Optimal ODS Example

We consider the following additive hazards model:

where E ~ N(0, 1), Z ~ Bern(1, 0.5), λ0(t) = 0.6, β1 = 0 and β2 = 0.5. We consider the 

situation where the censoring rates are 70% and 60%, and the cutpoints are (30%, 70%) 

quartiles of failure time. We select the supplemental samples from the high and low intervals 

of the failure time. Let ρ2 = 0 (ρi = ni/n and n = n0 + n1 + n3). We fix ρV and consider the 

trace of asymptotic relative efficiency between  and  under different setting of ρ0, 

ρ1 and ρ3. The simulation results (Figure 1) are based on the total sample size N = 600 and 

1000 simulated data sets.

In Figure 1, the X-axis represents the range of corresponding ρ0 and the Y-axis represents 

the trace of asymptotic relative efficiency. From Figure 1, it can be seen that: (i) the trace of 

asymptotic relative efficiency is decreasing as ρV is increasing. (ii) In Figure 1.a, when ρV = 

0.2, 0.4, the smallest ρ0 is equal to 0.33 and 0.66, respectively. In Figure 1.b, when ρV = 0.4, 

0.5, the smallest ρ0 is equal to 0.49 and 0.63, respectively. (iii) In Figure 1.a, when ρV = 0.2, 

0.4, the corresponding optimal ρ0 are equal to 0.67 and 0.73, respectively. (iv) Under the 

situation that censoring rate is 60%, ρV = 0.4, 0.5, the corresponding optimal ρ0 are 0.75 and 

0.73 in Figure 1.b. The above results suggests that: (1) when the censoring rate is high, e.g., 

70%, sampling fewer SRS subcohorts (smaller ρ0) will increase the study efficiency; (2) 

when the censoring rate is moderate, e.g., 60%, one can find an optimal ρ0 that may be 

around 0.73.

5. SIMULATION STUDIES

In this section, we examine the finite sample performance of the proposed approach via 

simulation studies. For all simulation studies, we generated 1000 simulated datasets, each 

with N = 600 independent subjects. The failure times are generated from the additive 

hazards model:

where exposure E follows standard normal distribution and Z follows a Bernoulli 

distribution with Pr(Z = 1) = 0.5, λ0(t) = 0.6, β1 = 0 and β2 = 0.5. The censoring times are 

generated from mixture uniform distribution with c0unif[c1, c2] + (1 – c0)unif[c3, c4] with 0 

< c0 < 1, where c0, c1, c2, c3 and c4 are chosen to generate around 60%, 70% censoring 

respectively. All the failures are partitioned into three strata with the cutpoints (30%, 70%) 

quartiles of failure times. Our proposed ODS design consists different sizes of SRS and 

supplemental sample (presented in Table 1).

For each setting, we compare the proposed estimator by ( ) with four competing 

estimators: (1) , the estimator based on the generalized Case-Cohort design which 
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randomly selects the SRS's of size n0 and the supplemental samples of size n1 + n3 from the 

cases out of SRS, respectively. (2) , the pseudo-score estimator based on the full cohort. 

(3) , the pseudo-score estimator based on the SRS sample. (4) , the pseudo-score 

based on the SRS sample with the same sample size as the ODS design. We study different 

scenarios including different censoring rates and different size of supplemental samples. The 

sample standard deviation of the 1000 estimates is given in the corresponding SE column. 

The  column gives the average of the estimated standard error and “95% CI” is the 

nominal 95% confidence interval coverage of the true parameter using the estimated 

standard error. The simulation results are summarized in Table 1.

First, under all of the situations considered here, the five estimators are all unbiased. The 

proposed variance estimator provides a good estimation for the sample standard errors and 

the confidence intervals attain coverage closed to the nominal 95% level. Second,  is 

the best estimator among the five estimators, because it is based on the full cohort data. 

Third, the proposed estimator  is more efficient than the estimator, , which 

indicates that sampling the supplemental samples from the high and low intervals of the 

failure time is more efficient than simple random sampling. Finally, the proposed estimator 

 is also more efficient than  under all the situations.

6. URANIUM MINERS STUDY DATA ANALYSIS

In this section, we illustrate the proposed method using a data set from the Cancer Incidence 

and Mortality of Uranium Miners Study. Uranium miners are chronically exposed to 

ionizing radia tion, which is a known carcinogen. Therefore, miners are at risk of developing 

radiation-related cancer because they are chronically exposed to alpha particles emitted by 

radon and its progeny (referred to as radon), which will increase the risk of cancer through 

the resulting biological damage. Lung cancer has been long acknowledged as an 

occupational disease in uranium miners (BEIR VI, 1999). Furthermore, most studies 

investigated mortality rather than cancer incidence (Tirmarche et al., 1993; Vacquier et al., 

2008; Kreuzer et al., 2008, 2010). However, they miss a substantial number of cases when 

the cancers have low fatality rates (Řeřicha et al., 2006; Kulich et al., 2011). So, we 

investigate incidence of various types of cancer excluding lung cancer rather than mortality 

and evaluate associations of working exposures to radon with the incidence of non-lung 

solid cancers.

To illustrate our methods, we consider the following ODS design. The full cohort used for 

cancer incidence follow-up includes 16, 434 miners. The follow-up period for case 

ascertainment was January 1, 1977 to December 31, 1996. A total of 2, 506 subjects with 

incident cancers were identified, of which 1, 575 had a cancer type of interest. The cohort 

was classified according to age on 1/1/1977 (5-year age groups). The subcohort was simple 

random sampled from each of the resulting strata so that the number of a subcohort sampled 

from a stratum was approximately equal to the total number of all cancer cases in the 

stratum. Therefore, we used the bootstrap method to obtain the variance estimation with the 

number of bootstraps being 300. The size of SRS, n0, is 1, 930. Let C3, C7 denote the 30% 
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and 70% quantiles of the incidence time, respectively. We sample n1 = 236 and n3 = 236 

supplemental samples from the intervals (0, C3] and (C7, ∞), respectively. The total size of 

ODS sample is 2, 402. We observe the following four covariates: total radon exposure 

(Trad) is measured as working level months (WLM, 1WLM = 3.5 × 10–3Jhm–3), Age 

(years), period of entering workforce (Dummy1 = 1, if subject started work between 1957 

and 1966, and 0 otherwise; Dummy2 = 1, if subject started work between 1967 and 1976, 

and 0 otherwise) and Smoking (0 denotes non-smokers and light smokers who smoked less 

than 10 cigarettes a day for a period not exceeding 5 years; 1 denotes moderate and heavy 

smokers).

We consider the following additive hazards model:

The three methods including SRS ( ), GCC ( ) and ODS ( ) with the same size 

of sample are used to evaluate the association between incident and above covariates. The 

results for Cancer Incidence and Mortality of Uranium Miners Study are summarized in 

Table 2.

Results in Table 2 show that Trad under various methods is significantly related to the 

incidence of non-lung solid cancers. Nevertheless, a more precise 95% confidence interval 

(0.251 × 10–5, 0.483 × 10–5) is achieved for the estimator of Trad by the method . The 

standard deviations for Trad are 0.802 × 10–6, 0.634 × 10–6 and 0.590 × 10–6 from , 

 and , respectively. The estimators for the remaining covariates under various 

methods are all almost the same as Trad. All the methods considered confirm that Trad has a 

positive impact on the incidence of non-lung solid cancers.

7. CONCLUDING REMARKS AND DISCUSSIONS

We proposed an ODS design for right censored failure time data under the additive hazards 

model. With a right censored response variable, the ODS sampling scheme is not only 

dependent on the value of observed failure time but also on the failure indictor. Under the 

framework of the additive hazards model we introduced the inverse probability weight 

(IPW) to the standard pseudo-score equation to estimate the regression coefficients. Our 

proposed estimators have a closed form and are easy to compute. The proposed estimators 

are shown to be consistent and asymptotically normal. Simulation studies show that the 

proposed estimator and design is more efficient than both the SRS estimator and the 

generalized Case–Cohort estimator with the same sample size.

We investigated the asymptotic relative efficiency and optimal allocation of subsample by 

evaluating the trace of the asymptotic relative efficiency between our proposed estimator 

and the standard pseudo-score estimator from SRS design with the same sample size under a 

fixed total sample size and a fixed total budget. We found that the proposed method 

performs well and is more efficient than the SRS design. When the censoring rate is high, 

sampling less SRS subcohort will increase the study efficiency. The simulation study 
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suggests that greater efficiency can be gained in estimating the exposure effect on the 

outcome using our proposed ODS design. A real data analysis is provided to illustrate our 

proposed method.

Throughout this study, we have assumed Bernoulli sampling for the subcohort and cases 

outside the subcohort. Borgan et al., (2000) and Samuelsen et al., (2007) found that a 

stratified sampling SRS could improve the study efficiency. Future study focusing on 

developing efficient analysis methods for the stratified outcome-dependent sampling is 

justified.
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APPENDIX

We first introduce the following lemmas which will be useful in proving the asymptotic 

properties of our estimators.

Lemma 1

Under the conditions (C2) to (C4), we have,

Proof

The result holds by application of the law of large numbers and Corollary III.2 of Anderson 

and Gill (1982).

Lemma 2

Let An(t),  and Bn(t) be three sequences of bounded processes on [0, τ]. Suppose that 

(a) Bn(t) converges weakly to a tight limit B(t) with almost surely continuous sample paths; 

(b) An(t) and  are monotone in t; and (c) there exist processes A(t) and A* (t) both 

right continuous at 0 and left continuous at τ, such that supt∈[0,τ] and 

. Then

This lemma's proof can be found in Kulich and Lin (2000).
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Proof of Theorem 1

From the (6) and a simple algebraic manipulation, we can get that

We can show

by application of the law of large numbers and the Lemma 1.

We have

Frist, we will show the second part of (1) is asymptotical negligible,

(1)

Without loss of generality, assume that Zi(t) ≥ 0 for all t; otherwise, decompose each Zi(·) 

into its positive and negative parts. for each i, the process wiMi(t) has mean zero and can be 

expressed as the sum of two monotone processes on [0, τ]. Thus, by van der Vaart and 

Wellner (1996, Example 2.11.16),  converges weakly to a tight 

Gaussian process B(t) with continuous sample paths on [0, τ]. Since Z̄ (t) is a product of two 

monotone processes which converge uniformly in probability to π1(t) and , where 

. We can prove (2) by the Lemma 2.

Second, the first part of (1) is equal to

(2)

By the define of Si(β0), the (3) is equal to
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(3)

and

(4)

and the mean of them are both equal to zero. So, the two parts of (4) are uncorrelated. We 

rewrite the second part of (4) as:

(5)

It is easy to prove the three parties of (5) are uncorrelated. We can obtain the asymptotic 

normality of  by the multivariate central limit theorem. Obviously, the consistency of 

 holds immediately.

Proof of Theorem 3

From the (7) and a simple algebraic manipulation, we can get that we have

(6)

The third term is obviously op (1) uniformly in t. So,

(7)

From the consistency of  and h(t) being bounded on [0, τ], we can obtain 

. We have  by the 

method of quation (2)'s proof. Therefore, 
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From (6), we obtain

By the method of Theorem 1's proof, we have

and

(8)

Obviously, Mi(t) is the difference of two monotone function in t and ψ0(·) > 0. Thus, 

 is also a difference of two monotone function in t. Because monotone functions 

have pseudo-dimension 1 (Pollard, 1990; page 15), the process  is manageable 

(Pollard, 1990;page 38). It then follows the functional central limit theorem (Pollard, 1990; 

page 53) that  is tight and thus converges weakly to a Gaussian 

process with mean zero. This weak convergence also follows van der Vaart and Wellner 

(1996, Example 2.11.16, page 215). The tightness of  follows from 

the Theorem 1.

Obviously,  is  uniformly in t. Therefore, we 

have

which converges weakly to a zero-mean Gaussian process. Thus, we prove Theorem 3.
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Figure 1. 

The trace of asymptotic relative efficiency between  and 
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Table 2

Analysis results for Cancer Incidence and Mortality of Uranium Miners Study: the listed values are the 

original values ×10–5

Methods β̂ SE(β̂) 95%CI

β̂SRS

Trad 0.358 0.080 (0.201, 0.516)

Age 11.400 0.774 (9.900, 12.900)

Smoking 115.300 12.600 (90.700, 140.000)

Dummy1 17.900 16.800 (−15.000, 50.800)

Dummy2 27.500 21.900 (−15.000, 70.500)

β̂GCC

Trad 0.401 0.063 (0.277, 0.525)

Age 7.940 0.721 (6.530, 9.350)

Smoking 125.500 11.500 (103.000, 148.000)

Dummy1 3.380 13.600 (−23.000, 29.900)

Dummy2 6.590 21.600 (−36.000, 48.900)

β̂ODS

Trad 0.367 0.059 (0.251, 0.483)

Age 10.200 0.709 (8.840, 11.600)

Smoking 129.800 10.500 (109.200, 150.400)

Dummy1 5.680 13.300 (−20.000, 31.800)

Dummy2 7.330 20.500 (−33.000, 47.400)

Note: Trad is the total radon exposure. : the estimator obtained by simple random sampling; : the estimator obtained by generalized 

Case-Cohort sampling; : the estimator obtained by ODS sampling. The three methods base on the same size of the sample.
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