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Abstract
Cholesterol oxidase (COD) is a bi-functional FAD-containing oxidoreductase which catalyzes

the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical

applications of COD have urged the screening, isolation and characterization of newer

microbes from diverse habitats as a source of COD and optimization and over-production of

COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as

response surface methodology (RSM), artificial neural network (ANN) and genetic algorithm

(GA) have been tested to optimize the medium composition for the production of COD from

novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the

five factor central composite design (CCD) and the generated data was analysed using RSM

and ANN. GA was employed to optimize the models generated by RSM and ANN. Based

upon the predicted COD concentration, the model developed with ANN was found to be supe-

rior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283

U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL

COD concentration. The optimum concentrations of the medium variables predicted through

ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mLmaltose, 0.029 g/50 mL

MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentra-

tion was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which

was nearly two times higher than the yield (4.2 U/mL) obtained with the un-optimized medium.

This is the very first time we are reporting the statistical versus artificial intelligence based

modeling and optimization of COD production by Streptomyces sp. NCIM 5500.
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Introduction
The production of metabolites produce through microbial strains is mostly affected by the pro-
cess parameters and medium components. Generally, the fermentation processes are multi-vari-
able and optimization of medium components is a cumbersome task. The conventional one
factor at a time (OFAT) approach is time-consuming and often incapable of reaching the true
optimum due to complex interactions among the factors/ variables [1]. Generally, statistical or
mathematical designs are used to reduce the number of experiments and to increase the preci-
sion of the results. Response surface methodology (RSM) is a combination of mathematical and
statistical techniques and generally used for modeling and analysis of problems associated with
multivariable systems. It is based on design of experiments (DOE) for the development of mod-
els, estimation of the model coefficients and prediction of the response for optimum conditions
[2, 3]. RSM estimates the relationship between the responses (i.e., product yield) and the experi-
mental parameters (i.e., concentration of the medium components). It adjusts the concentration
of the medium components to shift the product yield (response) in a certain direction to achieve
the required optima. The RSM has been successfully applied for optimization of medium com-
ponents for metabolite production [1, 4], culture parameters in bioprocess engineering [5–7],
etc. Despite its successful use in various processes, RSM has some limitations like, in case of
more than six or seven variables, the number of variables interaction terms will increase and
resulted in complexity of the study and the practical feasibility of the method will challenged
[8]. In addition, the RSM fails to precisely describe an object function [9].

Artificial Neural Networks (ANNs) are complex mathematical models that successfully
mimic biological neural networks. ANNs have been used for optimization and prediction pur-
poses and are often preferred over regression models for the noisy data. ANNs have been used
to optimize and model highly nonlinear and complex biological processes [10–18] etc. Mathe-
matical model generated by RSM or ANNs can be optimized more precisely by using mathe-
matical tools, like Nelder-Mead simplex, genetic algorithm (GA) etc. GA is an optimization
tool which can be used even under conditions of unavailability of complete model of the pro-
cess. GA is based on Darwin’s principle of genetic evolution and uses genetic operators, like
selection, mutation and crossover to find the optimum solution of the problems. In terms of
microbiological metabolite production process, the media components are represented as
genomes or chromosomes and the factors to be optimized i.e., level of medium constituents are
represented as genes [19]. The chromosomes with high productivity are selected and replicated
proportionally to the productivity. GA randomly selects the individuals, from the current pop-
ulation and uses them to produce the next generation. Over successive generations, the popula-
tion “evolves” toward an optimal solution.

Cholesterol oxidase (COD; cholesterol: oxygen oxidoreductase, EC 1.1.3.6), a bi-functional
FAD-containing enzyme belongs to the family of oxidoreductases and catalyzes the oxidation
of cholesterol into 4-cholesten-3-one in the presence of O2 and isomerization of 4-cholesten-
3-one into Δ4-3-ketosteroid [20]. COD has received great importance due to its broad applica-
tion in clinical laboratories for the determination of serum cholesterol, used as a biocatalyst for
the production of various steroids, and implicated in the manifestation of some bacterial and
viral diseases. These biotechnological applications COD have warranted for screening, isolation
and characterization of newer microbes from diverse habitats as a source of COD and optimi-
zation and microbial COD production at commercial scale [20, 21]. This study attempts to
determine the quantitative effects of five medium components (soybean meal, glycerol, malt-
ose, sodium chloride and magnesium sulphate) on COD production by Streptomyces sp.
NCIM 5500 using statistical Response Surface Methodology and artificial intelligence tech-
nique followed by optimization using Genetic Algorithm
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COD production by Streptomyces sp. NCIM 5500 was studied under different production
media viz. Cholesterol enrichment medium, MGYP medium, X-medium and YMGmedium
[22]. Cholesterol enrichment medium and X- medium were found to be the best producers of
COD [22]. In order to keep the production cost effective and economical, soybean meal based
X-medium was selected for the production and optimization of COD in the present study.

Materials and Methods

Microbial strain and fermentation conditions
The COD producing microbial strain was isolated from pre-treated soil sample collected from
the agricultural fields of Northern India as reported earlier [22]. The strain was characterized
on the basis of 16S rRNA homology (Gene Ombio Technologies, Pune, India [22]. Seed flask
was prepared by inoculating (with a loop full slant culture) the medium having composition of
0.5 g/L MgSO4.7H2O, 0.5 g/L (NH4)2HPO4, 3 g/L NaCl, 1 g/L K2HPO4, 10 g/L soybean meal, 3
g/L CaCO3 and 15 ml glycerol. The culture was incubated at 28°C for 48 h at 180 rpm. Two
percent (v/v) inoculum was used to inoculate the production medium with the similar compo-
sition as mentioned above for the seed medium. For the production of enzyme, the flasks were
incubated at 28°C for 96 h at 180 rpm.

Enzyme assay and protein estimation
The culture broth was centrifuged at 10,000 rpm for 15 min at 4°C and the supernatant was
used as a source of COD. The enzymatic activity of COD was assayed by Allain’s method of
cholesterol conversion into 4-cholesten-3-one [23]. For the assay, 3.03 mL reaction mixture
was prepared comprising of 94 mM potassium phosphate, 0.35% Triton X-100, 3.4 mM tauro-
cholic acid, 0.9 mM cholesterol, 19.8 mM phenol, 1.5mM 4-aminoantipyrine and 19 units of
horse radish peroxidase (HRP) enzyme isolated from horseradish root (Amoracia rusticana).
The reaction mixture was incubated at 37°C for 5 min afterwards it was boiled for 5 min in a
water-bath to stop the reaction. The reaction mixture was cooled at room temperature and the
absorbance was measured at 500 nm. One unit of COD is defined as the amount of enzyme
required to produce 1 μmol of 4-cholesten-3-one per min under the test condition. Total pro-
tein concentration in the broth was determined by Lowry’s method using bovine serum albu-
min (BSA) as a standard [24].

Selection of effective medium components
The most suitable production medium with highest productivity was selected by observing the
production of COD under different media [22]. At the end, soybean meal based X-medium
was selected for further experiments related to the enhancement of COD concentration [22].
Classical approaches, like removal, supplementation and replacement experiments were per-
formed using OFAT methodology for the selection of effective medium components for COD
production [1]. All experiments were performed in triplicate and the average values were used
for the calculations.

Modeling and optimization of medium for COD production
Response surface models are multivariable polynomial models, mostly used to determine a set
of variables that optimize a response (i.e., COD concentration in this study). Five medium
components viz. soybean, glycerol, maltose, MgSO4 and NaCl were selected to generate the
model for response optimization. The circumscribed central composite design (CCD) was used
to study the interaction effect between the above mentioned variables/ factors. The uncoded
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and coded values of the variables at five levels of CCD have been summarized in Table 1. For
five variables, thirty six run CCD design containing ten star points, ten centre points and six-
teen axial points were generated by using ccdesign function of the statistical tool box of
MATLAB 7.10.0 (R2010a) (Math Works Inc., USA). The activity of COD was estimated for
each experimental run. A quadratic response surface model was generated and its polynomial
coefficients were calculated using statistical tool box of MATLAB. The experimental results
were fitted to the quadratic equation (Eq 1) given by regstat function of the statistical
toolbox of MATLAB to determine the coefficients of the equation and to obtain an optimum
response surface model.

YðXÞ ¼ a0 þ
XN

i¼0
aiXi þ

XN

i<j
aijXiXj þ

XN

i¼0
aiiX

2
i ð1Þ

Where, Y is the predicted response, a0 is the intercept coefficient, aiXi are the linear terms, aij-
XiXj are the interaction terms and aiiX

2 are the square terms.
Additionally, ANN was used to model the effect of the five media components on enzyme

activity. Different architectures of feed forward neural network were designed and trained
using neural network tool box of MATLAB. Different combinations of transfer functions were
used as input and hidden layers while neurons as output layers containing ‘purelin’ transfer
function. The networks were trained with a training data-set comprising 30 experimental runs
(24 training runs and 6 test runs). The training of the networks was done by using three func-
tions viz. gradient descent, gradient descent with adaptive learning and Levenberg-Marquardt
training algorithm using MATLAB traingd, traingda and trainlm functions, respectively. The
trained network models were simulated and validated using validation data set (experimental
data which was not used for training) for precision.

The models generated through RSM and ANN were further optimized by employing genetic
algorithm ga function of MATLAB. The input parameters of ‘ga’ function were as follows: Pop-
ulation Type: 'double Vector'; Pop Init Range: [2x1 double]; population Size: 200; elite count: 2;
crossover fraction: 1; migration direction: 'forward'; migration interval: 20; migration fraction:
0.2000; generations: 100; time limit: Inf; fitness limit:-Inf; stall gen limit: 50; stall time limit: 20;
initial population: []; initial scores: []; plot interval: 1; creation fcn: @gacreationuniform; fitness
scaling fcn: @fitscalingrank; selection fcn: @selectionstochunif; Crossover Fcn: @crossoverscat-
tered; mutation fcn: {[1x1 function_handle] [1] [1]}; hybridfcn: []; display: 'off'; plotfcns: {[1x1
function_handle] [1x1 function_handle]};outputfcns: []; vectorized: 'off'.

Results

Selection of effective medium components
Soybean meal based X-medium was selected for the production and optimization studies of
COD [22]. Under un-optimized production medium conditions, the COD concentration was

Table 1. Independent variables and their coded and un-coded values.

Symbol Variables Coded value

-2 -1 0 +1 +2

X1 Soybean (g/50 mL) 0.0005 0.375 0.75 1.125 1.5

X2 Glycerol (mL/50 mL) 0.0005 0.375 0.75 1.125 1.5

X3 Maltose (g/50 mL) 0.0005 0.375 0.75 1.125 1.5

X4 MgSO4(g/50 mL) 0.0005 0.0125 0.025 0.0375 0.5

X5 NaCl (g/50 mL) 0.0005 0.075 0.15 0.225 0.3

doi:10.1371/journal.pone.0137268.t001
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found to be 4.2 U/mL. In order to enhance the COD production, single-dimension optimiza-
tion experiments were carried out. The results of removal experiments suggested that removal
of soybean meal, glycerol, MgSO4, and NaCl shows drastic decrease in COD yield (Fig 1). Fur-
ther, in carbon and nitrogen supplementation and replacement experiments (Table 2) ammo-
nium ion showed a strong inhibitory action on the COD production, whereas maltose
demonstrated positive effect on COD production, hence maltose was included in the statistical
medium optimization studies [22].

Generation of response surface regression model for COD production
After fitting the experimental results in the quadratic (eq 1), the RSM yielded below mentioned
response surface model:

Y ¼ 2:0494 þ 3:6784x1 � 0:3495x2 � 3:6367x3 � 36:0494x4 þ 6:6486x5 � 1:86133x1x2 þ
0:040889x1x3 � 8:53333x1x4 þ 7:75111x1x5 þ 0:70222x2x3 � 12:26667x2x4 þ
4:44444x2x5 þ 136:53333x3x4 � 9:68889x3x5 � 212:0000x4x5 � 1:5605x21 þ 0:9819x22 þ
1:1270x23 � 38:9134x24 � 4:6168x25

ð2Þ

Where, Y is the response (i.e., enzyme concentration in U/ml) and X1, X2, X3, X4 and X5 are the
coded values of the test variables, soybean, glycerol, maltose, MgSO4 and NaCl, respectively. The
goodness of fit of the model is explained by the determination coefficient (R2 = 0.920067), which
indicates that the second order polynomial model (Eq 2) fits to the experimental data and can
explain 92.01% of the variations in the result. The determination coefficient provides the degree
of precision of the model in predicting the outcome. Thus, the developed response surface model
was capable of predicting the outcomes of the experiment with 92.01% accuracy. The correlation
between the independent variables (i.e., medium components) was explained by high value of
the correlation coefficient (R = 0.959201). The statistical significance of the second order

Fig 1. Effect of removal of medium components on COD production.

doi:10.1371/journal.pone.0137268.g001
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response surface model was evaluated by ANOVA and F-test. ANOVA validates the fit of the
model with the variations observed in the enzyme activity with different variables [25]. The
model can be considered significant if the p-value<0.05 and the F-value should be several times
higher than the p-value. In this study, high F-value of response surface model with very low p-
value (F = 71.0678, p = 1.251 �10−7) shows the statistical significance of the regression model.

Table 2. CCD (in un-coded) and response values for COD production.

Runs Soybean meal Glycerol Maltose MgSO4 NaCl Enzyme activity (U/ml)

Observed Predicted RSM Predicted ANN

1 0.375 0.375 0.375 0.0125 0.225 3.20 2.8171 3.2

2* 0.375 0.375 0.375 0.0375 0.075 2.21 2.02169 2.40

3 0.375 0.375 1.125 0.0125 0.075 1.622 1.76842 0.911

4 0.375 0.375 1.125 0.0375 0.225 3.08 2.71407 3.08

5TT 0.375 1.125 0.375 0.0125 0.075 2.822 2.93558 2.822

6 0.375 1.125 0.375 0.0375 0.225 3.08 2.08124 3.08

7 0.375 1.125 1.125 0.0125 0.225 2.822 1.6796 2.822

8* 0.375 1.125 1.125 0.0375 0.075 4.752 4.88255 5.80

9 1.125 0.375 0.375 0.0125 0.075 3.08 3.7313 3.522

10 1.125 0.375 0.375 0.0375 0.225 3.78 3.31896 4.77

11TT 1.125 0.375 1.125 0.0125 0.225 3.08 1.95369 3.08

12 1.125 0.375 1.125 0.0375 0.075 4.708 4.77628 4.708

13 1.125 1.125 0.375 0.0125 0.225 4.80 4.64085 4.8

14 1.125 1.125 0.375 0.0375 0.075 2.048 2.08344 1.94

15 1.125 1.125 1.125 0.0125 0.075 2.268 2.63817 2.1804

16TT 1.125 1.125 1.125 0.0375 0.225 4.708 4.56582 5.8564

17* 0.0005 0.75 0.75 0.025 0.15 1.222 1.85549 0.8492

18 1.5 0.75 0.75 0.025 0.15 2.926 2.93633 2.9260

19 0.75 0.0005 0.75 0.025 0.15 2.756 3.41425 2.7300

20TT 0.75 1.5 0.75 0.025 0.15 4.25 4.13571 4.25

21 0.75 0.75 0.0005 0.025 0.15 2.804 2.32791 2.804

22 0.75 0.75 1.5 0.025 0.15 4.365 4.18516 4.365

23 0.75 0.75 0.75 0.0005 0.15 2.282 2.829 2.282

24 0.75 0.75 0.75 0.5 0.15 2.4178 2.92038 2.4178

25* 0.75 0.75 0.75 0.025 0.0005 2.0282 2.74408 3.1949

26 0.75 0.75 0.75 0.025 0.3 2.4178 3.69553 2.4178

27 0.75 0.75 0.75 0.025 0.15 3.08 3.12288 3.181333

28TT 0.75 0.75 0.75 0.025 0.15 3.282 3.12288 3.181333

29 0.75 0.75 0.75 0.025 0.15 3.182 3.12288 3.181333

30 0.75 0.75 0.75 0.025 0.15 3.282 3.12288 3.181333

31* 0.75 0.75 0.75 0.025 0.15 3.024 3.12288 3.181333

32TT 0.75 0.75 0.75 0.025 0.15 3.282 3.12288 3.181333

33 0.75 0.75 0.75 0.025 0.15 3.282 3.12288 3.181333

34* 0.75 0.75 0.75 0.025 0.15 3.282 3.12288 3.181333

35 0.75 0.75 0.75 0.025 0.15 2.982 3.12288 2.4178

36 0.75 0.75 0.75 0.025 0.15 3.186 3.12288 3.181333

Note: Concentrations of soybean meal, maltose, MgSO4 and NaCl are in g/50 ml, whereas glycerol is in ml/50 ml;

* Validation data set
TT Testing data set

doi:10.1371/journal.pone.0137268.t002
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The regression coefficient of each variable in terms of linear, quadratic and interaction
along with t- and p-values have been summarized in Table 3. Higher significance of linear, qua-
dratic and their interaction effects of soybean meal, maltose and NaCl (px1 = 0.0123,
px3 = 0:0339, px5 = 0.001, px11 = 0.007, px33 = 0.007, px55 = 0.02, px1x2 = 0.0128,
px15 = 0.0328, px34 = 0.000005, px45 = 0.0489) than glycerol and MgSO4 suggested that they
have direct relationship with COD production.

Response surface plots (Fig 2) obtained from MATLAB are function of two variables at a
time, while maintaining the rest at fixed levels (central values, representing zero level in
coded units). Response plots are quite effective in explaining the individual as well as the
interaction effects of independent variables (in this case medium components) on dependent
variable (Enzyme conc. represented as Enzyme activity) [26]. The dark red regions in each
response surface plot represent the regions where maximum enzyme production was
observed. It can be observed that soybean and glycerol have an overall weak negative effect
on enzyme production. Soybean and maltose appear to have weak positive interaction effect.
Soybean and MgSO4 show a negative interaction effect increasing both of them together will
adversely affect enzyme production. Soybean and NaCl show a strong positive interaction
effect. Glycerol and maltose also show a weak positive interaction effect. An interesting
observation is a very strong negative interaction effect of Glycerol and MgSO4 on the enzyme
production. This may be attributed to their specific negative individual effects, which multi-
plies when these medium components are increased together.

Table 3. Regression coefficients for COD concentration.

SS Standard Error MS F p

Intercept 0.134323 1.31140 0.134323 0.975958 0.338867

"Var1" 1.112298 1.23221 1.112298 8.081696 0.012344

"Var1"^2 1.294052 0.47078 1.294052 9.402285 0.007838

"Var2" 0.024977 1.23221 0.024977 0.181474 0.676159

"Var2"^2 0.749812 0.47078 0.749812 5.447961 0.03391

"Var3" 1.317302 1.23221 1.317302 9.571211 0.007411

"Var3"^2 0.96088 0.47078 0.96088 6.981531 0.018475

"Var4" 0.105496 30.57876 0.105496 0.766509 0.395103

"Var4"^2 2.201887 14.18936 2.201887 15.9984 0.00116

"Var5" 0.873292 6.16691 0.873292 6.345138 0.023605

"Var5"^2 0.865585 11.79583 0.865585 6.28914 0.024131

"Var1"*"Var2" 1.096209 0.65953 1.096209 7.9648 0.01287

"Var1"*"Var3" 0.000529 0.65953 0.000529 0.003844 0.951384

"Var2"*"Var3" 0.156025 0.65953 0.156025 1.133641 0.30384

"Var1"*"Var4" 0.0256 19.78600 0.0256 0.186004 0.672398

"Var2"*"Var4" 0.0529 19.78600 0.0529 0.384359 0.544583

"Var3"*"Var4" 6.5536 19.78600 6.5536 47.61694 0.000005

"Var1"*"Var5" 0.760384 3.29767 0.760384 5.524774 0.032847

"Var2"*"Var5" 0.25 3.29767 0.25 1.816442 0.197742

"Var3"*"Var5" 1.1881 3.29767 1.1881 8.632459 0.010176

"Var4"*"Var5" 0.632025 98.92999 0.632025 4.592147 0.048926

Var1 = Soybean; Var2 = Glycerol; Var3 = Maltose; Var4 = MgSO4; Var 5 = NaCl; SS = Sum of Squares; MS = Mean Square error; F = F-value; p = p-

value. Note: The p-values less than 0.05 are significant.

doi:10.1371/journal.pone.0137268.t003
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Fig 2. Response surface plots from Streptomyces sp. showing effects of medium components on COD production.

doi:10.1371/journal.pone.0137268.g002
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Generation of ANN regression model for COD production
A three layered feed forward back propagation neural network having five neurons in input
layer and fifteen neurons in hidden layer with hyperbolic tangent sigmoidal transfer function
for hidden layer and linear transfer function for both input and output layer was found most
efficient and saved (Fig 3). The Levenberg-Marquardt (LM) training algorithm was found to be
most accurate and fastest among the three algorithms. The model generated by applying LM
algorithm has been given as Eq 3.

Enzyme activity ¼
X15
j¼1

purelin LWJ;1 �
X5
i¼1

X15
j¼1

tansigðXi � IWi;j þ bjÞ
 !" #

þ a

( )
ð3Þ

Eq 3 is the representation of the trained feed-forward ANNmodel correlating the concen-
trations of five medium components and the COD concentration in MATLAB. Here, ‘purelin’
and ‘tansig’ are MATLAB functions which calculate the layer's output from its network input.
purelin gives linear relationship between the input and the output, whereas tansig is a hyper-
bolic tangent sigmoid transfer function and is mathematically equivalent to ‘tanh’. tansig is
faster than tanh in MATLAB simulations, thus it is used in neural networks. LW and IW are
weights of connections from the input layer to the hidden layer and from the hidden layer to
the input layer, respectively. The weights of bias connections of the input and the hidden layers
are represented as b and a, respectively. The input variables have been represented as X. After
training the neural networks with LM algorithm, the networks were simulated to predict the
enzyme activity for a given media composition. The network learned training data-set with
95.75% efficiency and predicted validation data-set with 93.77% accuracy (Fig 4).

Optimization of the RSM regression model using GA
The final response surface model was optimized using GA. The algebraic form of the model
(i.e., Eq 2) was used as a fitness function while performing the optimization by using GA. By
employing the defined criteria, the response of the model reaches to its optimum value success-
fully after eleven generations (Fig 5). The algorithm found maximum output of the enzyme in
given experimental bounds at the optimized values of the variables. The maximum enzyme pro-
duction (6.283 U/mL) was obtained after eleven generations using 1.01 g/50 mL soybean, 1.49
g/50 mLmaltose, 0.075 g/50 mLMgSO4, 0.45 g/50 mL NaCl and 1.488 ml/50 mL glycerol. How-
ever, the GA-optimized (predicted) productivity was verified experimentally and leaded to 6.04
(±0.5) U/mL COD production, which is in close agreement with the GA-predicted COD con-
centration (6.283 U/mL). Nearly 1.5 folds increase was found in the optimized experimental
COD concentration (6.04 U/mL) as compared to the un-optimized medium (4.2 U/mL).

Optimization of the ANN regression model using GA
The algebraic form of the final trained neural network model (Eq 3) was used as a fitness func-
tion of GA to optimize the concentrations of the medium components for maximum COD
activity. The model was optimized within the experimental range similar to the optimization of
RSMmodel (Eq 2). Using a population size of 200, the GA reached to the optimum value after
61 generations. Optimization was repeated several times to ensure the global optima. The
ANN-GA model predicted a maximum of 9.934 U/mL COD concentration in terms of enzyme
activity using 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50
mL NaCl and 2.235 ml/50 mL glycerol. The GA optimized COD concentration was verified
experimentally and yielded 9.75 U/mL COD at the optimized concentration. The experimen-
tally verified (media optimized) COD concentration was double (from 4.2 to 9.75 U/mL) than
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Fig 3. Graphical representation of feed forward neural network containing five components.

doi:10.1371/journal.pone.0137268.g003
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COD concentration obtained with un-optimized medium and nearly 60% higher than the yield
predicted by RSM generated model.

Discussion
Previously it has been reported that COD is the first enzyme involved in the cholesterol degra-
dation and it is produced by various microorganisms. Arthrobacter, Rhodococcusequi, Nocardia
erythropolis, N. rhodochrous andMycobacterium sp. are intracellular/ intrinsic membrane
bound COD producers, whereas Pseudomonas sp., Schizopyllum commune, Brevibacterium
sterolicum, Streptoverticillium cholesterolicum, and some species of Streptomyces like S. violas-
cens, S. parvus, etc. produces extracellular COD [20, 27–29]. COD produced from Streptomyces
sp. has been reported to be of higher quality because of lower production cost, stability and lon-
ger shelf life [30]. Earlier, we reported extracellular production, purification and characteriza-
tion of COD by the soil isolate Streptomyces sp. NCIM 5500 [22]. We also compared the COD
production from free cells to Ca-alginate entrapped cells of Streptomyces sp.under batch condi-
tions [31]. However, the production of COD by optimizing the medium components using

Fig 4. Comparison between observed and predicted enzyme activity from the twomodels (RSM and ANN).

doi:10.1371/journal.pone.0137268.g004

Fig 5. Progressive performance of genetic algorithm generations till optimum solution is achieved.

doi:10.1371/journal.pone.0137268.g005
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statistical/ mathematical or artificial intelligence based techniques has not been reported so far
from this strain.

Root Mean Square Error (RMSE) and Mean absolute percentage error (MAPE) were deter-
mined for the two techniques (RSM and ANN) applied in this study for the prediction of
experimentally obtained enzyme concentrations. RMSE and MAPE for RSM are 4.92 and
13.52, respectively, while for ANN they are 4.1 and 7.8, respectively. This qualifies ANN as a
better predictor of experimental values as compared to RSM.

The COD production (in terms of enzyme activity) in an un-optimized medium was 4.2 U/
ml which was significantly increased to 6.04 U/mL by employing RSM coupled with GA.
Whereas ANN coupled with GA resulted in further enhancement in COD concentration (9.75
U/ml,) which was nearly 2.32 folds higher than the yield obtained with un-optimized production
medium. A combinatorial method using RSM coupled with GA has been successfully used to
solve the problems associated with process optimization [32, 33]. Chauhan et al. (2009) reported
2.48 folds increase in COD productivity from S. lavendulae by using statistical approaches [34].
Five medium components viz. soybean, glycerol, maltose, MgSO4 and NaCl found important
and were studied for the optimization of COD production. The results of the effect of individual
medium component on COD activity correlated to the role of those components for COD pro-
duction. Glycerol and maltose showed positive effect on COD production. Earlier study also
reported that glycerol supports COD production in S. lavendulae [34]. Soybean meal is a com-
plex nitrogen source and contains amino acids, carbohydrates and also includes fatty acids [4,
34], which enhance the enzyme (COD) production [34]. Here, in this study, during the experi-
ments with Streptomyces sp. NCIM 5500, MgSO4 was found to be more effective than NaCl for
COD activity, which is in contrast to the previous report of Amiri et al. (2008), where they
reported NaCl favors COD production than MgSO4 [33]. However, other reports support the
use of both the salts in the production medium [34]. It was evident from linear and quadratic
effect that higher concentration of MgSO4 and lower concentration of NaCl is responsible for
greater enzyme production. On the contrary to NaCl supplementation in the production
medium for COD production, plethora of reports suggests the use of MgSO4 for stabilization or
even enhancement of COD activity [11, 34, 35]. Also, El- Shoraet al. (2011) reported that COD
production activates by Mg2+ ions in case of Staphylococcus epidermidis [35].

Media optimization using ANNmodel coupled with GA resulted in higher COD concentra-
tion than RSM-GA approach. RSM is a useful technique for understanding the interaction
effects of variables but neural network is better in terms of precision, and the same was found
in this study. In general, the biological processes are defined by many non-linear complex rela-
tionships. ANNs are nonlinear stochastic models that mimic biological neural networks and
are efficient in modeling complex biological processes. Desai et al. (2008), compared the effi-
ciency of RSM and ANN in predictive modeling and medium optimization for the production
of scleroglucan [36]. They reported that ANN fitted experimental data has greater efficiency
than RSM. ANN based model is more generalized as it predicts completely unseen data with
greater efficiency (98%) than RSM (89%) [36].

In this study, RSM and ANN were used along with CCD to derive a model for interaction
effects of medium components (i.e., soybean meal, glycerol, maltose, NaCl and MgSO4) on COD
production. Further GA was employed to optimize the RSM/ANNmodels. The media composi-
tion obtained by optimizing both of the models resulted in higher COD concentration than the
yield recovered through un-optimized media. This hybrid methodology, i.e., coupling of ANN
with GA was found to improve COD production significantly (nearly 2 folds) and proved better
than RSM, as the model developed through ANNwas found to give nearly 60% higher COD
concentration than the yield predicted by RSM generated model. The combinatorial approach
(coupling of ANN with GA) presented in this study is sufficiently general and thus can also be
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successfully employed for the optimization of various parameters used in other bioprocesses.
Overall, the higher COD concentration achieved in this study through ANN coupled with GA
approach will paves the way for future studies for the production of COD at commercial scale
using Streptomyces sp. NICM 5500 as well as implication of other/ combination of artificial intel-
ligence techniques for higher and sustainable production of COD.
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