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Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are multifaceted molecules that exhibit

properties beyond their classical proteinase inhibitory function. Although TIMP-1 is a known

inhibitor of apoptosis in mammalian cells, the mechanisms by which it exerts its effects are

not well-established. Our earlier studies using H2009 lung adenocarcinoma cells, implanted

in the CNS, showed that TIMP-1 overexpressing H2009 cells (HB-1), resulted in more

aggressive tumor kinetics and increased vasculature. The present study was undertaken to

elucidate the role of TIMP-1 in the context of apoptosis, using the same lung cancer cell

lines. Overexpressing TIMP-1 in a lung adenocarcinoma cell line H2009 resulted in an

approximately 3-fold increased expression of Bcl-2, with a marked reduction in apoptosis

upon staurosporine treatment. This was an MMP-independent function as a clone express-

ing TIMP-1 mutant T2G, lacking MMP inhibition activity, inhibited apoptosis as strongly as

TIMP1 overexpressing clones, as determined by inhibition of PARP cleavage. Immunopre-

cipitation of Bcl-2 from cell lysates also co-immunoprecipitated TIMP-1, indicative of an

interaction between these two proteins. This interaction was specific for TIMP-1 as TIMP-2

was not present in the Bcl-2 pull-down. Additionally, we show a co-dependency of TIMP-1

and Bcl-2 RNA and protein levels, such that abrogating Bcl-2 causes a downregulation of

TIMP-1 but not TIMP-2. Finally, we demonstrate that TIMP-1 dependent inhibition of apo-

ptosis occurs through p90RSK, with phosphorylation of the pro-apoptotic protein BAD at

serine 112, ultimately reducing Bax levels and increasing mitochondrial permeability.

Together, these studies define TIMP-1 as an important cancer biomarker and demonstrate

the potential TIMP-1 as a crucial therapeutic target.
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Introduction
The American Cancer Society 2014 report estimates 224,210 new lung and bronchial cancer
cases in the USA alone with an estimated 159,260 deaths [1]. Lung cancer is classified as small
cell (approximately 15%) and non-small cell (approximately 85%) and is the leading cause of
cancer related mortality [2]. An important mechanism in the process of cancer progression
and metastasis of tumor cells involves the degradation of tissue barriers in the extracellular
matrix, particularly the basement membrane by matrix metalloproteinases (MMPs). These
proteases are kept in check by their endogenous physiological inhibitors i.e. tissue inhibitors of
metalloproteinases (TIMPs). Over the years, the 4 different isoforms of TIMPs have been
shown to be multifunctional proteins affecting tumor growth, apoptosis and angiogenesis.
TIMP-3 induces apoptosis and inhibits angiogenesis [3], whereas TIMP-2 and TIMP-4 have
been shown to be both, pro and anti-apoptotic [4–7]. TIMP-1 the most-studied of all the mem-
bers, was originally identified with erythroid-potentiating activity and has since been docu-
mented to be growth-promoting for a number of cell lines [8]. It has also been shown to be
either a positive or a negative regulator of angiogenesis [9–11].

In clinical studies, high serum levels of TIMP-1 in patients with a variety of cancers have
been associated with poor prognosis. This has been demonstrated through substantial data on
breast cancer [12], gastric cancer [13] and colorectal cancer [14]. TIMP-1 has also been shown
to be of prognostic value in NSCLC [15, 16]. Recently, it has been inferred that TIMP-1 may
also have predictive value in defining response to chemotherapeutic agents [17].

Numerous studies have documented the well-established anti-apoptotic function of TIMP-
1[18]. TIMP-1 has been shown to protect breast epithelial cells against intrinsic and extrinsic
cell death involving FAK/PI3 kinase and ERK [19, 20]. Overexpression of the anti-apoptotic
molecule Bcl-2 has also been documented to increase TIMP-1 expression [21]. In Burkitt’s
lymphoma cell lines, TIMP-1 expression suppressed apoptosis and upregulated Bcl-xL [22]. In
mouse bone marrow stromal cell line, recombinant TIMP-1 inhibited apoptosis by increasing
the expression of Bcl-2 and decreasing Bax expression [23]. These studies have documented
the antiapoptotic function of TIMP-1 to be independent of its MMP inhibitory activity,
although MMP-dependent functions have also been shown [18, 24].

In the present study, we have investigated the role of TIMP-1 overexpression in H2009,
lung adenocarcinoma cell line. We present evidence that TIMP-1 overexpression increases lev-
els of Bcl-2 resulting in inhibition of apoptosis via inactivation of BAD following its phosphor-
ylation at serine 112. This inhibition of apoptosis occurs through the p90RSK/BAD axis via an
interaction between TIMP-1 and Bcl-2. We further show evidence of the existence of a coordi-
nated loop controlling the levels of TIMP-1 and Bcl-2 interdependently.

Methods

Cell Lines and Cell Culture
NCI-H2009 cells were maintained in RPMI 1640 medium supplemented with 10% fetal bovine
serum and 100 μg/ml gentamycin and the TIMP-1 overexpressing H2009 clones as well as
empty vector clones received 6μg/ml G418. Generation of stable TIMP-1 overexpressing
H2009 clones HB-1 and HB-6 were as described previously [25]. All cells were cultured in the
presence of 5% CO2 and 95% humidity at 37°C.

Reagents and Antibodies
Staurosporine (Cell signaling, Danvers, MA) and ABT 737 (Chemie Tek, Indianapolis, IN)
were dissolved in DMSO to produce 10 mM and 100 mM stock solution respectively; complete
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mini protease inhibitors and Phos stop (Roche, Mannheim, Germany) were prepared accord-
ing to manufacturer’s protocol.

The primary antibodies used are Anti-TIMP-1 (Millipore, California, USA), anti-Bcl-2, Bax,
BAD, PARP, p90RSK (Cell Signaling, Danvers, MA) and anti-Actin from SIGMA (St. Louis,
MO). The primary antibodies were used at 1:1000 dilutions unless mentioned otherwise. The
Quantikine ELISA kit (R&D system, Minneapolis, MN) was used to confirm the amount of
endogenous and secreted TIMP-1 in the parent cell line and the clones.

Cell Survival Assay
To examine the effect of TIMP-1 on apoptosis sub-confluent cells were treated with 1μMABT-
737 and 0.5 μM Staurosporine. Cell viability was determined by Trypan Blue assay (25).

Hoechst 33258 Assay
Cells were plated in 24-well plates and incubated for 24 h. Treatments were then added to each
well according to the experimental groups, and incubated for 24 h. The cells were washed with
PBS three times and stained with Hoechst 33258 (1 mg/l) for 10 min at 37°C. The cells were
again washed with PBS three times and images of the Hoechst 33258 fluorescence were cap-
tured using an inverted fluorescence microscope. Apoptosis was calculated as follows: 400 cells
were randomly counted with an optical microscope at 200× magnification and the apoptotic
rate was expressed as apoptotic cell number/total cell number ×100%. A mean value was
obtained from three parallel wells.

Apoptosis Specific Gene Array
PCR gene array specific for apoptosis was purchased from SA Biosciences (Catalog # PAHS-
012). The protocol was followed as per the manufacturer’s instructions.

ELISA
Changes in extracellular and intracellular concentrations of TIMP-1 were determined using a
commercially available ELISA kit (R&D systems, Minneapolis, MN). Briefly, TIMP-1 in cell
culture media and in lysates were measured according to manufacturer’s instructions. Each
individual assay was performed in triplicate.

Immunoblot Analysis
Cells were seeded in tissue culture dishes at a density of 3x104 cells /cm2. Protein extracts were
prepared at the indicated time points using RIPA lysis buffer containing complete mini, phos-
stop (Roche) and PMSF (1 mM, SIGMA). The protein concentration in each sample was deter-
mined by BCA Protein Assay kit (Pierce, Rockford, IL, USA). Proteins were separated by
sodium dodecyl sulphate (SDS)–gel electrophoresis using 10–12% polyacrylamide gels and
blotted on to PVDF membranes (Bio-RAD). The membranes were blocked in washing buffer
(Tris-buffered saline (PBS) + 0.1% Tween 20) containing 5% dry milk or 5% Bovine serum
albumin and incubated with the primary antibody. Subsequently, the blots were washed 3 × 10
min in washing buffer followed by incubation with the appropriate horseradish peroxidase-
conjugated secondary antibody. Following 3 × 10 min washes in washing buffer, the blots were
developed by the chemiluminescent detection system (Denville Scientific, NJ) according to the
manufacturer's instructions. In order to obtain a loading control, the blots were stripped and
re-probed with a primary monoclonal antibody recognizing β-actin (SIGMA), diluted 1:
10,000 in washing buffer containing 1% dry milk. Finally, the blots were washed 3 × 10 min in
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washing buffer and developed as described above. Serum-free conditioned media (SFCM) were
collected for each clone, concentrated and protein estimation done by BCA assay (Pierce). For
SFCM, 20 μg of protein was loaded and subjected to SDS-PAGE under non-reduced conditions
and transferred to PVDF membrane and immunoblot analysis was done as above.

Quantitative Real-Time RT-PCR
Total RNA was isolated from the cells using RNeasy mini kit from Qiagen (Maryland, USA).
Equal amounts of RNA were used to generate the first strand cDNA (iscript Reverse Transcrip-
tion Supermix, Biorad), and quantitative real-time PCR was performed on the Biorad CFX
connect PCR system using Sybr Green qPCR Master Mix (Biorad, USA). The relative expres-
sion levels of target genes were analyzed by examining the mRNA expression of each target
gene normalized to GAPDH. Error bars represent Standard Error of Mean (SEM) of three
independent experiments.

Immunoprecipitation
Total cell lysates were prepared as described under Western blot procedure. To preclear the
lysate, approximately 1 ml (1000μg) of whole cell lysate was mixed with 0.25 μg of the appro-
priate control IgG (corresponding to the host species of the primary antibody) together with
20 μl of protein A/G agarose (25% v/v), and incubated at 4°C with rotation for 30 min. Primary
antibody (10μg) was added to the precleared lysates and incubated at 4°C for 4 hours. 20 μl of
agarose beads were added to the mixture and incubated at 4°C overnight on a rotating device.
The pellets were collected by centrifugation (1000xg at 4°C) and washed 3 times with RIPA
buffer. The final wash was in PBS and the pellet was resuspended in Laemlli sample buffer. The
samples were boiled for 3 min and subjected to electrophoresis and immunoblot analysis.

T2GMutants
The TIMP-1cDNA was constructed by the polymerase chain reaction using primers TIMP-1,
BamHI-ATG, 50- tgtatggatccaccATGGCCCCCTTTGAGCCCCTGG-30, and TIMP-1-HindIII-R,
50- ctacgaagcttTCAGGCTATCTGGGACCGCAGGGAC-3’n from the full-length TIMP-1
cDNA fragment from pBK-CMV vector used previously in our lab [25]. To substitute Thr-2
with Gly at the mature TIMP-1 protein, site-directed mutagenesis was performed using primers
TIMP-1-T2G-mut-F, CCAGCAGGGCCTGCggCTGTGTCCCACCCCAC and TIMP-1-T2G-
mut-R, GTGGGGTGGGACACAGccGCAGGCCCTGCTGG. DNA sequencing analysis con-
firmed the fidelity of the constructs. Hereafter, the mutated TIMP-1 constructs are referred to as
T2G TIMP-1.

Statistical Analysis
All experiments were repeated 3–5 times. Significant differences between sets of values for con-
trol and test groups were assessed by appropriate statistical analysis. Statistical significance was
determined by ANOVA for multiple comparisons and student's t-test for two groups using
Graphpad Prism 6 software. A p-value significance was set at P<0.05 to compare the measured
parameter of an experimental group with that of its control.
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Results

1. Overexpression of TIMP-1 in NCI-H2009 Cells Results in Up-
Regulation of Bcl-2 and Protects against Staurosporine Induced
Apoptosis
Previously, we have shown that overexpressing TIMP-1 by stably transfecting pBK-CMV-
TIMP-1 plasmid in lung adenocarcinoma cell line NCI-H2009 injected into the mouse brain,
resulted in aggressive tumors with increased microvessel density [25]. To investigate the role of
TIMP-1 in cell survival we first confirmed the TIMP-1 expression levels in H2009 cells and its
overexpressed clones (described in materials and methods) by enzyme linked immunosorbent
assay (ELISA) as represented in Fig 1A. Endogenous TIMP-1 levels in HB1 and HB6 were ~2–
3 folds higher, while the secretory TIMP-1 levels in the overexpressed clones were ~2–4 fold
more compared to the controls. Expression of TIMP-1 was significantly increased in the over-
expressed clones vs. empty vector clones (p value<0.01, Student’s t test). As TIMP-1 is a
secreted protein, TIMP-1 secreted levels are always higher compared to endogenous levels as
seen.

H2009 cells and its clones were treated with Staurosporine (0.5 μM) and subjected to apo-
ptosis specific PCR array to identify induction of apoptosis specific genes. A three-fold increase
in Bcl-2 was observed in the TIMP-1 overexpressing clones, which was also confirmed by PCR
assays.

Since TIMP-1 overexpression enhanced Bcl-2 expression, we examined the effect of Staur-
osporine induced apoptosis in H2009 cells and its TIMP-1 overexpressing clones by quantify-
ing the number of pyknotic or condensed nuclei visualized by Hoechst 33258 staining.
Staurosporine was used at a concentration of 0.5 μM for 3 hours, to induce apoptosis in these
cells without any cell death (data not shown).

Hoechst 33258 staining was used to visualize nuclear changes such as fragmentation and
condensation that are characteristic of apoptosis (Fig 1B). The cells overexpressing TIMP-1
(HB1 and HB6) appeared less condensed compared to parental and empty vector clones,
though abrogation of Bcl-2 by the BH-3 mimetic ABT-737 rendered the HB1 and HB6 clones
more apoptotic with 0.5 μM Staurosporine treatment for 3 hours. Quantitative analysis showed
considerably more cell death and condensed nuclei in H2009 and the empty vector control
compared to the TIMP-1 overexpressing clones. (p = 0.01) Fig 1C. These findings demonstrate
that TIMP-1 protects against apoptosis. Next, mRNA levels in the cells were confirmed by end-
point PCR (Fig 1D), and Western blot analysis also revealed an elevation in the Bcl-2 protein
expression level in the TIMP-1 overexpressing clones (Fig 1E).

2. TIMP-1 Affects PARP Cleavage and Caspase-3 Activity via Bcl-2
Activation; Inhibiting Bcl-2 Restores PARP Cleavage in TIMP-1 Over-
Expressing Clones
One of the key events executing the apoptosis commitment step is the activation of zymogen
caspases following release of cytochrome c from the mitochondria, during intrinsic apoptosis.
Staurosporine is known to induce cell death either through intrinsic or non-apoptotic path-
ways [26]. To confirm Bcl-2 associated apoptosis, we analysed the expression of caspase-3 as
well as its substrate PARP-1. Apoptosis induced by Staurosporine followed by western blot
analysis showed a marked reduction in Caspase-3 cleavage as well as PARP-1 cleavage in
TIMP-1 overexpressing clones compared to control (Fig 2A and 2B). Inhibition of Bcl-2 activ-
ity by ABT-737 (1μM) for 24 hours followed by treatment with Staurosporine resulted in resto-
ration of Caspase-3 cleavage as shown in Fig 2A, bottom panel. Similarly, reduced PARP-1
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Fig 1. (a) Comparison of exogenous (in SFCM) and endogenous (cell lysates) TIMP-1 in H2009, empty vector and TIMP-1 overexpressing clones:
Cells were grown overnight in serum free media to assess exogenous TIMP-1 and cell lysates were collected from cells grown in complete media.
The conditioned media and the cell lysates from the cell lines were assayed for TIMP-1 by ELISA. The X-axis shows H2009 cell line and its clones.
The Y-axis shows concentration of TIMP-1 in ng/mL. A significant upregulation of TIMP-1 in overexpressed clones is seen (p<0.01, Student’s t
test). Data represents independent triplicate determinations ± SEM (standard error of mean). (b) Effect of ABT-737 and Staurosporine on
apoptosis: Cells were first treated with ABT-737 (1 μM, for 21 hours) following which Staurosporine was added at 0.5μM concentration for 3 hours
(all apoptosis related experiments follow this regimen unlessmentioned otherwise). Cell apoptosis was evaluated by Hoechst 33258 staining. The
control cells displayed normal nuclei. Staurosporine treatment with or without ABT-737 showed significantly more condensed and bright
fluorescent nuclei with nuclear fragmentation in H2009 and HEV cells. The number of apoptotic cells were less in the HB1 and HB6 cells in panel C
and D as shown by the arrows. (c) Quantitative representation of Hoechst 33258 apoptosis assay: Hoechst staining showed significantly more
apoptosis in H2009 cells and the empty vector clones (HEV), compared to the TIMP-1 overexpressing clones(HB1, HB6), by OneWay ANOVA
(p<0.05), with or without staurosporine treatment. The control groups (H2009, HEV) showed almost 2-fold greater apoptotic morphology
compared to TIMP-1 overexpressing clones. Data is representative of 3 independent experiments ± SEM. (d) TIMP-1 overexpressing cell lines
show increased expression of Bcl-2 mRNA in response to staurosporine treatment: H2009 cells and its clones were treated with 0.5μM
Staurosporine (S) and subjected to apoptosis specific PCR array. A significant 3 fold increase in Bcl-2 and TIMP1, was observed and confirmed by
qPCR (p<0.01, OneWay ANOVAwith posthoc Dunnett’s test). (e) Expression of Bcl-2 and TIMP-1 in H2009 cells: The top panel shows
semiquantitative reverse transcription PCR after 3hrs of Staurosporine (S) treatment. An increased amount of Bcl-2 is observed in the TIMP-1
overexpressing clones. Lower panel indicates an increased amount of Bcl-2 in the TIMP-1 overexpressing clones by western blot. The TIMP-2
level remained unchanged. The relative protein band density was normalized to β-Actin. Data is representative of triplicate independent
experiments.

doi:10.1371/journal.pone.0137673.g001
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cleavage in TIMP-1 overexpressing clones was restored following ABT-737 treatment (Fig 2C).
Bcl-2 is a better target of ABT-737 than Bcl-xL and Bcl-w [27, 28], hence our results indicate
that upregulation of TIMP-1 is playing a role in apoptosis in a Bcl-2-dependent manner.

Furthermore, to elucidate if the antiapoptotic function seen in our system was the result of
TIMP-1 interactions and was not MMP-mediated, as has been previously reported [19, 29], we

Fig 2. (a) Caspase-3 cleavage after Staurosporine treatment: The left panel shows Caspase-3
cleavage in H2009 and its clones treated with 0.5μMStaurosporine for 3 hours. The right panel shows
Caspase-3 cleavage after ABT-737 and Staurosporine treatment, where more caspase cleavage is
observed in HB6 and HB1. Graph represents densitometric analysis of the cleaved caspase western
blot in each panel. Data represents independent triplicate determinations ± SEM (standard error of
mean). (b) TIMP-1 inhibits apoptosis induced by Staurosporine: TIMP-1 overexpression does not
result in significant PARP-1 cleavage after 3 hrs of 0.5μMStaurosporine treatment, probably due to
upregulation of Bcl-2, which plays an inhibitory role. Expression of Bcl-xL was unchanged. The side
panel shows the graphical representation of cleaved PARP expression (p<0.0001, ANOVA). Data is
representative of three independent experiments. C = control, S = Staurosporine treated. (c)
Abrogating Bcl-2 by ABT-737 restores the PARP cleavage pattern: Treatment with 1μMABT-737 for 24
hrs followed by 0.5μMStaurosporine from 21st hour increased PARP cleavage in HB1 and HB6 cells.
(d) Antiapoptotic function of TIMP-1 is independent of MMP activity: The T2Gmutated TIMP-1
overexpressing clone showed similar pattern of PARP cleavage indicating that this activity of TIMP-1
was MMP independent.

doi:10.1371/journal.pone.0137673.g002
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generated a mutant form of TIMP-1. Altering the second amino acid threonine to glycine
(T2G), results in impaired MMP-inhibitory function. The T2G mutants, like TIMP-1 overex-
pressing clones, inhibited apoptosis as seen by reduced PARP cleavage (Fig 2D).

3. TIMP-1 Interacts with Bcl-2 in Exerting Its Anti-Apoptotic Role and
Contributes to a Feedback Loop in H2009 Lung Cancer Cells
Several studies have shown that either overexpressing Bcl-2 results in TIMP-1 up-regulation
[21, 30] or that TIMP-1 treatment of cells results in increased Bcl-2 levels [31, 32]. Since over-
expression of TIMP-1 up-regulated Bcl-2, and abrogating Bcl-2 enhanced apoptosis, we
hypothesized abrogation of Bcl-2 may affect TIMP-1 levels. We therefore treated the cells with
1μMABT-737 for 21 hours and 0.5μM Staurosporine for the last 3 hours and assessed mRNA
and protein expression levels at 24 hour time point. Upon inhibition of Bcl-2 with ABT-737
during apoptosis induction, TIMP-1 protein and RNA levels were reduced (Fig 3A and 3B).

Fig 3. (a): Interdependency of TIMP-1 and Bcl-2 proteins: H2009 cells and its clones were treated with
0.5μMStaurosporine (S), which showed a reduction of TIMP-1 protein expression. Treatment with a
BH3mimetic ABT-737(A) reduced TIMP-1 protein levels compared to the controls. Combined
treatment with ABT-737 and Staurosporine (AS) showed a marked reduction of TIMP-1 expression,
without any changes in TIMP-2. (b) TIMP-1 mRNA expression level after treatment with Staurosporine
and ABT-737: HB1 and HB6 TIMP-1 levels were reduced with combined ABT-737 and Staurosporine
treatment. TwoWay Repeated Measure ANOVA showed p = 0.0063, indicating a very significant down
regulation of relative expression of TIMP1 in the overexpressed clones after ABT+Staurosporine
treatment indicating down-regulating Bcl2 affects TIMP1 level. (c) Co-immunoprecipitation of TIMP-1
and Bcl-2: A possible interaction between the Bcl-2 and TIMP-1 revealed by co-immunoprecipitation.
Cell extracts from H2009 and it’s clones were immunoprecipitated (IP) with anti-Bcl-2 or normal rabbit
IgG as a negative control. The immunoblot (IB) was probed for TIMP-1, TIMP-2 and Bcl-2. No TIMP-2
was pulled down with Bcl-2, showing that only TIMP-1 is associated with Bcl-2 when apoptosis is
induced. Input represents 60μg of cell extract.

doi:10.1371/journal.pone.0137673.g003

TIMP-1 and Bcl-2 Interaction in Apoptosis

PLOS ONE | DOI:10.1371/journal.pone.0137673 September 14, 2015 8 / 14



These results exhibit an interdependent relationship between Bcl-2 and TIMP-1 in these cells.
This interaction was specific for TIMP-1 as TIMP-2 levels were not concurrently altered (Fig
3A). This feedback loop between TIMP-1 and Bcl-2 led us to hypothesize that TIMP-1 may
directly or indirectly interact with Bcl-2 to exert its anti-apoptotic effect.

Our studies revealed that immunoprecipitation of Bcl-2 from cell lysates also co-immuno-
precipitated TIMP-1, thereby reinforcing this notion of an interaction between Bcl-2 and
TIMP-1. This co-immunoprecipitation was specific to TIMP-1 as TIMP-2 was absent from the
Bcl-2 pull-down (Fig 3C).

4. Overexpression of TIMP-1 Inhibits Apoptosis through Up-Regulated
Bcl-2 and Acts via the p90RSK/pBAD-Ser112 and Not through AKT/
pBAD-Ser136 Axis
The decision to undergo apoptosis is ultimately determined by the balance between pro-apo-
ptotic and anti-apoptotic proteins. To determine the molecular mechanism underlying resis-
tance to staurosporine induced apoptosis in our cells, we next tried to identify the levels of pro
death or pro survival proteins that were involved in inhibiting the intrinsic apoptotic pathway.
BAD, a pro-apoptotic member, forms heterodimers with Bcl-2 or Bcl-xL thereby incapacitating
their anti-apoptotic functions. In the TIMP-1 overexpressing H2009 clones, BAD phosphory-
lation at Ser-112 was evident with no Ser-136 phosphorylation (Fig 4, left). Since phosphoryla-
tion of BAD at Ser-136 is mediated through Akt, we assessed Akt phosphorylation at both Ser
-473 and Thr-308, which did not show any activation (Fig 4) indicating that the Akt pathway
was not affected by TIMP-1 and that BAD was being phosphorylated by a molecule other than
Akt. In fact overexpression of p90RSK, a serine threonine kinase, is known to phosphorylate
BAD at Ser-112. As shown in Fig 4 p90RSK is being phosphorylated at Ser-380 resulting in its
activation in the TIMP-1 overexpressing clones. Additionally the level of pro-apoptotic protein
Bax was down regulated in these HB1 and HB6 clones, further indicative of resistance to apo-
ptosis in H2009 clones (Fig 4).

Discussion
This study was undertaken to define the role of TIMP-1 in lung adenocarcinoma cell line.
Although TIMP-1 is emerging as an important prognostic marker in clinical findings and sev-
eral studies have documented the prognostic value of TIMP-1 in lung cancers [16, 33, 34], the
antiapoptotic role of TIMP-1 has not been robustly addressed in lung adenocarcinoma cell
lines, with the majority of studies having been carried out using the A549 cell line with conflict-
ing results [35, 36].

Earlier studies, documenting the antiapoptotic function of TIMP-1 have correlated higher
TIMP-1 levels with either increased expression of Bcl-xL [22, 37, 38] or to that of Bcl-2 [21, 23,
32] or both [29]. Liu et al [20] have shown that TIMP-1 inhibits apoptosis by inducing specific
cell survival pathways. It has also been shown that Bcl-2 overexpression results in increased
TIMP-1 expression in breast epithelial cell lines, consequently suggesting that the antiapoptotic
activity of TIMP-1 is independent of its ability to stabilize cell-matrix interactions [21]. In our
study we found increased expression of Bcl-2 with no change in Bcl-xL levels following over-
expression of TIMP-1.

The classical function of all TIMPs is to inhibit matrix metalloproteinases [39]. However,
the well-documented anti-apoptotic function of TIMP-1 has been demonstrated to be either
MMP-independent or MMP-dependent [40]. Therefore we created a mutant form of TIMP-1,
T2G that lacks MMP-inhibitory function. Mutant T2G was as effective as TIMP-1 in inhibiting
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apoptosis, indicating that the antiapoptotic function of TIMP-1 was MMP-independent in our
system.

Since overexpressing Bcl-2 resulted in increased expression of TIMP-1 [21] and several
studies have shown that overexpressing TIMP-1 resulted in upregulation of Bcl-xL (see above),
a coordinated signaling loop between TIMP-1 and the Bcl-2 family was suggested in the regula-
tion of apoptosis commitment step [18]. Our study provides evidence for the existence of such
a feedback loop. The signaling feedback loop that appears to be functional between TIMP-1
and Bcl-2 is indeed striking; therefore we sought to identify a direct interaction between TIMP-
1 and Bcl-2, and have shown that immunoprecipitation of Bcl-2 coimmunoprecipitates TIMP-
1. Abrogating Bcl-2 activity using ABT-737 during induction of apoptosis with staurosporine,
resulted in significant reduction of TIMP-1 protein and mRNA levels. Furthermore, this was
specific for TIMP-1 as TIMP-2 levels were not altered, again reinforcing the fact that TIMP-1
and Bcl-2 are interdependent. It is not clear yet whether this is due to direct physical interac-
tion between these two proteins or is mediated via other signaling proteins. TIMP-1 is known
to translocate to the nucleus [41, 42] and Bcl-2 has also been found in the nucleus [43, 44],
hence it is possible that they are both involved in transcriptional regulation. However, addi-
tional studies would be required to confirm such a role for these two proteins in the nucleus.

Fig 4. Antiapoptotic function of TIMP-1 does not involve the Akt pathway. TIMP-1 overexpression
activates p90RSKwhich in turn activates BAD, concomitantly reducing Bax expression in the H2009 cells.
The right panel shows treatment with ABT-737 and Staurosporine (AS) restores the p-p90RSK, p-BAD and
Bax levels. Fig 4 also shows absence of Akt involvement.

doi:10.1371/journal.pone.0137673.g004
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In most studies, signaling pathways leading to the antiapoptotic role of TIMP-1 have shown
the involvement of FAK/PI-3/Akt pathway leading to phosphorylation of BAD at Ser-136.
Phosphorylation of BAD at either Ser-112, Ser-136 or Ser-155 results in inactivation of this
pro-apoptotic function. BAD phosphorylation at Ser-112 can occur through the RAS-RAF-
MEK-ERK pathway [45], via phosphorylation of p90RSK, or by direct activation by RAF-1
[46]. It has also been shown that RSK can be activated by PDK1 without affecting Akt [47].
Activated p90RSK then phosphorylates BAD at Ser-112. Interestingly, in our lung carcinoma
model, we have shown that BAD is phosphorylated at Ser-112 and not at Ser-136, thereby con-
firming our findings that TIMP-1 activated cell survival does not involve Akt activation.

H2009 cells carry a constitutively active KRAS [48]. Also, TIMP-1 is known to activate
RAS and RAF-1 [49]. Thus it appears reasonable that this could then lead to downstream
signaling through p90RSK. We found p90RSK to be phosphorylated at Ser-380, a site of autop-
hosphorylation by its activated C-terminal kinase domain. We saw no phosphorylation at the
Thr-573 site that gets activated directly by ERK. However, ERK involvement is still thought to
occur indirectly [50]. Although we could not identify ERK activation in our study (Fig 4), this
observation is not without precedent. It has previously been demonstrated that even if the
MAPK pathway is active, p-ERK levels may not vary, as the levels of DUSP phosphatases are
simultaneously elevated with increased MEK/ERK output, thus making any change difficult to
detect [51]. Alternatively, oncogenic RAS cells may use effectors other than MAPK for cell sur-
vival [52]. Indeed, we were able to demonstrate activation of p90RSK along with phosphoryla-
tion of BAD. This cascade resulted in concomitant decrease in the levels of Bax, a pro-
apoptotic protein that forms oligomers leading to the permeabilization of the mitochondrial
outer membrane, activation of caspase 3 and finally a reduction in PARP cleavage. Further-
more, staurosporine treatment led to restoration of Bax expression.

TIMP-1 is a well-documented antiapoptotic marker as well as a prognostic marker in many
cancers [5] particularly breast cancer [12]. TIMP-1 has also been shown to be of prognostic
value in NSCL cancer [16]. High serum and tissue levels of TIMP-1 have been well correlated
with shorter disease-free patient survival. TIMP-1 may also have predictive value as high
TIMP-1 levels also correlate with decreased sensitivity to chemotherapeutic agents, thus indi-
cating that TIMP-1 protects against apoptosis induced by chemotherapy [17]. Also it has been
shown that TIMP-1 deficiency increases sensitivity to chemotherapy induced apoptosis in
fibrosarcoma cells [53]. Additionally, in studies of liver fibrosis, a correlation has been seen
between the levels of TIMP-1 and Bcl-2 [30, 32].

These studies necessitate a thorough dissection of the role of TIMP-1 in apoptosis. Although
TIMP-1 has emerged as an important prognostic marker in clinical findings and a well-docu-
mented inhibitor of apoptosis in research studies, it is still unclear as to how TIMP-1 is upregu-
lated in cancer. Our data provides evidence that TIMP-1 and Bcl-2 expression levels are
interdependent and that these two proteins interact in vivo. This interaction may play a role in
controlling the coordinated signaling loop. Additional studies are necessary to elucidate these
interactions and could make TIMP-1 a viable and better therapeutic target.
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