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Abstract
High concentrations of arsenic, which can be occasionally found in drinking water, have

been recognized as a global health problem. Exposure to arsenic can disrupt spatial mem-

ory; however, the underlying mechanism remains unclear. In the present study, we tested

whether exercise could interfere with the effect of arsenic exposure on the long-term mem-

ory (LTM) of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g.) was adminis-

tered daily for 12 weeks. We found that arsenic at dosages of 1, 3, and 10 mg/kg decreased

body weight and increased the arsenic content in the brain. The object recognition LTM

(tested 24 h after training) was disrupted by 3 mg/ kg and 10 mg/ kg, but not 1 mg/ kg arsenic

exposure. Swimming exercise also prevented LTM impairment induced by 3 mg/ kg, but not

with 10 mg/ kg, of arsenic exposure. The expression of brain-derived neurotrophic factor

(BDNF) and phosphorylated cAMP-response element binding protein (pCREB) in the CA1

and dentate gyrus areas (DG) of the dorsal hippocampus were decreased by 3 mg/ kg and

10 mg/ kg, but not by 1 mg/ kg, of arsenic exposure. The decrease in BDNF and pCREB in

the CA1 and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic exposure were pre-

vented by swimming exercise. Arsenic exposure did not affect the total CREB expression in

the CA1 or DG. Taken together, these results indicated that swimming exercise prevented

the impairment of object recognition LTM induced by arsenic exposure, which may be medi-

ated by BDNF and CREB in the dorsal hippocampus.

Introduction
Arsenic is a naturally occurring metalloid, which is widely distributed in the environment.
Arsenic is found in nature commonly in compounds with oxygen, chlorine, and sulfur, which
are called inorganic arsenic compounds. In plants and animals, arsenic combines with carbon
and hydrogen, which is called organic arsenic. In general, organic arsenic is usually far less
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poisonous than inorganic arsenic. The incidences of arsenic poisoning usually occurs in occu-
pational environmental exposure. Chronic exposure to arsenic induces arsenic toxicity, includ-
ing serious injury to internal organs, subclinical nerve injuries, peripheral neuropathy, and
diverse effects on the central nervous system [1]. An estimate 100 million people around the
world are exposed to high concentrations of arsenic via drinking water, which has been recog-
nized as a global health problem [2].

Recently, it has been demonstrated that exposure to arsenic could induce alterations in
memory and attention [3–6]. Long-term exposure to arsenic significantly affected pattern
memory and switching attention in students [4]. The arsenic concentration in urine showed an
inverse association with the performance in several cognitive tests in children, indicating that
arsenic contamination could affect cognitive development [6]. It was further demonstrated
that exposure to the inorganic arsenic, sodium arsenite, in pregnant dams and offspring pups
impaired their learning and memory functions [7]. In addition, the effect of exposure to
sodium arsenite on spatial memory has been measured. Daily exposure to 15 mg/ kg sodium
arsenite significantly disrupted the performance in the Morris water maze and Y maze tasks
[8]. Exposure to realgar, an arsenic sulfide mineral, for 6 weeks also affected the cognitive abil-
ity of weaned rats in the Morris water maze test and object recognition task [9].

The mechanisms underlying memory impairment induced by arsenic exposure have been
mainly focused on arsenic-induced alterations in the hippocampus. Arsenic exposure has been
shown to decrease the expression of the 2A subunit of N-methyl-D-aspartate receptor
(NMDAR) gene in the rat hippocampus [10]. Moreover, the protein expression of NMDAR
2A subunit, postsynaptic density protein 95 (PSD95) and phosphorylated-Ca2+/calmodulin-
dependent protein kinase II alpha in the hippocampus was also decreased in rats exposed to
arsenic, whereas the protein expression of synaptic GTPase activating protein, a negative regu-
lator of mitogen-activated protein kinases, was increased [11]. The expression of metabotropic
glutamate receptor 5 mRNA and protein in the hippocampus were decreased by arsenic expo-
sure, which may underlie the impaired learning and memory ability observed in rats [12].
Moreover, the arsenic metabolites of realgar are permeable through the blood-brain barrier
and accumulate in the hippocampus, which induces excessive glutamate in the extracellular
space and excitotoxicity. The excessive glutamate subsequently promotes the activities of gluta-
mine synthetase and phosphate-activated glutaminase, inhibits glutamate transporter 1 expres-
sion, and alters NMDAR expression [9]. Arsenic can also change the ultrastructure in
hippocampal neurons and induce pathological alterations of neurons and endothelial cells in
the hippocampus [9,10]. It has been demonstrated that arsenite reduces the expression of
brain-derived neurotrophic factor (BDNF), a critical factor involved in learning and memory,
in SH-SY5Y cells [13]. However, the role of hippocampal BDNF in arsenic-induced memory
impairment remains unknown.

Numerous studies have concluded that exercise promotes memory performance [14–16],
although the underlying mechanism still remains unclear. BNDF in the brain plays a critical
role in memory performance and cognition [17–19]. It has been shown that exercise increases
cell division and promotes BNDF release, tryosine receptor kinase B (TrkB) activation, and
synapsin-1 expression in the dentate gyrus (DG) of the hippocampus, which indicate that
BDNF-dependent signaling cascades in the hippocampus are critical for exercise-induced
improvement in spatial memory [20]. Forced swimming and running exercises similarly pro-
mote cognitive- and brain- related tasks, which appear to be mediated by the BDNF pathway
in the hippocampus [21]. A recent study showed that voluntary running wheel or forced tread-
mill exercises improved memory retrieval and prevented diet-induced cognitive decline, which
may be mediated by hippocampal BDNF [22]. Thus, we hypothesized that exercise could
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improve the impaired memory performance induced by arsenic and that hippocampal BDNF
might be involved in this effect.

In the present study, we examined the effect of swimming exercise on arsenic-induced
memory impairment in mice objective recognition task, which is a widely used memory model.
Furthermore, we tested whether hippocampal BDNF was associated with arsenic exposure and
alterations in memory performance. Using behavioral paradigm to alleviate arsenic-induced
memory impairment would provide a promising treatment for arsenic toxicity.

Materials and Methods

Animals
Male Kunming mice, weighing 20–22 g, were obtained from the Laboratory Animal Center,
Guiyang Medical University. Mice were ordered two weeks before each experiment, and a total
of 208 mice were used in this study. Mice were housed at a temperature of 21 ± 2°C and humid-
ity of 50 ± 5%, which was controlled by the animal facility with free access to food and water.
They were maintained on a reverse 12 h/12 h light/dark cycle. Animals were chosen randomly
for each group in all experiments. Each home cage contains four or five mice, which were
assigned to the same group. No mice were excluded from each experiment.

Ethics Statement
All of the experimental procedures were performed according to the National Institutes of
Health Guide for the Care and Use of Laboratory Animals and were approved by the Biomedi-
cal Ethics Committee for animal use and protection of Guiyang Medical University.

Arsenic exposure protocol
Mice were randomly assigned to groups and intragastrically administered 0.5 ml of tap water,
containing 0, 1, 3 and 10 mg/ kg arsenic at 2:00 PM. daily for three months. The high dosage
(10 mg/ kg) was 1/5 of a LD50 dosage of arsenic. The arsenic-containing tap water was freshly
prepared every day immediately prior to administration. The experimenters carefully attended
mice that treated with arsenic twice daily to test pain reflex and observe the toxicity of arsenic.
In the present study, mice treated with 1, 3 and 10 mg/ kg arsenic for 12 weeks did not show
visible tumor or apparent sickness except for weight loss.

After three months of arsenic exposure (intragastric administration of arsenic), the brain
samples were collected from 8 mice in each group for the atomic absorption spectrophotome-
try test to examine the concentrations of arsenic in the brain.

Object recognition memory
On the day of the experiment, the mice were placed in a new environment 2 h prior to the start
of the test. The test was performed at 10:00 AM. Afterwards, the animals were placed in a white
plastic box (55 × 35 × 20 cm). A black metal box (4 × 6 cm) and a yellow glass cone (4 × 6 cm)
were used as objects to discriminate (object A1 and object A2). The two objects were placed in
two opposite corners, with the center of the objects placed 24 cm from the corner. Next, the
mice were placed in the middle of the arena and presented with two identical objects (object
A1 or object A2) for a 5-min period (counterbalanced design). Twenty-four hours later, the
mice were placed in the same plastic box again and presented with two objects (object A1 and
object B) for the 5 min recognition session. Object A2 was always the object that was replaced.
Mouse sniffing or touching of the object with its nose and/or forepaws was defined as object
exploration. The total time spent with each object in each test was recorded. As mice inherently
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prefer to explore novel object, then a preference for the novel object (more time than chance
[10 sec] with the novel object) indicates intact memory for the familiar object. The plastic
box and objects were cleaned with 10% ethanol between each mouse and session.

Swimming exercise
The swimming exercise was adapted from a previous study [23]. The swimming exercise and
arsenic exposure began on the same day. Water temperature during the swimming exercise
was maintained at 32 ± 2°C. The exercise groups of mice underwent the swimming exercise for
4 hours prior to daily arsenic exposure. The swimming apparatus was a water glass tank
(40 × 60 × 55 cm) filled with tap water (35 cm in depth). No mice were escaped from the water
tank in all experiments. Water bubbling was produced by tubes in the bottom connected to an
air pump system to prevent floating during the swimming session. The exercise groups of mice
were forced to swim for 60 min daily for 12 weeks. All groups of mice underwent swimming
exercise showed normal swimming ability. The no exercise groups of mice were housed in the
home cage without swimming exercise for the same duration.

Western blot assays
All of the mice were decapitated without anesthesia, and their brains were rapidly extracted
and placed on ice. The CA1 and DG areas were freshly harvested and placed in a 1-ml micro-
tube that contained ice-cold RIPA lysis buffer (Beyotime Biotechnology, Haimen, China).
After homogenization using a glass homogenizer, the homogenate was centrifuged at 12 000 ×
g for 10 min at 4°C to obtain the supernatant. The protein concentrations of the samples were
determined using the BCA assay kit (Beyotime Biotechnology). The samples were then sub-
jected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis for approximately 30 min
at 80 V in the stacking gel and approximately 1.5 h at 120 V in the resolving gel. Proteins were
then transferred electrophoretically to Immobilon-P transfer membranes (Millipore, Bedford,
MA, USA) at 0.25 A for 30 min. The membranes were washed with TBST (Tris-buffered saline
plus 0.05% Tween-20, pH 7.4) and subsequently placed in blocking buffer (5% skimmed dry
milk in TBST) overnight at 4°C. The membranes were then incubated for 1 h at room tempera-
ture with a primary antibody against BDNF (1:1000), pCREB (1:1000), CREB (1: 1000), and β-
actin (1:500) in TBST plus 5% bovine serum albumin. All of the primary antibodies were pur-
chased from Santa Cruz Biotechnology, Santa Cruz, CA, USA. The membranes were washed
with TBST buffer for 5 min and then incubated for 45 min at room temperature with second-
ary antibody (1:5000; Santa Cruz Biotechnology, Santa Cruz, CA, USA). The membranes were
washed with TBST buffer for 5 min. Subsequently, the membranes were incubated with a mix-
ture of Super Signal enhanced chemiluminescence substrate (Pierce Biotechnology, Rockford,
IL, USA) for 1 min at room temperature. Finally, the blots were exposed against X-ray film
(Eastman Kodak Company). The band intensities were quantified using Quantity One software
(version 4.0.3) from Bio-Rad (Hercules, CA, USA).

Statistical analysis
The data were expressed as the mean ± SEM. Repeated measures analysis of variance
(ANOVA) was performed to analyze the body weight gain. Two-way ANOVA was performed
to analyze the object recognition memory. One-way analysis of variance (ANOVA) was per-
formed to analyze the western blotting results. Post hoc analyses of significant effects in the
ANOVAs were performed using Bonferroni's multiple comparisons test. P-values< 0.05 were
considered statistically significant.
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Results

Arsenic exposure decreased body weight and increased the arsenic
content in the brain
During the twelve weeks of arsenic exposure, the body weight of the mice was monitored. Four
groups of mice were included in this experiment: 0, 1, 3, and 10 mg/ kg arsenic (n = 12 per
group). Repeated measures ANOVA with Group as the between-subjects factor and Time
(every week) as the within-subjects factor showed effects of Group (F3, 44 = 213.88, p< 0.001),
Time (F12, 44 = 148.81, p< 0.001) and the interaction of Group × Time (F36, 44 = 58.38,
p< 0.001). Post hoc analysis showed that chronic exposure to arsenic at a dosage of 1, 3, and
10 mg/ kg significantly inhibited the increase in body weight (compared with 0 mg/ kg arsenic
group; all p< 0.05). Higher dosages of arsenic induced a stronger effect on body weight gain
(all p< 0.05; Fig 1A). Taken together, these results indicated that arsenic exposure dose-depen-
dently reduced the increase in body weight.

The arsenic contents in the brains of all mice in this experiment were measured after arsenic
exposure. One-way ANOVA showed a significant effect (F3, 47 = 614.50, p< 0.001). Post hoc
analysis showed that 12 weeks of arsenic exposure at a dosage of 1, 3, and 10 mg/ kg increased
the arsenic content in the brain (compared with 0 mg/ kg arsenic group; all p< 0.05). More-
over, the arsenic content in the brain was positively associated with the dosage of arsenic
exposed (all p< 0.05; Fig 1B). Chronic exposure to arsenic dose-dependently elevated arsenic
content in the brain.

Arsenic exposure disrupted object recognition memory
Previous studies have demonstrated that arsenic exposure disrupted spatial memory, including
the Morris water maze and Y maze test in rats [8,12]. Recently, it was demonstrated that real-
gar, a type of mineral drug containing arsenic, impaired the object recognition task in rats.
Here, we tested whether arsenic exposure could affect object recognition long-term memory in
mice. Four groups of mice were included in this experiment: 0, 1, 3, and 10 mg/ kg arsenic
(n = 14 per group). One day after 12 weeks of arsenic exposure, the mice underwent memory
training, and their memory was tested 24 h later. Two-way ANOVA, with Group as the
between-subjects factor and Test object (object A1 and object A2, or object A1 and object B) as
the within-subjects factor, was performed to analyze the object recognition LTM. For explora-
tion of the two identical objects, ANOVA showed no significant difference (F3, 52 = 0.27,
p> 0.05; Fig 2A). We then analyzed whether arsenic would affect the total exploring time for
both objects. One-way ANOVA showed an effect (F3, 52 = 20.93, p< 0.001). Only 10 mg/ kg
arsenic significantly reduced the total exploring time (p< 0.001), suggesting that 10 mg/ kg
arsenic affected locomotion in mice. For exploration of two different objects, ANOVA showed
effects in Group (F3, 52 = 3.08, p< 0.001), Test object (F3, 52 = 220.00, p< 0.001), and the inter-
action of Group × Test object (F3, 52 = 62.24, p< 0.001). Post hoc analysis showed that mice
exposed to 0 and 1 mg/ kg arsenic preferred the novel object, which indicated successful LTM
(0 mg/ kg arsenic group: t = 14.57, p< 0.001; 1 mg/ kg arsenic group: t = 13.92, p< 0.001).
Moreover, LTM was impaired in mice exposed to 3 and 10 mg/ kg arsenic (3 mg/ kg arsenic
group: t = 0.61, p> 0.05; 10 mg/ kg arsenic group: t = 0.57, p> 0.05; Fig 2B). One-way
ANOVA analyzing the total exploring time showed an effect (F3, 52 = 10.08, p< 0.001). The 10
mg/ kg arsenic group also showed decrease in the total exploring time (p< 0.001). Taken
together, these results demonstrated that chronic arsenic exposure disrupted long-term object
recognition memory in mice.
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Exercise prevented the impairment of object recognition memory
resulting from a low dosage of arsenic exposure
Exercise has been demonstrated to be a promising non-pharmacological approach with neuro-
protective effects. In this experiment, we determined whether swimming exercise could affect
memory impairment induced by arsenic exposure. The mice were divided into a “no exercise
group” (mice without swimming) and “exercise group” (mice with swimming) prior to the
experiment. Arsenic was administrated daily for 12 weeks. Two-way ANOVA, with Group (No
exercise, and Exercise) as the between-subjects factor and Test object (object A1 and object A2,
or object A1 and object B) as the within-subjects factor, was performed to analyze the object

Fig 1. Arsenic exposure decreased body weight gain and increased the arsenic content in the
hippocampus.Mice were administered arsenic daily for 12 weeks, and the body weight of mice was
recorded weekly. The arsenic content was measured 1 day after arsenic exposure. (A) The body weight gain
was decreased by 1, 3, and 10 mg/ kg arsenic exposure (p < 0.05). The effect on body weight was stronger in
mice treated with higher doses of arsenic. (B) Chronic arsenic exposure increased the arsenic content in the
brains of the mice (p < 0.05). Higher arsenic content was associated with a higher dose of arsenic exposure.
The data were expressed as the mean ± SEM (n = 12 per group). *p < 0.05, compared between two groups.

doi:10.1371/journal.pone.0137810.g001
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recognition LTM. In the experiment using 3 mg/ kg arsenic exposure, two groups of mice were
included (n = 14 per group). For exploration of two identical objects, ANOVA showed no
effect (F1, 26 = 1.83, p> 0.05; Fig 3A). For exploration of two different objects, ANOVA showed
effects of the Test object (F1, 26 = 85.65, p< 0.001) and interaction of Group × Test object (F1,
26 = 63.20, p< 0.001). Post hoc analysis showed that exercise significantly prevented LTM
impairment induced by arsenic exposure (t = 12.17, p< 0.001; Fig 3B). In the experiment for
10 mg/ kg arsenic exposure, two groups of mice were included (n = 14 per group). For explora-
tion of two identical objects, ANOVA showed no effect (F1, 26 = 4.15, p> 0.05; Fig 3C). For
exploration of two different objects, ANOVA also showed no significant effect (F1, 26 = 3.35,
p> 0.05; Fig 3D). Taken together, these results indicated that exercise prevented memory
impairment induced by arsenic at lower dosages.

Fig 2. Arsenic exposure disrupted object recognition memory.Mice were administered arsenic daily for 12 weeks and subsequently trained in the object
recognition memory task. Long-term memory was tested 24 h later. (A) No differences were found in the exploration time in all groups of mice when exploring
two identical objects (p > 0.05). (B)Mice treated with 10 mg/ kg arsenic showed decrease in the total exploring time for both two identical objects (p < 0.05).
(C)When exploring two different objects, groups of mice treated with 0 and 1 mg/ kg arsenic showed preference towards the novel object (both p < 0.05). No
differences were found in the exploration time in groups of mice treated with 3 and 10 mg/ kg arsenic (both p > 0.05), indicating that LTM in these two groups
of mice was disrupted. (D)Mice treated with 10 mg/ kg arsenic showed decrease in the total exploring time for both two different objects (p < 0.05). The data
were expressed as the mean ± SEM (n = 14 per group). *p < 0.05, compared with the exploration time to object A1 or 0 mg/ kg group.

doi:10.1371/journal.pone.0137810.g002
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Exercise prevented the decrease in hippocampal BDNF induced by low
dosages of arsenic exposure
A recent study demonstrated that arsenic reduced BDNF expression in human neuroblastoma
SH-SY5Y cells [13]. Hippocampal BDNF is critical for object recognition memory, which is
mediated by CREB [24]. In this experiment, we tested whether arsenic exposure and swimming
exercise could alter hippocampal BDNF expression and CREB activity. Six groups of mice were
included (n = 8 per group): mice treated with 0, 1, 3, and 10 mg/ kg arsenic that underwent no
exercise; mice treated with 3 and 10 mg/ kg arsenic that underwent exercise. For BDNF

Fig 3. Exercise prevented the impairment of object recognition memory resulting from low doses of
arsenic exposure.Mice were administered arsenic and underwent swimming exercise daily for 12 weeks
and were subsequently trained in the object recognition memory task. Long-termmemory was tested 24 h
later. (A) Exercise had no effect on the exploration time in mice treated with 3 mg/ kg arsenic when exploring
two identical objects (p > 0.05). (B) Exercise increased the exploration time to novel object in mice treated
with 3 mg/ kg arsenic (p < 0.05). (C, D) Exercise had no effect on the exploration time in mice treated with 10
mg/ kg arsenic when exploring two identical objects or exploring two different objects (both p > 0.05). The
data were expressed as the mean ± SEM (n = 14 per group). *p < 0.05, compared with exploring time to
object A1.

doi:10.1371/journal.pone.0137810.g003
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expression in the CA1 and DG, one-way ANOVA showed significant effects (CA1: F5, 47 =
19.32, p< 0.001; DG: F5, 47 = 10.94, p< 0.001). Post hoc analysis showed that 3 and 10 mg/ kg
arsenic exposure reduced BDNF expression (all p< 0.001). Exercise prevented the decrease in
BDNF induced by 3 mg/ kg (both p< 0.001), but not 10 mg/ kg (both p> 0.05), or arsenic
exposure (Fig 4B and 4F). For phosphorylated CREB (pCREB) in the CA1 and DG, one-way
ANOVA also showed significant effects (CA1: F5, 47 = 31.47, p< 0.001; DG: F5, 47 = 25.04,
p< 0.001). Post hoc analysis showed that the expression of pCREB in both the CA1 and DG
was reduced by 3 and 10 mg/ kg arsenic exposure (all p< 0.01). Moreover, a decrease in
pCREB induced by 3 mg/ kg (p< 0.05), but not 10 mg/ kg (p> 0.05), of arsenic exposure was
blocked by exercise (Fig 4C and 4D). For total CREB (tCREB) in the CA1 and DG, one-way
ANOVA also showed no effect (CA1: F5, 47 = 0.77, p> 0.05; DG: F5, 47 = 0.85, p> 0.05). Taken
together, these results indicated that chronic arsenic exposure reduced hippocampal BDNF/
pCREB expression. Exercise prevented the decrease in BDNF/ pCREB induced by low dosages
of arsenic, which suggested that arsenic exposure might alter LTM performance via hippocam-
pal BDNF/ pCREB.

Discussion
In the present study, we investigated the effect of arsenic exposure on object recognition mem-
ory, and tested whether this effect could be affected by swimming exercise. We found that
chronic administration of 3 mg/ kg and 10 mg/ kg arsenic reduced body weight gain and
increased arsenic content in the brain. Object recognition LTM was disrupted by 3 mg/ kg and
10 mg/ kg arsenic exposure. Swimming exercise prevented memory impairment induced by
arsenic at dosages of 3 mg/ kg, but not 10 mg/ kg. The decrease in BDNF and pCREB in CA1
and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic was blocked by exercise.

Previous studies have demonstrated that arsenic exposure decreased body weight, which is
consistent with the present findings that higher doses of arsenic exposure induced more severe
weight loss and higher arsenic content in the brain. The decrease in body weight might be
induced by the reduction in the repair and synthetic activities of various cells, but not a
decrease in food intake [10,25–27]. However, the present results also indicated that intragastric
administration of arsenic in mice is a suitable model to study the toxic effects of chronic arsenic
administration.

The toxic effects of arsenic on memory performance in rodents have been previously
reported. The performance of rats in the Morris water maze and Y maze tasks were impaired
by low-dose sodium arsenic exposure [8]. Learning and memory in the Morris water maze was
disrupted in rats that were exposed to arsenic, and this effect was not promoted by co-adminis-
tration of fluoride [12]. Rats treated with arsenic showed a significantly decreased learning
activity of passive avoidance response [28]. Consistent with these results, we found that object
recognition LTM was disrupted by arsenic exposure. Although all dosages of arsenic in the
present study decreased body weight gain and increased the arsenic content in the brain, mice
exposed to 1 mg/ kg arsenic showed no memory impairment, which indicated that cognitive
function was resistant to arsenic toxicity to some extent. The highest dosage of arsenic expo-
sure showed a decreasing trend of total exploring time towards two objects during the LTM
tests, indicating that arsenic exposure could also affect locomotor activity [29]. It was demon-
strated that motor activity was increased by arsenic trioxide at 3 mg/kg and decreased by arse-
nic trioxide at 10 mg/kg for two weeks [29]. A recent study investigated the effect of arsenic
exposure for 4 months on the locomotor activity of mice [30]. They found that male mice
exposed to 0.5 mg As/L in drinking water showed hyperactivity, whereas male mice exposed to
50 mg As/L presented hypoactivity and male mice exposed to 5 mg As/L did not show a
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Fig 4. Exercise prevented the decrease in hippocampal BDNF induced by low doses of arsenic
exposure.Mice were administered arsenic and underwent swimming exercise daily for 12 weeks and then
were decapitated 24 h later. (A, E) Representative Western blotting analyses of proteins in the CA1 and
dentate gyrus (DG) areas of the dorsal hippocampus. (B, F) Exposure to arsenic at dosages of 3 and 10 mg/
kg decreased BDNF expression in CA1 and DG (both p < 0.05). Exercise prevented the decrease in BDNF
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significant difference with control groups of mice, indicating that the effect of arsenic on loco-
motion was dose-dependent. In the present study, we found no difference in the total explora-
tion time among mice exposed to 0, 1, and 3 mg/kg arsenic, indicating that the memory
impairment induced by 3 mg/kg arsenic was not due to locomotor alteration in mice.

Numerous studies have investigated the protective effects of several agents on arsenic-
induced damage. Oral treatment with tephrosia purpurea extract protected rats from arsenic-
induced nephrotoxicity [31]. In addition, Juglans nigra showed hepatoprotective and anticlas-
togenic effects induced by arsenite [32]. Pre-treatment with the extract of V. amygdalina sup-
pressed chromosomal aberration induced by sodium arsenite in rats [33]. In studies of
protection against arsenic-induced oxidative damage, it was suggested that dietary flaxseed oil,
green tea, melatonin, N-acetyl cysteine, selenium, psidium guajava, corchorus olitorius, and
melatonin supplementation could be protective agents against arsenic-induced cellular oxida-
tive stress [34–41]. Moreover, recent studies have demonstrated that curcumin showed neuro-
protective efficacy in attenuating arsenic neurotoxicity [42,43]. Furthermore, curcumin
promoted learning and memory performance in rats treated with arsenic [28]. Another effec-
tive tool, which has been shown to improve cognitive performance, is physical exercise [14,44–
46]. In the present study, we found that swimming exercise [47,48] prevented memory
impairment induced by 3 mg/ kg arsenic, indicating that swimming exercise could be a non-
pharmacological tool used to reduce arsenic neurotoxicity and improve cognitive function. It
should be noticed that, it is possible that the forced swimming, as a kind of mild stress, would
exacerbate the poisoning of arsenic when the concentration of arsenic is very high.

Furthermore, several studies indicated that exercise promotes cognition and memory.
Treadmill exercise improved spatial learning memory [49,50]. A study investigating the effect
of exercise on different stages of memory revealed that treadmill running improved the consol-
idation of passive avoidance memory but had no effect on memory retrieval [51]. Moreover,
physical exercise improved cognitive performance in psychogeriatric patients [14]. In addition,
swimming alone improved elevated plus maze-associated memory and prevented emotional
memory impairment induced by the infusion of scopolamine into CA1 [47]. Because the effect
of exercise on cognition improvement requires a long period of time, it was suggested that exer-
cise contributed to memory improvement by promoting neurogenesis in the hippocampus
[45,46]. Considering the limitations in the NOR task, for example the exploratory activity will
vary when using different open-field arenas or food deprivation [52], we cannot generalize our
findings to other kinds of exercise, e.g. treadmill exercise, which requires further investigation.
Moreover, we cannot exclude other possible effect but not exercise itself in the swimming train-
ing, e.g. “environmental enrichment” effect.

The mechanism underlying cognitive impairment caused by chronic arsenic exposure in
rodents has only been recently investigated. One of the most widely studied brain areas affected
by arsenic is the hippocampus, a critical brain area that participates in memory performance.
First, arsenic exposure induced structural alterations in the brain. An ultra-structural study

expression in both CA1 and DG induced by arsenic at a dose of 3 mg/ kg (both p < 0.05), but not 10 mg/ kg
(both p > 0.05). (C, G) The levels of phosphorylated CREB in CA1 and DG were reduced by arsenic at
dosages of 3 and 10 mg/ kg (both p < 0.05). The decrease in pCREB expression in CA1 and DG induced by
arsenic at dosages of 3 mg/ kg (both p < 0.05), but not 10 mg/ kg (both p > 0.05), was prevented by exercise.
(D, H) Arsenic at any dosages had no effect on the levels of total CREB in CA1 and DG (both p > 0.05). The
data were expressed as the mean ± SEM (n = 8 per group). *p < 0.05, compared with the group of mice that
underwent no exercise and were treated with 0 mg/ kg arsenic; #p < 0.05, compared with the group of mice
that underwent no exercise and were treated with 3 mg/ kg arsenic.

doi:10.1371/journal.pone.0137810.g004
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showed that chronic exposure to drinking water containing arsenic induced swollen mitochon-
drion and expanded the rough endoplasmic reticulum in rat hippocampal neurons [10]. In
addition, abnormal structural alterations in the myelin sheaths of nerve fibers and a reduction
in the terminals of mossy fibers in the hippocampus were also observed [8]. Second, arsenic
exposure induced alterations in several molecules in the hippocampus. Among them, BDNF, a
crucial factor involved in learning and memory, interacts with these molecules to regulate gene
transcription and protein synthesis in the formation of LTM [53,54]. In the present study, we
demonstrated that BDNF/phosphorylated CREB (pCREB) in the CA1 and DG of the hippo-
campus was reduced in mice exposed to arsenic.

Importantly, a decrease in BDNF/ pCREB was prevented by swimming exercise. BDNF has
been reported to be an important mediator in cognition enhancement. BDNF, interacting with
other plasticity related proteins, mediates exercise-induced hippocampal plasticity [55]. Physi-
cal exercise reversed high-fat diet-induced hippocampal-dependent memory impairment and
increased BDNF expression in CA3 of the hippocampus [22]. Inhibition of hippocampal
BDNF blocked the effect of exercise on performance in the Morris water maze and altered
CREB and synapsin I levels, which are important for synaptic plasticity [19]. BDNF may also
interact with AMP-activated protein kinase, insulin-like growth factor I, and ghrelin to regulate
exercise-induced synaptic plasticity and cognitive function [56,57]. Voluntary exercise signifi-
cantly promoted short-term and long-term spatial memory, and increased BDNF expression in
the hippocampus [58]. Improvement of hippocampus-related cognitive functions by voluntary
resistance wheel running was also associated with hippocampal BDNF signaling [59]. Swim-
ming exercise, used in the present study, also showed an enhanced effect on spatial memory,
which may be mediated by BDNF [21,60]. Together with the behavioral alterations induced by
arsenic, the present results suggest that hippocampal BDNF/CREB may play a critical role in
learning and memory in mice exposed to arsenic. However, the precise mechanism how is
BDNF/CREB pathway involved in arsenic neurotoxicity requires further studies. Furthermore,
The effect of swimming exercise may reduce arsenic poisoning in two ways. First, swimming
may directly reduce the level of arsenic via accelerating arsenic elimination. Second, swimming
may reduce the effect of arsenic in the brain through activating some protecting process. Fur-
ther study is also required to test the persistence of the effect of swimming exercise on arsenic
poisoning, which is very important in clinical.

In summary, arsenic exposure impaired long-term object recognition memory, which was
partially prevented by swimming exercise in mice. Hippocampal BDNF/CREB expression was
associated with memory ability regulated by arsenic and exercise. The exercise paradigm in
mice used in this study can be readily transferred to clinical treatment, thus understanding the
mechanism underlying arsenic-induced memory impairment would provide therapeutic
insight towards a treatment for arsenic neurotoxicity.
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