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Abstract
Phosphorylation of histone H2AX by ATM and ATR establishes a chromatin recruitment

platform for DNA damage response proteins. Phospho-H2AX (γH2AX) has been most

intensively studied in the context of DNA double-strand breaks caused by exogenous clas-

togens, but recent studies suggest that DNA replication stress also triggers formation of

γH2A (ortholog of γH2AX) in Schizosaccharomyces pombe. Here, a focused genetic screen

in fission yeast reveals that γH2A is critical when there are defects in Replication Factor C

(RFC), which loads proliferating cell nuclear antigen (PCNA) clamp onto duplex DNA. Sur-

prisingly Chk1, Cds1/Chk2 and the Rad9-Hus1-Rad1 checkpoint clamp, which are crucial

for surviving many genotoxins, are fully dispensable in RFC-defective cells. Immunoblot

analysis confirms that Rad9-Hus1-Rad1 is not required for formation of γH2A by Rad3/ATR

in S-phase. Defects in DNA polymerase epsilon, which binds PCNA in the replisome, also

create an acute need for γH2A. These requirements for γH2A were traced to its role in dock-

ing with Brc1, which is a 6-BRCT-domain protein that is structurally related to budding yeast

Rtt107 and mammalian PTIP. Brc1, which localizes at stalled replication forks by binding

γH2A, prevents aberrant formation of Replication Protein A (RPA) foci in RFC-impaired

cells, suggesting that Brc1-coated chromatin stabilizes replisomes when PCNA or DNA

polymerase availability limits DNA synthesis.

Author Summary

ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3 related) are evolutionary
conserved protein kinases that phosphorylate the carboxyl-tail of histone H2AX in chro-
matin flanking DNA lesions. Phosphorylated histone H2AX (aka γH2AX) tethers impor-
tant DNA damage response (DDR) proteins to DNA double-strand breaks but its function
during DNA replication is unclear. A novel genetic screen reveals that a partial defect in
Replication Factor C (RFC) creates a critical requirement for γH2AX in fission yeast.
These studies indicate that γH2AX stabilizes replication forks by recruiting Brc1 when
RFC is unable to load the DNA clamp known as proliferating cell nuclear antigen (PCNA)
onto duplex DNA. Surprisingly, this activity of γH2AX is more critical than ATM/ATR-
mediated activation of the checkpoint kinase Chk1 and Chk2.
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Introduction
DNA lesions elicit highly orchestrated DNA damage responses (DDRs) controlled by the mas-
ter checkpoint kinases ATM and ATR. These responses protect genome integrity and prevent
diseases characterized by chromosome instability and cancer [1,2]. ATM and ATR have many
substrates but none is more ubiquitous than the SQ motif at the carboxyl tail of histone H2AX
or H2A [3]. Key DDR proteins such as mammalian MDC1 have C-terminal regions consisting
of tandem BRCA1 C-terminus (BRCT) domains that form a highly sculpted binding pocket for
the phosphorylated C-terminus of phospho-H2AX (γH2AX) [4]. These DDR proteins decorate
large chromatin domains flanking DNA lesions. However, H2AX phospho-site mutations gen-
erally cause modest genotoxin sensitivity compared to eliminating γH2AX-binding proteins,
suggesting that docking to γH2AX enhances but is not always essential for DDR protein func-
tions [5–7]. Endogenous sources of DNA damage might create a more acute requirement for
γH2AX to protect genome integrity.

Whilst γH2AX has been most intensively studied in the context of DNA double-strand
breaks (DSBs) formed by exogenous clastogens, recent studies with fission yeast and budding
yeast established that γH2AX (aka γH2A in yeast) increases every DNA synthesis (S)-phase
[8,9]. Single-stranded DNA (ssDNA) at stalled or damaged replication forks appears to be the
triggering DNA structure. Here, we investigate the function of γH2AX by using a genetic
screen to identify DNA replication mutants whose viability critically depends on γH2A in Schi-
zosaccharomyces pombe. These studies reveal that a defect in Replication Factor C (RFC),
which loads the replicative DNA polymerase processivity factor known as proliferating cell
nuclear antigen (PCNA) onto duplex DNA, creates an acute requirement for γH2A. Our stud-
ies track this requirement to Brc1, a γH2A-binding protein that functions in the replication
stress response [10,11]. From our studies we propose that large-scale adornment of γH2A-
marked chromatin with Brc1 prevents replication fork collapse when PCNA loading or DNA
polymerase activity limit DNA synthesis.

Results

Mutation of Rfc3 creates a critical requirement for γH2A
We have constructed S. pombe “htaAQ” strains in which both histone H2A genes have been
mutated to alter the C-terminal SQ phosphorylation site to AQ (hta1-S129A hta2-S128), thereby
eliminating γH2A [7]. We sought to identify mutations having synthetic sick or lethal (SSL)
genetic interactions with htaAQ. We used tetrad analysis to introduce htaAQ into strains having
conditional mutations in genes that are essential for DNA replication. We initially chose muta-
tions of genes encoding subunits of the pre-initiation complex (pre-IC; sld3-10 and cdc45-192),
pre-replication complex (pre-RC; cdc18-K9), MCM replicative DNA helicase (mcm2-P1 and
mcm6-568), Dpb11 replication and checkpoint scaffold protein (cut5-T401), replication factor C
subunit 3 (rfc3-1), and an Schizosaccharomyces-specific gene whose product associates with
Dna2 flap endonuclease/helicase that is required for Okazaki fragment processing (cdc24-M28).
For all but one of these mutations the SSL interactions were undetectable or weak when tested in
the absence of exogenous DNA damaging agents or replication inhibitors. The most obvious
exception was rfc3-1 [12], which had a clear SSL interaction with htaAQ at the permissive tem-
perature of 25°C (Fig 1A). γH2A is therefore critical when Rfc3 function is impaired.

The requirement for γH2A is specific for defects in RFC
Rfc3 is as an essential subunit of RFC, which is a heteropentameric AAA+ protein clamp loader
for PCNA [13]. The ring-like PCNA homotrimer encircles DNA and slides spontaneously
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along the duplex as an essential subunit of the replisome [14]. RFC consists of the large subunit
Rfc1 along with four smaller subunits: Rfc2, 3, 4 and 5. The smaller subunits are also present in
alternative RFC-like complexes in which Rfc1 is replaced by Rad17, Ctf18 or Elg1 [15]. The
Rad17-RFC complex has a well-characterized role in loading the Rad9-Hus1-Rad1 PCNA-like
checkpoint clamp at DNA lesions and stalled replication forks, where it is essential for DNA
damage and replication checkpoints enforced by Chk1 and Cds1/Chk2, respectively [16,17].

Fig 1. Critical requirement for γH2Awhen RFC function is impaired. (A) The rfc3-1 and htaAQmutations
have a SSL genetic interaction. Tenfold serial dilution of wild type (wt), rfc3-1, htaAQ (hta1-S129A
hta2-S128A), and htaAQ rfc3-1 strains were incubated at permissive (25°C) and restrictive temperatures
(35°C). Growth of htaAQ rfc3-1 cells at 25°C is substantially impaired relative to rfc3-1 cells. (B)Mutations
that eliminate alternative RFCs do not have SSL genetic interactions with htaAQmutations. The rad17Δ,
ctf18Δ and elg1Δmutations that eliminate large subunits of alternative RFCs were mated into the htaAQ
background. Growth was assessed at 30°C. (C) The rfc1-44 and htaAQmutations have a SSL genetic
interaction.

doi:10.1371/journal.pgen.1005517.g001
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Ctf18 and Elg1 also play important but less well understood roles in maintaining genome integ-
rity in response to replication-associated DNA damage [15,18].

As the rfc3-1mutation potentially impairs the functions of the canonical and alternative
RFCs, we tested whether htaAQ has genetic interactions with rad17Δ, ctf18Δ or elg1Δ. No obvi-
ous SSL interactions were detected (Fig 1B). To further test whether a defect in the canonical
RFC creates a requirement for γH2A, we crossed htaAQ with the temperature sensitive rfc1-44
mutation [15]. We detected a SSL interaction at 25°C that was enhanced at 32°C (Fig 1C).
From these data we conclude that γH2A is crucial when the canonical RFC is impaired but not
when the alternative RFC complexes are each individually ablated.

Increased γH2A in rfc3-1 cells
Our data suggested that replication defects in rfc3-1 cells trigger a DNA damage response lead-
ing to formation of γH2A that is critical for maintaining viability. To test this idea we measured
γH2A with anti-γH2A antisera [19] and found that it was increased in rfc3-1 cells (Fig 2),
matching the levels seen in wild type cells treated with the topoisomerase I poison camptothe-
cin (CPT) that collapses replication forks [20].

Fig 2. Increased γH2A in rfc3-1mutant.Histone enriched cell extracts from the indicated strains were
immunoblotted with antisera that bind the C-terminal phospho-SQ epitope of γH2A or H2A itself. Note as
shown below and reported previously γH2A in untreated wild type is predominantly from cells passing
through S-phase [8]. Note also that rfc3-1 cultures grown at 25°C were previously found to have a DNA
content flow cytometry profile similar to wild type [12], indicating that increased γH2A in rfc3-1 cultures most
likely arises from increased γH2A-triggering lesions. The increased γH2A in rfc3-1 cells cultured at 25°C is
comparable to the level of γH2A in wild type cells treated with 5 μMCPT. Error bars indicate standard error of
the mean of 3 independent experiments.

doi:10.1371/journal.pgen.1005517.g002

γH2A-Brc1 Stabilizes Replication Forks in RFCMutant

PLOS Genetics | DOI:10.1371/journal.pgen.1005517 September 14, 2015 4 / 17



Brc1 binding to γH2A is crucial in rfc3-1 cells
Crb2, Brc1 and Mdb1 bind γH2A in fission yeast [7,10,21,22]. Crb2 and Brc1 are most critical
for surviving genotoxins [11,23,24], therefore we investigated the requirements for Crb2 and
Brc1 in rfc3-1 cells.

The tandem C-terminal BRCT domains of Crb2 that bind γH2A adjoin paired Tudor
domains that bind dimethylated lysine-20 of histone H4 (H4-K20me2). Mutations that ablate
these interactions are genetically epistatic and both interactions are required for large-scale
localization of Crb2 at DSBs [25–27]. We found the elimination of the sole H4-K20 methyl-
transferase Set9 had no effect in rfc3-1 cells (Fig 3A). Similarly, we found that rfc3-1 cells were
unaffected by the crb2-K619Mmutation [26] that disrupts the γH2A-binding pocket (Fig 3B).
As Crb2 retains partial function when γH2A and H4-K20me2 are simultaneously eliminated
[26], we also tested the crb2Δmutation and found that it only weakly impaired growth in rfc3-1
cells (Fig 3C). We conclude that Crb2 binding to γH2A and H4-K20me2 is not required in
rfc3-1 cells, while complete loss of Crb2 has a minor effect.

Fig 3. Brc1 binding to γH2A is critical in rfc3-1 cells. All assays were performed at 25°C. (A) Elimination
of histone lysine H4-K20 methyltransferase Set9, which creates a chromatin recruitment platform for Crb2,
does not impair growth in rfc3-1 cells. (B) The crb2-K619Mmutation that ablates Crb2 binding to γH2A does
not does not impair growth in rfc3-1 cells. (C) Elimination of Crb2 weakly impairs growth in rfc3-1 cells. (D)
Elimination of Brc1 strongly impairs growth in rfc3-1 cells. (E) The brc1-T672Amutation that ablates Brc1
binding to γH2A strongly impairs growth in rfc3-1 cells. (F) Increased percentage of cells having GFP-Brc1
foci in rfc3-1 cells incubated at 25°C. Arrows point to GFP-Brc1 foci. Error bars represent SEM from 3
experiments. (G) Eliminating Tel1 has little effect on the growth of rfc3-1 cells. (H) Eliminating Rad3 strongly
impairs growth of rfc3-1 cells.

doi:10.1371/journal.pgen.1005517.g003
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We next examined Brc1 and found that brc1Δ rfc3-1 cells grew poorly compared to either
single mutant (Fig 3D). We tested the brc1-T672Amutation that disrupts the γH2A binding
pocket in Brc1 [10] and found a strong negative genetic interaction with rfc3-1 (Fig 3E). These
results established the importance of Brc1 binding to γH2A in rfc3-1 cells.

Increased Brc1 foci in rfc3-1 cells
Our findings suggested that rfc3-1 cells experience replication difficulties that trigger formation
of γH2A and recruitment of Brc1 that is critical for survival. To further test this model we mon-
itored formation of green fluorescent protein (GFP)-Brc1 foci, which increases in response to
replication stress [10]. As predicted we detected a significant increase in GFP-Brc1 foci in rfc3-
1 cells incubated at 25°C (Fig 3F).

Hus1-independent activity of Rad3/ATR is crucial in rfc3-1 cells
Tel1/ATM and Rad3/ATR kinases create γH2A [7]. Eliminating Tel1 had no effect in rfc3-1
cells (Fig 3G), which is consistent with Tel1 acting specifically at DSBs and telomeres as
opposed replication forks [28,29]. In contrast, we detected a strong requirement for Rad3 in
rfc3-1 cells (Fig 3H), which supports evidence that Rad3 is critical for surviving replication
stress [30].

Rad3 forms γH2A at stalled replication forks [8]. The dispensability of Rad17 in rfc3-1 cells
suggested that Rad17-dependent loading of the Rad9-Hus1-Rad1 checkpoint clamp was not
required for phosphorylation of H2A by Rad3 at stalled forks. This result was surprising
because the Rad3 activator Cut5/Rad4 (TopBP1/Dpb11 ortholog) binds Rad9-Hus1-Rad1
[16,31]. We therefore investigated whether Rad9-Hus1-Rad1 regulates γH2A formation by
Rad3 in S-phase. First, we used a synchronous culture to establish that γH2A in cycling cells
occurs predominantly during S-phase (Fig 4A), confirming previous analyses performed by
chromatin immunoprecipitation [8]. The large reduction of γH2A in untreated (-IR) rad3Δ
cells confirmed that Rad3 is principally responsible for forming γH2A during S-phase (Fig 4B).
In contrast, the basal level of γH2A was maintained in hus1Δ cells, showing that Rad3 activity
towards histone H2A in S-phase does not require the checkpoint clamp (Fig 4B). Interestingly,
eliminating Tel1 nearly abolished the IR-induced increase of γH2A in hus1Δ cells, indicating
that Rad3 activity towards histone H2A does require Hus1 at DSBs.

We also examined the genetic requirements for γH2A formation in rfc3-1 cells grown at
25°C. In these assays the increase of γH2A in untreated rfc3-1 required Rad3 but not Hus1 (Fig
4C), which is consistent with Rad3 but not Rad17 being required in rfc3-1 cells (Figs 1B and
3H) Interestingly, IR induction of γH2A was largely abrogated in rfc3-1 tel1Δ cells, indicating
that phosphorylation of histone H2A by Rad3 at DSBs is decreased by rfc3-1 at 25°C, presum-
ably because of impaired loading of the Rad9-Hus1-Rad1 checkpoint clamp by Rad17-RFC.
Indeed, Rad3-dependent phosphorylation of Chk1 was severely impaired in rfc3-1 cells irradi-
ated at 25°C (Fig 4D), mirroring previous studies performed at 28°C [12].

To summarize, the crucial phosphorylation of histone H2A by Rad3 during S-phase in rfc3-
1 cells does not require the Rad9-Hus1-Rad1 checkpoint clamp, which explains why neither
Rad17 nor Rfc3 are required for Rad3 activity towards histone H2A in rfc3-1 cells.

Neither Cds1 nor Chk1 are required in rfc3-1 cells
Rad3 activates the checkpoint kinases Cds1/Chk2 and Chk1 by a mechanism that requires
loading Rad9-Hus1-Rad1 checkpoint clamp onto DNA by Rad17-RFC [32]. Chk1 activation
by Rad3 also requires Crb2. As Cds1 and Chk1 are amongst the most important and highly
conserved Rad3 substrates it was surprising that neither Rad17 nor Crb2 are required in rfc3-1
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cells. We confirmed that neither Cds1 nor Chk1 are required in rfc3-1 cells at 25°C (Fig 5A and
5B). The absence of a genetic interaction with cds1Δ is especially notable because Cds1 is cru-
cial for survival of hydroxyurea (HU) treatment, which stalls replication forks by inhibiting
ribonucleotide reductase. Indeed, our spot dilution assays showed that cds1Δ causes much
greater HU sensitivity than htaAQ or brc1Δ (Fig 5A). These data establish that very different
DNA damage responses are required for survival of RFC defects and dNTP starvation, with the
former requiring γH2A and the latter Cds1/Chk2 activation.

Brc1 does not have an important checkpoint dampening function
The Brc1 structural homolog Rtt107 in S. cerevisiae competes with the Crb2 homolog Rad9 for
binding γH2A to prevent hyper-activation of the checkpoint kinase Rad53 [33,34]. An

Fig 4. Hus1-independent phosphorylation of histone H2A by Rad3/ATR in rfc3-1 cells. (A) In cells
released from a cdc25-22 late G2 phase cell cycle arrest, formation of γH2A (shown as bars) closely
coincides with the increase in septation index (shown as line graph), which correlates with passage through
S-phase. γH2A values were normalized to total H2A. (B) Immunoblot analysis with anti-γH2A antisera
reveals that basal phosphorylation (-IR) of histone H2A by Rad3 does not depend on Hus1 (compare hus1Δ
to hus1Δ tel1Δ). However, the IR-caused increase in γH2A in hus1Δ cells is largely abolished in hus1Δ tel1Δ
cells, indicating that IR-induction of γH2A formation by Rad3 does require Hus1. Irradiated cells were
harvested 30 minutes after 90 Gy of IR treatments. Values shown in graph were normalized to the total H2A
signal. Error bars indicate standard error of the mean of 3 independent experiments. (C) The increase of
γH2A in untreated rfc3-1 cells does not depend on Hus1. (D) Rad3-dependent phosphorylation of Chk1 in
response to IR is defective in rfc3-1 cells.

doi:10.1371/journal.pgen.1005517.g004
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equivalent activity might explain why Brc1 binding to γH2A is critical in rfc3-1 cells. To test
whether Brc1 has an important checkpoint dampening function we explored the effects of pre-
venting Crb2 binding to γH2A in brc1Δ cells. We found that the crb2-K619Mmutation, which
prevents Crb2 binding to γH2A [26], did not suppress the CPT or methyl methanesulfonate
(MMS) sensitivity of brc1Δ cells (Fig 5C). Indeed, crb2-K619M increased CPT sensitivity in the
brc1Δ background. Similarly, the htaAQ genotype increased both CPT and MMS sensitivity in
brc1Δ cells (Fig 5C). These data suggest that Brc1 is unlikely to have an important checkpoint
dampening function in cells experiencing replication stress.

To investigate a potential anti-checkpoint activity of Brc1 in rfc3-1 cells we constructed a
brc1Δ rfc3-1 htaAQ strain. If Brc1 binding to γH2A is needed to dampen Crb2-dependent
checkpoint signaling we would expect htaAQ to suppress the SSL interactions between brc1Δ
and rfc3-1. We observed no suppression; in fact, colony size appeared to be slightly smaller in
brc1Δ rfc3-1 htaAQ cells compared to brc1Δ rfc3-1 (Fig 5D).

Taken together these data indicate that Brc1 does not have an important checkpoint damp-
ening function that could explain why brc1Δ cells are sensitive to replication stress.

Fig 5. Chk1 and Cds1/Chk2 are not required for growth in rfc3-1 cells, nor does Brc1 have an
important checkpoint dampening function. (A) In contrast to eliminating γH2A or Brc1, deletion of Cds1
has little effect on growth in rfc3-1 cells at 25°C. However, cds1Δ are much more sensitive to HU. (B)
Eliminating Chk1 has little effect on growth in rfc3-1 cells at 25°C. (C) Neither crb2-K619M nor htaAQ
suppress CPT or MMS sensitivity of brc1Δmutants, indicating that Brc1 does not have an important
checkpoint dampening function. (D) Elimination of γH2A does not suppress the poor growth of brc1Δ rfc3-1
cells.

doi:10.1371/journal.pgen.1005517.g005
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Homologous recombination repair of collapsed replication forks is
essential in rfc3-1 cells
Our data suggested that rfc3-1 causes defects in DNA replication that may lead to the collapse
of replication forks that are subsequently reestablished by homology directed repair (HDR) of
the broken forks [35,36]. To investigate this possibility we first examined the Mre11-R-
ad50-Nbs1 (MRN) protein complex, which directly binds DSBs where it associates with Ctp1
to initiate 5’-to-3’DNA end resection required for HDR [37,38]. Tetrad analysis revealed that
rfc3-1 mre11Δ cells are inviable at 25°C (Fig 6A).

Whereas MRN is required for HDR of all DSBs, Mus81-Eme1 endonuclease is specifically
required to resolve Holliday Junctions created during HDR of one-ended DSBs formed by rep-
lication fork breakage [35,39]. We found that Mus81 is essential in rfc3-1 cells germinated at
25°C, supporting the conclusion that the RFC defect in these cells leads to replication fork col-
lapse (Fig 6B).

Brc1 binding to γH2A suppresses catastrophic formation of ssDNA
Replication fork collapse is typically associated with nuclear foci formed by Rad52 HDR pro-
tein [40]. As predicted by our results, we detected a large increase in Rad52-yellow fluorescent
protein (YFP) foci in rfc3-1 cells grown at 25°C (Fig 7A). The rfc3-1 strain further differed in
having a significant percentage of cells with an unusually large and bright Rad52 focus that is
likely clusters of Rad52 foci. However, eliminating γH2A did not substantially alter the Rad52
foci pattern of rfc3-1 cells (Fig 7A).

We also monitored Ssb1 (aka Rad11), which is the largest subunit of Replication Protein A
(RPA), the 3-subunit ssDNA-binding protein complex essential for DNA replication and most
DNA repair mechanisms. RPA-green fluorescent protein (GFP) foci in rfc3-1 cells appeared
similar to wild type, indicating that in this situation Rad52 foci are better indicator of replica-
tion fork collapse. However, there was a large increase of RPA foci in rfc3-1 htaAQ cells (Fig
7B). Moreover, ~15% of the rfc3-1 htaAQ cells contained a very bright focus or cluster of RPA
foci, which was rarely observed in wild type, htaAQ or rfc3-1 cells. These results suggest Brc1

Fig 6. Mre11 andMus81 are essential in rfc3-1 cells. (A) Tetrad analysis reveals thatmre11Δ rfc3-1 cells
are inviable at 25°C. (B) Tetrad analysis reveals thatmus81Δ rfc3-1 cells are inviable at 25°C.

doi:10.1371/journal.pgen.1005517.g006
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binding to γH2A suppresses catastrophic formation of ssDNA at replication forks in rfc3-1
cells.

γH2A is critical in a DNA polymerase epsilon mutant
RFC loads the PCNA clamp onto DNA, which facilitates the processivity of leading strand
DNA replication through its interactions with DNA polymerase epsilon (Pol ε). We tested for
genetic interactions between htaAQ and the cdc20-M10 temperature sensitive mutation of Pol
ε [41]. At the intermediate permissive temperature of 33.5°C we detected an acute requirement
for γH2A in cdc20-M10 cells (Fig 8A), mirroring the negative genetic interactions between
htaAQ and rfc3-1 or rfc1-44 (Fig 1). These data indicate that a defect in tethering the leading

Fig 7. Loss of γH2A increases RPA foci in rfc3-1 cells. (A) In comparison to wild type or htaAQ cells, rfc3-
1 cells have many more nuclear Rad52 foci that often appear in clusters. However, eliminating γH2A had little
effect on Rad52 foci in rfc3-1 cells. Rad52-YFP foci were scored in live cells incubated at 25°C. Error bars
represent SEM from 3 experiments. Single asterisk (*) indicates statistically significant difference (p-value
<0.05) relative to wild type regular foci. Double asterisks (**) indicate statistically significant difference (p-
value <0.001) relative to wild type bright cluster. P-values calculated using two-tailed unpaired T-test. (B)
Eliminating γH2A in rfc3-1 cells causes a large increase in nuclear RPA foci that often appear clustered.
Ssb1-GFP was monitored in live cells incubated at 25°C. Arrows point to clusters of RPA foci. Error bars
represent SEM from 3 experiments. Asterisk (*) indicates statistically significant difference (p-value <0.05)
relative to corresponding measurements (regular foci or bright cluster) for wild type, htaAQ and rfc3-1. P-
values calculated using two-tailed unpaired T-test.

doi:10.1371/journal.pgen.1005517.g007
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strand DNA polymerase Pol ε at replication forks at least partially explains the requirement for
γH2A in rfc3-1 cells. Other deficiencies in rfc3-1 cells, such as reduced tethering of additional
DNA polymerases, might also be involved in creating the requirement for γH2A.

Fig 8. γH2A is critical in a DNA polymerase epsilonmutant. (A) Eliminating γH2A has a strong negative
genetic interaction with the temperature sensitive cdc20-M10mutation of DNA polymerase epsilon in cells
incubated at 33.5°C. (B) An RFC defect results in reduced loading of PCNA and poor coordination of MCM
DNA helicase and DNA polymerases. Exposed ssDNA bound by RPA recruits ATR (ATR-ATRIP/Rad3-Rad26)
that phosphorylates H2Awithout involving Rad17-RFC or the Rad9-Hus1-Rad1 checkpoint clamp. Brc1
binding to γH2A stabilizes the replisome at the replication fork. (C)Genetic interaction analyses showing that
exo1Δmutation does not rescue poor growth of rfc3-1 htaAQ strain. (D) Tetrad analyses showing synthetic
lethality between rfc3-1 andmcm2-P1. Spores were germinated at 25°C.

doi:10.1371/journal.pgen.1005517.g008
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Discussion
Phosphorylation of histone H2AX/H2A by ATM and ATR orthologs has long been known as a
ubiquitous response to DSBs and was more recently uncovered as a response to replication
stress, yet its physiological significance has remained unclear. The ATM/ATR-regulated check-
point effector kinases Cds1/Chk2 and Chk1 are generally more important in clastogen and
genotoxin sensitivity assays, as is Rad17 that is required for Cds1/Chk2 and Chk1 activation. In
the same assays the γH2A-binding proteins Crb2 and Brc1 appear to have more crucial func-
tions than γH2A itself [10,26]. The key discovery to emerge from these studies is that γH2A,
and specifically Brc1 binding to γH2A, is critical when RFC is defective. By contrast, neither
Cds1 nor Chk1 are required in this situation. Similarly, ablating the Rad17-dependent Rad9-
Hus1-Rad1 clamp loader causes acute genotoxin sensitivity but has little effect in rfc3-1 cells.
This complete reversal of DDR mutant sensitivities when comparing rfc3-1 to exogenous DNA
damaging agents and replication inhibitors is striking.

The picture that emerges from these studies is that most genotoxins fail to replicate the
effects of impairing RFC, which presumably reduces PCNA loading and DNA polymerase teth-
ering at the replication fork. This idea is supported by the requirement for γH2A when Pol ε is
partially impaired, although the genetic interactions involving rfc3-1 and cdc20-M10 are not
precisely identical [41]. If DNA polymerase activity is a rate-limiting step for DNA replication
under some physiological conditions our studies suggest that Brc1 binding to γH2A is critical
for protecting genome integrity in these situations. This model is consistent with increased
Rad52 foci in htaAQ and brc1Δ cells [10,11].

Our findings call to mind a study in which reduced levels of DNA polymerase alpha were
found to trigger chromosome translocations in budding yeast [42]. These translocations
involved HDR events between long terminal repeats (LTRs) of Ty retrotransposons elements,
which were proposed to be chromosome fragile sites. Another study found that LTRs are spe-
cifically enriched for γH2A during S-phase [9], as was also observed in fission yeast [8]. Our
studies suggest that besides marking DSBs arising at chromosome fragile sites, γH2A also
serves to stabilize replisomes at these sites and thereby prevent chromosome breakage, perhaps
by binding the Brc1 structural homolog known as Rtt107 in budding yeast [43,44].

The unusual RPA foci in rfc3-1 htaAQ cells suggest to us either catastrophic DNA
unwinding or massive resection of DSBs. Both events may occur but we favor the idea that
DNA unwinding uncoupled from DNA synthesis most likely explains the critical require-
ment for γH2A in RFC and Pol ε defective cells (Fig 8B). We favor this model because elimi-
nation of Exo1 exonuclease, which is primarily responsible for long-range resection in fission
yeast [37], does not suppress the poor growth of rfc3-1 htaAQ cells (Fig 8C). To the contrary,
the exo1Δmutation further impairs the growth of rfc3-1 htaAQ cells. This effect can be
explained by a requirement for Exo1 in rfc3-1 cells regardless of whether these cells are able
to form γH2A (Fig 8C). This genetic interaction might indicate that Exo1 contributes to
HDR of broken replication forks in rfc3-1 cells, although we note that exo1Δ cells are largely
insensitive to IR, CPT and MMS, all of which cause DNA damage that is repaired via HDR
[45,46].

The massive accumulation of RPA foci in rfc3-1 htaAQ cells calls to mind a recent study
with mammalian cells in which ATR was found to prevent global exhaustion of RPA to prevent
replication catastrophe [47]. In this study ATR was proposed to prevent RPA exhaustion by
restraining origin firing. Our studies suggest that stabilization of stalled replication forks may
also play a role in this process, perhaps involving formation of γH2AX. The requirement for
Mus81 in rfc3-1 cells suggests that Brc1 binding to γH2A does not completely prevent replica-
tion fork collapse. Brc1 binding to γH2A likely facilitates repair of broken replication forks,
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thereby compounding the requirement for γH2A in rfc3-1 cells. This proposal comports with
the evidence that htaAQmutants are sensitive to camptothecin [7,19]. We also note that post-
translational modifications of PCNA promote post-replication repair (PRR) of DNA lesions
[48,49]. Brc1 was proposed to function in conjunction with PRR proteins, including compo-
nents of the HDR machinery, as well as with multiple structure-specific nucleases [11,50,51].
Thus a defect in PRR might also contribute to the requirement for γH2A in rfc3-1 cells,
although it remains to be established whether Brc1 binding to γH2A promotes PRR.

If defective loading of PCNA leads to DNA polymerase uncoupling from MCMDNA heli-
case in rfc3-1 htaAQ cells it might be possible to suppress this defect by using a temperature
sensitive mutation to partially impair MCM activity. We attempted this experiment with the
mcm2-P1 (aka cdc19-P1) allele. Although we found that eliminating γH2A had no effect on the
growth ofmcm2-P1 cells at 25°C, combining htaAQ mcm2-P1 with rfc3-1 resulted in synthetic
lethality. In an independent experiment we confirmed thatmcm2-P1 rfc3-1 cells were inviable
at 25°C (Fig 8D).

ATM and ATR use γH2AX to effect chromatin-specific responses to DNA damage. Multi-
kilobase γH2AX domains have been detected in yeast and megabase domains in mammals [3].
Why are these responses so highly conserved? In fission yeast, coating chromatin with Crb2
likely serves to rapidly amplify and reliably maintain Chk1 activity during DSB repair [26].
These properties may be most critical when cells suffer a single DSB, which is the most com-
mon situation for endogenous sources of DSBs. The purpose of γH2A at stalled or damaged
replication forks is probably quite different. From the insights provided by the current study
we propose that mounting large-scale changes in chromatin by decorating it with Brc1 is well
suited for coordinating the activities of the replicative DNA helicase with leading and lagging
stand DNA polymerases (Fig 8B).

It remains unclear whether Brc1 activities are conserved with its structural homologs Rtt107
in budding yeast or PTIP in mammals [52,53]. Rtt107 binding to γH2A was most recently
shown to be important for assembling Slx4 signaling protein complexes behind damaged repli-
cation forks [54]. However, this signaling activity does appear to be conserved in fission yeast,
in which Slx4 function appears to solely involve forming an active structure-specific endonu-
clease with Slx1 [55,56]. Furthermore, the checkpoint dampening activity of Rtt107 [33,34]
does not appear to be conserved in fission yeast or at least is not detectably important in our
genetic assays (Fig 5). The function of PTIP, which shares the 6 BRCT domains arrangement
with Brc1 and Rtt107, the C-terminal pair of which bind γH2AX [57], is also a matter of sub-
stantial interest. Functional relationships of Brc1 or Rtt107 to PTIP are currently unobvious.
Recent studies suggest that PTIP functions with 53BP1 in inhibiting HDR [58–60]. Perhaps
Brc1, Rtt107 and PTIP all modulate DNA end resection with varying effects, although we note
the genetic interactions involving Exo1 do not support this idea for Brc1 (Fig 8C). Functional
similarities may emerge with new functional insights into this class of genome protection
proteins.

Materials and Methods

General methods
Standard genetic procedures and media for S. pombe were used as described [61]. Strains
expressing GFP-Brc1 were constructed by insertingMluI digested pREP41-GFP-Brc1 [10] into
the ars1 locus. For spot dilution assays log phase cultures were suspended at 0.4 OD600 and
serially diluted five-fold onto YES (yeast extract, glucose and supplements) agar plates. Cell
survival was determined after 5 days at 25°C, 3–4 days at 30°C and 2 days at temperatures over
30°C. Strains used in this study are listed in S1 Table.
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Immunoblot analysis
The γH2A immunoblots were performed using acid protein extraction to obtain histone-
enriched extracts [19] in Fig 2 or total cell extracts in Fig 4. Proteins were resolved by
SDSPAGE on 4–20% tris-glycine gels (Life Technologies). Blocking and blotting were per-
formed with Odyssey Blocking Buffer (Li-Cor) per manufacturer instructions and incubated
with a rabbit polyclonal phospho-specific anti-γH2A antibody (courtesy of C. Redon). Total
H2A was detected using polyclonal anti-H2A antibody 07–146 Millipore for Fig 2 or Active
Motif 39235 for Fig 4. Blots were incubated with goat anti-rabbit antibody conjugated to an
infrared dye (Li-Cor 827–11081) and scanned and quantified with Odyssey Infrared Imaging
System (Li-Cor) with an intensity of 4.5, subtracting median (top/bottom) background.

Microscopy
Cells were photographed using a Nikon Eclipse E800 microscope equipped with a Photo-
metrics Quantix CCD camera and IPlab Spectrum software. Rad52-YFP and Ssb1-GFP were
expressed from endogenous loci. Ssb1 (aka Rad11) is the largest subunit of RPA. Rad52-YFP
and Ssb1-GFP experiments used cells grown in YES at 25°C. GFP-Brc1 was expressed from the
nmt1 promoter using EMM2 (Edinburgh Minimal Media) without thiamine. At least 300
nuclei were scored in three independent experiments. All microscopy was conducted with live
(unfixed) cells.

Supporting Information
S1 Table. Strains used in this study. All strains are leu1-32 ura4-D18 unless otherwise noted.
Strains listed as his3may contain his3-D1. his7may contain his7-336.
(DOCX)
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