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Abstract
This work focuses on one component of a larger research effort to develop a simulation tool

to model populations of flowing cells. Specifically, in this study a local model of the biochemi-

cal interactions between circulating melanoma tumor cells (TC) and substrate adherent poly-

morphonuclear neutrophils (PMN) is developed. This model provides realistic three-

dimensional distributions of bond formation and attendant attraction and repulsion forces

that are consistent with the time dependent Computational Fluid Dynamics (CFD) framework

of the full systemmodel which accounts local pressure, shear and repulsion forces. The

resulting full dynamics model enables exploration of TC adhesion to adherent PMNs, which

is a known participating mechanism in melanoma cell metastasis. The model defines the

adhesion molecules present on the TC and PMN cell surfaces, and calculates their interac-

tions as the melanoma cell flows past the PMN. Biochemical rates of reactions between indi-

vidual molecules are determined based on their local properties. The melanoma cell in the

model expresses ICAM-1 molecules on its surface, and the PMN expresses the β-2 integrins

LFA-1 and Mac-1. In this work the PMN is fixed to the substrate and is assumed fully rigid

and of a prescribed shear-rate dependent shape obtained frommicro-PIV experiments. The

melanoma cell is transported with full six-degrees-of-freedom dynamics. Adhesion models,

which represent the ability of molecules to bond and adhere the cells to each other, and

repulsion models, which represent the various physical mechanisms of cellular repulsion,

are incorporated with the CFD solver. All models are general enough to allow for future

extensions, including arbitrary adhesion molecule types, and the ability to redefine the values

of parameters to represent various cell types. The model presented in this study will be part

of a clinical tool for development of personalized medical treatment programs.

Introduction
Polymorphonuclear neutrophils (PMNs) comprise 50–70% of all circulating white blood cells,
or leukocytes [1]. Studies have also shown that inflammatory signals have enhanced the ability
of circulating melanoma tumor cells to extravasate [2]. Under some circumstances, PMNs will
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actually enhance metastatic capabilities, where in most cases they are cytotoxic to tumor cells
[3]. The correlation between inflammatory signals and increased melanoma cell metastasis
implies that the circulating melanoma cells are able to take advantage of the immune system
and use white blood cells to assist their extravasation mechanisms. In a study by Dong, et al, it
was determined that, under flow conditions and in the absence of PMNs, metastatic melanoma
cells were no more likely than non-metastatic melanocytes to bind to the endothelium [1].
With the addition of PMN, melanoma extravasation increased significantly. This process was
dependent on both the molecular interactions between the melanoma cells with the PMNs,
and the PMNs with the endothelial cells. Both melanoma cells and endothelial cells express
ICAM-1 (intercellular adhesion molecule) on their surfaces. PMNs express β-2 integrins,
including Mac-1 and LFA-1. Fig 1 shows a simplified representation of the adhesion molecule
expressions. Interactions between LFA-1 and ICAM-1 aid in the initial capture of a white
blood cell to the endothelium, and interactions between Mac-1 and ICAM-1 aid in stabilizing
the adhesion even in shear-flow conditions. Blocking ICAM-1 expression on the melanoma
cells and separately on the endothelial cells both resulted in a significant decrease in the num-
ber of melanoma cell extravasations.

In recent years, computational models have matured to where they can be used to explore
the complex multi-scale (molecular-cell scale) and multi-physics (biochemistry, fluid dynam-
ics, structural dynamics) of the tumor micro-environment. Much of the breadth of physio-
chemical modeling developed for multi-cell biological systems in general is relevant to the
present work. Several groups have focused, in particular, on cell deformation and adhesion
mechanics [4–14].

In the present work we propose generalized repulsion force and adhesion models to accom-
modate the local shape of the membrane by accounting for the influence of all discrete mem-
brane faces on all others.

Fig 1. Cartoon of adhesionmolecule expression. β-2 integrins expressed on the PMN can interact with
ICAM-1 expressed on both the melanoma cell and endothelial cells. The PMN and endothelium can also
interact through selectins.

doi:10.1371/journal.pone.0136926.g001
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This extends our earlier work [10, 15], and that of others [4] where cell-cell proximity was
taken as a single scalar for each cell pair. This generalization is particularly important for bond
adhesion kinetics since it allows for bonds to be formed between any two faces, and is inher-
ently consistent with the fully generalized conformal CFD meshing approach adopted, and the
ability to model the temporal evolution of many bond pairs in a given cellular interaction. This
work also builds upon the Adhesive Dynamics method developed by the Hammer, et al [5, 11,
13, 14]. In this paper, the Adhesive Dynamics algorithm is implemented and tested in a fully
generalized, three-dimensional, finite-volume, multiphase CFD solver. This implementation
allows local system parameters to be used in solving and coupling the biochemical and fluid
interactions instead of global, bulk, or average parameters. Such a platform also allows this
work to be expanded upon in a number of ways. First, coupling the biochemistry with CFD
and 6DOF motion will allow for the exploration of various cellular adhesion and aggregate for-
mation scenarios. Second, structural mechanics can be reintroduced, as per our earlier work
[10], either using an elastic membrane approach or by implementation of a unified continuum
mechanics formulation [16]. Third, the system to be solved can be expanded to contain an arbi-
trary number of arbitrarily shaped bodies. The only limitation on the allowable number of bod-
ies would be the amount of available computational resources. The generalized biochemical
model presented in this work can be implemented into any CFD framework (such as those
developed by Hoskins [10, 15], Jadheev [17], and others [4]) for increased robustness over cur-
rently used biochemical models.

In this study, we model a tumor cell aggregation with a white blood cell in a near wall region
under flow conditions that we dealt with in many of our earlier experimental and computa-
tional studies [1, 2, 10, 15, 18]. The collision and adhesion interactions between a PMN and
melanoma cell are modelled. Here we have used a fixed rigid representation for the PMN, cor-
responding to an observed shape for the appropriate flow shear rate [10, 18]. Although our ear-
lier work does incorporate a complex nucleus+cytoplasm+membrane PMN structural model
[10, 15], the focus of this work is on the generalized interactional modeling between cells in a
flowing system, and the demonstration of these models are facilitated by using fixed configura-
tions. A melanoma cell is able to approach and interact with a PMN under full six degree-of-
freedom (6DOF) motion. Selectins have been neglected in the present model in order to focus
on the mechanics of CAM-1 adhesion.

Commercial grid generation software has been used to create a geometric model and dis-
crete volume mesh of the experimental system, including the TC, PMN, and near wall region
of the flow chamber. An in-house developed CFD code was instrumented with the adhesion
and repulsion force models in a manner consistent with the underlying Navier-Stokes equation
discretization. Specifically, these models are applied locally on discrete cell surface faces, where
flow forces due to pressure and shear are also applied.

The paper is organized as follows: First, the models for adhesion and repulsion are presented
in some detail, with emphasis on their local, three-dimensional, and time-dependent nature.
The models are then verified for their consistency in the context of a generalized discrete CFD
model. Lastly, several 3D transient simulations of TC-PMN interactions using the proposed
localized biochemical model are presented and discussed.

Methods
The biochemistry routines contain both an adhesion model, representing the ability of mole-
cules to bond and adhere the cells to each other, and a repulsion model, which represents the
microvilli pushing the cells apart and other nonspecific repulsion phenomena [19–21]. These
routines make it possible to run computational fluid dynamics software that incorporates
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three-dimensional interactions of biological cells [22]. For convenience, a brief description of
all symbols used throughout this work are provided in Table 1.

Repulsion
A repulsion force, which is modeled as a non-linear spring force, is applied to the surface of
each cell as the melanoma cell approaches the white blood cell to represent several of the repul-
sive forces observed in the system. Cellular repulsion may be due to a variety of reasons includ-
ing microvilli pushing, electrostatic repulsion, and steric stabilization [19–21]. As the cells
approach within a defined critical distance, they will experience a repulsive force defined as

Frep ¼ ad þ bd3 ð1Þ

where a and b are spring constants determined by empirical observations and d is the separa-
tion distance between the cells. The values of these two parameters have been initiated to a =
−110 × 10−6 N/m and b = 600 × 106 N/m3 to maintain a cell surface separation of

Table 1. List of Symbols.

6DOF Six degrees of freedom

AL Surface contact area containing ligands

a,b Constants

CFD Computational Fluid Dynamics

d Separation distance between cell surfaces

Frep Repulsion force acting on cell

kb Boltzmann’s constant

k0
on Rate of bond formation under equilibrium conditions

kon Rate of bond formation

k0
off Rate of bond breakage under equilibrium conditions

koff Rate of bond breakage

nL surface density of ligands

P Probability of bond formation or breakage

PMN Polymorphonuclear neutrophils

s Bond spring constant

sts Bond transition state spring constant

T Temperature

t Time

� Critical separation distance

λ Equilibrium spring length

m Mass

I Principal moment of Inertia

xi i-th spatial coordinate

θi i-th component of angular displacement vector

ri i-th component of radius vector

n̂i Unit normal vector of i-th discretized face

êi Unit vector along line of action of i-th bond

δij Kronecker delta

τij Viscous shear along the i-th face acting in the direction of the j-th spatial coordinate

Fi Force along i-th spatial coordinate

Ti Torque applied to the centroid about i-th spatial coordinate

p Pressure

doi:10.1371/journal.pone.0136926.t001
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approximately 0.3 μm; however, these values must be calibrated to match empirical findings
through future experimentation. The critical distance used to determine when to apply the
repulsive force is based on the average length of microvilli, which is 0.5 μm on a neutrophil [5].
This force is then calculated separately for each individual face of the computational grid lying
on the cell membrane. The faces that are within the near-contact region will experience a much
greater repulsion force than faces on the trailing edges, which do not significantly interact with
the opposite cell.

To calculate repulsion, a simple function first sweeps every face throughout the grid. The
mesh faces that correspond to a cell surface are then identified. The coordinates are then
recorded for every face on a cell surface. There are now six newly defined lists containing the
centroid location of every face on the melanoma cell and PMN, respectively.

Next, a distance calculation is performed between the centroids of every possible combina-
tion of faces from cell 1 and cell 2. For a given pair of faces, the distance is calculated using the
standard distance equation:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x1Þ2 þ ðy2 � y1Þ2 þ ðz2 � z1Þ2

q
ð2Þ

The critical distance represents the sum of the lengths of microvilli from the two cell types.
If the distance has been calculated between two particular faces and those faces are separated
by a distance greater than the critical distance, the routine moves on to another pair of faces,
taking no further action. If two faces have approached each other within the critical distance,
the non-linear spring force defined by Eq 1 will be imposed, acting in the direction opposite to
a vector connecting their centroids. For this simulation, the critical distance is initialized as � =
1.2 μm, but must be experimentally confirmed or modified.

This force is then split into its spatial components, and the components are summed across
each face of the melanoma cell for the total repulsive force acting on it from all faces on the
PMN within the critical distance. A total sum is also calculated, therefore the six bulk compo-
nents of force and moment acting on the TC are available to the 6DOF solver. To couple the
repulsion model with the fluid mechanics, the forces due to repulsion are treated as body forces
acting on the bodies of interest in the flow field. Therefore, the repulsion forces will induce
changes in the bodies’motion, as well as the fluid flow field.

Adhesion
Based on the second law of thermodynamics and equilibrium conditions for bound and
unbound molecules, the association rate, kon, and dissociation rate, koff, of β-2 integrins binding
to ICAM-1 are defined as [23, 24]

kon ¼ k0onnLALexp
�stsðd � lÞ2

2kbT

� �
ð3Þ

koff ¼ k0off exp
ðs� stsÞðd � lÞ2

2kbT

� �
ð4Þ

A localized bond formation probability is calculated for each adhesion molecule on the can-
cer cell. For the first iteration of the simulation, the biochemistry routine will first sweep
through all of the faces in the grid, and save lists containing the centroid coordinates and sur-
face area of the faces on the cancer cell and PMN, separately. It will then calculate the distance
from each face on the cancer cell to every face on the PMN. If this distance between two partic-
ular faces is less than twice the critical distance λ[25], the local rate of bond formation, kon, of
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the adhesion molecules between those on the cancer cell face to those on the PMN face will be
calculated. In calculating the local kon, AL is the area of the PMN face, nL is the number density
of unbound molecules on that face only, and d is the local distance that has just been calculated.
In this model, we assume that the adhesion molecules are uniformly distributed across the cell
surface. We also use the assumption from Dembo et al, 1988, that the molecules are fixed
within the plane of the cell membrane, and not able to diffuse laterally throughout the mem-
brane [26]. Per Simon and Green, 2005, we can assume that our time scales are small enough
to ignore any cell-mediated changes in molecule expression [27]. Since each molecule has a
much smaller area of potential bond formation, this local kon must be corrected by some factor
such that the average local kon and the kon computed using the accepted global method are the
same value. To allow for this, after calculating the local value of kon for all of our cancer cell
faces, we will multiply each local kon by (global kon)/(average local kon).

kon;global ¼ ½
X
faces

ðnLALÞ�k0onexp
�stsðdcentroid � lÞ2

2kbT

� �
ð5Þ

kon;average ¼

X
faces

kon

number of faces

ð6Þ

kon;corrected ¼ kon
kon;global
kon;average

ð7Þ

where dcentroid is the distance between the centroids of the two cells. This correction adjusts the
model for use on discretized surfaces.

For every non-zero value of kon, probability of bond formation is calculated using [28]:

P ¼ 1� expð�konDtÞ ð8Þ

A random number between 0 and 1 is then generated, with a bond being formed if the value of
the random number is less than P. The random number generator makes this model probabi-
listic. If run multiple times, the model should yield similar but not identical results. This formu-
lation was chosen to account for the inherent randomness of an actual biological system and
our inability to deterministically define the behaviors of the molecules with absolute certainty.
Pertinent information about the formed bond (the types of molecules, and face information for
both the cancer cell face and PMN face that have been bonded) will be recorded.

Once all the potential bonds have been tested for bond formation, forces from each existing
bond will be calculated. This force calculation models the bonded molecules as linear springs
[5, 15], using:

Fb ¼ sðd � lÞ ð9Þ

where the force acts along the vector connecting the centroids of the two bonded faces. The
spatial components of each bond force will be calculated, and the total force and torque com-
ponents will be output to the 6DOF routine. This routine will consider all molecules at every
time step by repeating for each type of adhesion molecule on the cancer cell. The list containing
information on existing bonds will be written out to a file at the end of the routine. As with
repulsion, the forces due to the biochemical adhesion are treated as body forces acting on the
bodies of interest; thus, the force will have a measurable effect on body motion and the sur-
rounding fluid flow field.
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For every subsequent time step, the routine will first read in the list of existing bonds, and
calculate the probability of each of those bonds breaking, based on the new positions of the
bonded faces. Since koff always relates to an individual bond and the length of that bond only,
the existing calculation can be used [15]:

koff ¼ k0off exp
ðs� stsÞðd � lÞ2

2kbT

� �
ð10Þ

where s is the linear spring constant of the bond, used to calculate bond force, and k0off is the

rate of bond breakage under equilibrium conditions. The same probability model is used as for
bond formation, and a random number generator determines whether a bond breaks or
remains. Bonds that do not break (i.e., the random number generated was greater than P of the
bond breaking) are re-saved to the list of existing bonds. From here, the routine repeats as pre-
viously described, with kon calculated for all remaining unbound cancer cell adhesion mole-
cules. It is important to note that bond affinity may be adjusted by varying the values of s and

sts, thus changing dissociation constant (Kdissociation ¼ koff
kon
). This ability to vary Kd is beneficial as

bond affinities can be adjusted as a way of modeling local or global changes in blood chemistry.

Physics Coupling
In an effort to model cell-cell interactions, various physics acting on the system must be mod-
eled and coupled. The coupling allows for the sharing of information between the component
physical systems, allowing for the resolution of complex interactions of these physical systems.

In the present work, the physics of interest are fluid dynamics, biochemical interactions,
and rigid body dynamics. Due to the quasi-steady nature of this problem (as discussed in [10,
15, 29]) the rigid body motion was chosen as the coupling mechanism of these dynamic sys-
tems [29].

Rigid body dynamics can be described as an extension of Newton’s second law of motion,

d2xi
dt2

¼ Fi

m
ð11Þ

d2yi
dt2

¼ Ti

I
ð12Þ

where xi is the linear displacement vector in the ith direction, θi is the angular displacement vec-
tor about an axis parallel to the ith principal axis and passing through the body’s centroid, Fi is
the sum of all forces applied at the centroid in the ith direction, Ti is the torque applied to the
centroid about an axis parallel to the ith principal axis and passing through the body’s centroid,
m is the mass of the body, and I is the principal moment of inertia corresponding to the ith

principal axis.
Once the sum of forces and torques acting on a body have been computed, Eqs 11 and 12

can be used to compute the motion of the body. The computed motion is then used to update
the position and velocity of the body and update the CFD solver’s boundary conditions. It
must be noted that, in the present work, the PMN is assumed to be rigid and fixed to the sub-
strate. Hence, the sum of all forces and torques acting on the PMN are defined to be identically
zero, respectively. Additionally, the TC is treated as a rigid sphere with constant and uniform
density, allowing for mass and principal moment of inertia to be found using known geometric
properties.
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For the TC-PMN interaction problem, the motion of the melanoma cell is caused by the
forces due to hydrodynamics and the forces of the biochemical interactions. Therefore, the
forces due to these physical systems must be computed.

In the context of a discretized surface, the forces and torques due to hydrodynamics acting
on a body, given the solution to the flow field, can be computed as

Ffluid ¼
R
A½ð�pdij þ tijÞn̂j�dA ð13Þ

Tfluid ¼
R
Afrfluid � ½ð�pdij þ tijÞn̂j�gdA ð14Þ

where n̂j is the unit normal of the jth face on the body, rfluid is the radius vector from face j to

the centroid of the body, and δij is the Kronecker delta.
Similarly, the forces and torques due to the biochemical adhesion can be found in the con-

text of a discretized surface. Approximating bonds to behave as Hookean springs allows the
forces and torques action on the body to be expressed as

fbond ¼ sðd � lÞêj ð15Þ

Fbond ¼
X
bonds

½ðfbond � n̂iÞn̂i� ð16Þ

Tbond ¼
X
bonds

frbond � ½ðfbond � n̂iÞn̂i�g ð17Þ

where s is the spring constant, d is the distance between the two molecules, n̂i is the unit normal
along the ith coordinate axis, rbond is the radius vector from face containing the jth bond to the
centroid of the body, and êj is the unit normal in the along the line of action of the jth bond.

Lastly, the forces and torques due to the cellular repulsion must be computed. Using Eq 1,
we can express the repulsion as

frep ¼ ½ad þ bd3�ê ð18Þ

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x1Þ2 þ ðy2 � y1Þ2 þ ðz2 � z1Þ2

q
ð19Þ

Frep ¼
X
faces

frep ð20Þ

Trep ¼
X
faces

frrep � frepg ð21Þ

where a and b are spring constants representing the forces due to the various repulsive phe-
nomena previously mentioned, d is the distance function evaluated between the two faces, rrep
is the radius vector from a computational face to the centroid of the its body, and ê is the unit
normal vector along the line of action between the two computational faces. For the TC-PMN
cell pairs being simulated in this paper, the spring constants have been set to a =
−110 × 10−6N/m and b = 600 × 106N/m3 to maintain a minimum separation of 0.3 μm. In this
work, the repulsive force is calculated and applied at separation distances less than � = 1.2μm.
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Therefore, the total sum of forces and torques acting at the body centroid are computed as

F ¼ Ffluid þ Fbonds þ Frep ð22Þ

T ¼ Tfluid þ Tbonds þ Trep ð23Þ

These vectors can then be split into components and used to solve Eqs 11 and 12.

Computational Verification
MATLAB codes of the adhesion calculations were created during the development of the adhe-
sion model. MATLAB was used before the initial implementation of the adhesion model to
simulate the intended calculations without the presence of a mesh or fluid. This was used to
ensure the continuity of variable definitions, initializations and agreements. MATLAB was
later used to isolate the activity of the adhesion model and verify proper behavior within
NPHASE, an in-house developed CFD code used in previous work [10].

To test the ability of the adhesion model to calculate distances between faces, two lists, one
representing each cell, were created containing eight centroid locations for parallel rectangular
planar surfaces, as shown in Fig 2. Based on the molecule density and the face area, the code
calculated the number of molecules that would be on each face. It then calculated the distance
between every possible pair of faces, and generated an 8x8 matrix of distance values. For any
distance less than the critical adhesion distance, �, a value of kon was calculated as well. The val-
ues of kon are also saved in an 8x8 matrix, and if the two faces corresponding to a position in
this matrix are at a greater distance from each other than the critical adhesion distance, that kon
value is saved as zero. Every time a non-zero value for kon is calculated, it is added to a sum of
all kon values calculated, so that the average can be compared to a “global” contact area wide
value for kon. The ratio of the average local kon and the contact area global kon is used to correct
each local value, so that the global value becomes the average local value.

The next step of building the MATLAB model was to generate bonds. Rather than using the
probability function with a random number generator, this phase of the model was meant to
verify what molecules were being allowed to bond. Therefore, if a value of kon was calculated
(that is, if the two faces were within the critical adhesion distance from each other), the proba-
bility of bond formation was set as P = 1, or in other words, there is a 100% chance that a bond
will form for every available molecule on that face. This was done in order to determine
whether the calculated number of molecules per face was actually limiting the number of

Fig 2. Simplified computational mesh used for model validation. This simplified version of a mesh was
used to run the Adhesion model through MATLAB without requiring the input of the detailed geometric mesh
used by NPHASE.

doi:10.1371/journal.pone.0136926.g002
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bonds that could form. The initial formulation of the adhesion model allowed the molecules on
the PMN to be unlimited, and the number of molecules would impact the rate of bond forma-
tion but would not prevent more bonds forming than there were molecules available. To cor-
rect this, a new list was created to keep track of the number of unbound molecules on the PMN
faces, and this value was used to modify the kon value of ICAM-1 as more bonds were formed.

The same issue needed to be addressed on the melanoma cell. Since the PMN is currently
allowed to express two adhesion molecules (LFA-1 and Mac-1), the algorithm must ensure that
any individual molecule on the melanoma cell would form multiple bonds at a single point in
time. Based on the current formulation of the routine, including the modification to the PMN
adhesion molecules made in the previous step, every molecule on either cell will be used no
more than once per molecule-type pair. Because ICAM-1 molecules are considered twice, and
given the ability to interact with either LFA-1 or Mac-1, each one of them had the ability to
form up to two bonds.

To address this issue, the entire routine was encompassed within two overall loops, where
previously there had been one. When the routine was first built, a loop with one iteration per
molecule-pair-type controlled the entire adhesion model and the biochemistry calculations
were repeated for the possible molecule pairings. In this simulation, there were two iterations
of the loop, one for ICAM-1 to LFA-1 bonding and one for ICAM-1 to Mac-1 bonding. There
will now be two loops, one that has an iteration for every molecule on the tumor cell (in this
case, there is only one, but the model needs to be robust enough to accommodate for a different
cell type that is defined as having multiple relevant adhesion molecules), and one that has an
iteration for every molecule on the PMN (in this case, there are two).

The previous step laid the groundwork for the model to accommodate for a tumor cell with
any number of molecule types on the surface, rather than the current model, which has only one.
However, if a second molecule type were present on the tumor cell, it would allow for the same
issue of double-counting molecules that was just corrected for the PMN adhesion molecules.

To correct this problem, and complete the robustness of the routine to be able to accurately
calculate the interactions between any number of molecule types, the lists that were already
defined to track available molecules on each face were modified to contain two values. Two
separate indexes, one representing the face on the cell surface (as before) and one representing
the molecule type, determine the position within the 2-dimensional list where information
regarding available molecules is stored. Every time a bond forms, one available molecule is sub-
tracted from each of the involved faces. With these 2-dimensional lists, controlled by the over-
all loops of the routine, the information regarding unbound molecules will remain saved
throughout all iterations of molecule types and face references.

Based on the existing values for parameters, cell surfaces will never get close enough for
bonds to form. The length of microvilli, which dictates how close cell surfaces can approach
each other before being inhibited by repulsion forces, is orders of magnitude greater than the
length of adhesion molecules, which dictates how close cell surfaces must approach each other
before bonding will be considered. To correct for this influence and allow for the propagation of
bond formation between the two cells, the critical adhesion distance is modified to be the actual
critical adhesion distance plus the critical repulsion distance. This formulation assumes that all
adhesion molecules at all locations across the cell surface are located at the fully-extended tips of
microvilli. Experimental verification will be required to determine whether this formulation,
although physically inaccurate, is representative of the actual behavior of adhesion molecules.
Otherwise, some other modification may be required to allow for binding between the two cells.
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Results
In this study, we model the collision and adhesion interactions between a PMN and melanoma
cell in the context of fully 3D CFD simulations. In this section, we discuss results obtained
from implementing the proposed models into a 3D CFD solver using representative geometries
of PMN and melanoma cells [18].

Model Problem and Computational Implementation
As mentioned earlier, this study models a tumor cell aggregation with a white blood cell in a
near wall region under specified flow conditions. In a general sense, this problem is approached
as two rigid bodies in a flow field. In this approach, the no-slip condition on the surface of
these rigid bodies impose boundary conditions on the flow problem. The no-slip condition on
the bodies’ surfaces, along with the inflow, outflow, and domain wall boundary conditions
allow for a problem well-suited to be solved using CFD tools. Using these boundary conditions,
the steady, incompressible Navier-Stokes and continuity equations governing the flow system
are solved using NPHASE-PSU, an in-house developed finite-volume CFD code using a segre-
gated pressure based methodology [30].

The nature of the localized biochemisty model proposed in this work allows the model to be
implemented as a subroutine within NPHASE-PSU, replacing the bulk biochemistry model
used in our previous work [10]. Whereas the bulk biochemistry model uses global parameters
to determine the probability of bond formation and breakage between two bodies of interest,
the proposed model computes probability of bond formation and breakage for every possible
bond using local parameters and applies an appropriate correction factor to ensure the results
are not dependent on the computational setup. The biochemistry equations are solved once the
flow field has been obtained, which allows for the exploitation of the existing data structures
used for the CFD solution procedure. Once the flow and biochemistry equations have been
solved, it is possible to compute the values of Fi,fluid, Fi,bonds, Fi,rep, Ti,fluid, Ti,bonds, and Ti,rep.

It must also be noted that, while this work is focused on the described model problem, the
generalized biochemistry model presented can be implemented in any computational tool used
to model biochemical interactions of neighboring bodies. Another system where this general-
ized biochemistry problem may be appropriate is selectin-mediated leukocyte rolling as

Table 2. Simulation Initial Parameters.

Parameter Value

Domain Size [μm]:

X 60

Y 32

Z 42

Tumor Cell Centroid [μm]:

X 20

Y 10

Z 21

PMN Centroid [μm]:

X 30

Y 2.5

Z 21

Timesteps 100

doi:10.1371/journal.pone.0136926.t002
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presented by Jadav, et al [17]. In the leukocyte rolling system, our generalized biochemistry
model would compute probabilities of bond formation for every bond physically possible, as
well as computing the forces due to various repulsive phenomena. This capability would allow
the tool in [17] to not only model each individual bond, but also account for the repulsive
nature of cellular interactions.

Repulsion
The addition of the repulsion force allows for the melanoma cell to flow smoothly when near
the PMN. By modeling the cells as smooth rigid bodies, the simulation is not able to resolve the
repulsive effects of the microvilli on the cell surfaces. Without the imposed repulsion force, the
cells become non-physically close. As the cells collide, infinitesimally small time steps are
required to resolve the hydrodynamic forces in the near-collision region of the flow. These
small time steps severely increase simulation runtime, while a non-physical collision invali-
dates the results.

For sake of direct comparison, two simulations were run to observe the effects of the repul-
sion force. The two simulations were initialized with the same input parameters, found in
Table 2. In both cases the melanoma cell was intentionally initialized in close vicinity of the
white blood cell, so that the effects of the repulsion force would have immediate impact. The

Fig 3. Comparison of CFD results using same initial parameters, with and without repulsion. (a-c)
show results for the CFD simulation without the cellular repulsion. Without repulsion, the bodies can collide
and cause the CFD solver to crash. When a collision occurs, as shown in (c), the CFDmay produce non-
physical results or be unable to reach a converged solution. (d-f) show results for CFD simulation with cellular
repulsion activated. In this case, the bodies do not collide and the simulation continues to advance in time.
Note: results are 2D cross-sections of fully 3D simulations. Flow from left to right. Contours are normalized
velocity magnitude (blue = 0, red = 1). PMN is colored in black and melanoma cell is colored in blue.

doi:10.1371/journal.pone.0136926.g003
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first case was run with only hydrodynamic forces affecting cell trajectory. As shown in Fig 3c,
the melanoma cell in the first case collides into the PMN and remains there for the duration of
the simulation. The second case uses both hydrodynamic and repulsion forces in the 6DOF
motion computation. Fig 3(d-f) shows the repulsion model prevents the bodies from colliding.
Fig 4 shows the melanoma cell in this case having a smooth trajectory over and away from the
PMN, thus ensuring the repulsion model captures the repulsive effects of the true cell surface
geometry. The trajectories shown in 4 are calculated using the 6DOF motion algorithm
described in [29].

Adhesion
By initializing the tumor cell in close proximity to the neutrophil, it is possible to verify bond
formation without running a full CFD simulation, and only considering a single instance in
time. By saving the locations of all pairs of bound faces, Fig 5 was generated. In this simulation,
the case was initialized to the values found in Tables 2, 3, and 4.

To ensure the results of the biochemical adhesion model were not dependent on the CFD
mesh resolution, the CFD simulation was run for one instance in time with identical boundary
conditions but differing mesh resolutions; a coarse mesh with a maximum element size of 1.5
μm and a fine mesh with a maximum element size of 0.5 μmwere used to for the mesh depen-
dency analysis.

The simulation that generated the bond distribution seen in Fig 6 used a tumor cell discre-
tized with the fine mesh parameters. Every blue circle in the figure represents the centroid of a
tumor cell mesh face. A total of 96 bonds were generated between the two cells. To verify
whether bonding is dependent on the mesh sizing, the simulation was rerun using the coarse
mesh as shown in Fig 7. Although there are fewer pairs of faces involved in the bond calcula-
tions, the subgrid biochemistry model accounted for this difference and yielded a total of 97

Fig 4. Trajectories of melanoma cell from CFD simulation, with and without repulsion. The results from the simulation shown in Fig 3 is post-processed
to extract the centroid location of the melanoma cell throughout the simulation. That data was used to create a trajectory for each of the two cases. The case
without repulsion (solid line) has a short path due to the collision with the PMN cell. The case with repulsion activated (dashed line) shows the body moving
over and pass the PMN body. In this particular simulation, the motion of the centroid is planar (z = constant).

doi:10.1371/journal.pone.0136926.g004
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bonds were formed. It can be assumed that the slight variation is due to the stochastic nature of
the adhesion routine.

Fig 5. Bond formation between nearby cells using the fine computational mesh. The blue figure is a 3D point cloud of the fine computational mesh used
to describe the surface of the melanoma cell. Each blue circle represents the centroid of a discretized mesh face. Similarly, the red figure is a 3D point cloud
of the fine computational mesh used to describe the surface of the PMN. The lines connecting the circles represents bonds that have formed and connect the
two faces on which the involved adhesion molecules reside.

doi:10.1371/journal.pone.0136926.g005

Table 3. Adhesion Molecule Surface Density.

Molecule Surface Density Reference

Melanoma Cell: ICAM-1 13 x 1012 molecules / m2 Simon and Green, 2005 [27]

PMN: LFA-1 45 x 1012 molecules / m2 Simon and Green, 2005 [27]

Mac-1 5 x 1012 molecules / m2 Simon and Green, 2005 [27]

doi:10.1371/journal.pone.0136926.t003
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Table 4. Adhesion Parameters.

LFA-1 to ICAM-1 Mac-1 to ICAM-1 Reference

kon 3000 1/Ms 3000 1/Ms Hoskins, 2008 [15]

koff 0.3 1/s 0.29 1/s Hoskins, 2008 [15]

s 2 × 10−3 N/m 2 × 10−3 N/m Hammer and Apte, 1992 [5]

sts 1 × 10−3 N/m 1 × 10−3 N/m Hammer and Apte, 1992 [5]

λ 0.05 μm 0.05 μm Springer, 1990 [25]

doi:10.1371/journal.pone.0136926.t004

Fig 6. Zoomed view of bond formation using the fine computational mesh. This is a zoomed view of the bond formation and 3D point clouds of the PMN
and melanoma cell using the fine mesh (shown in Fig 5). A total of 96 bonds were formed and are shown. Note: multiple bonds may occur between the same
face pairs.

doi:10.1371/journal.pone.0136926.g006
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Discussion

Repulsion
As previously stated, there are three parameters within this model that have been assigned val-
ues that need verification. Experimental data should be provided to confirm the values of a, b
and �.

Because the cell cannot currently deform, forces that actually would be acting on a local area
of the cell surface result in a net movement of the cell. These repulsive forces are more likely to
force the contacting faces to flatten, rather than the entire cell to alter its path. It is likely that if
the cell surfaces could deform, the localized retraction of an area of the cell surface would affect
the average separation distance between the two cells and the calibration of the constants.

Fig 7. Zoomed view of bond formation using the coarse computational mesh. This is a zoomed view of the bond formation and 3D point clouds of the
PMN and melanoma cell using the coarse mesh. With the coarse computational mesh, 97 bonds were formed and are shown. Each face pair contains
multiple adhesive bonds, which allows for an appropriate number interactions although fewer computational faces are involved in the calculations. Note:
multiple bonds may occur between the same face pairs.

doi:10.1371/journal.pone.0136926.g007
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Adhesion
The first design challenge of this model was to assign a location to every simulated molecule.
The assumption first had to be made that adhesion molecules are evenly distributed across the
cell surface. Although this may be unlikely, as the molecules are free to move throughout the
membrane. Empirical data that suggests a non-uniform distribution that could be replicated in
this model was not found in the literature. Furthermore, for the purposes of our model, adhe-
sion molecules outside of the contact area between the two cells are neglected. Therefore, it is
only necessary that adhesion molecules be uniformly distributed within the contact area for our
model to be spatially accurate. As previously stated, our ability to assign locations of molecules
in space within the model is dictated by the resolution of the cell surfaces within the discretized
computational grid. Adhesion molecules are assigned a location based on the number density of
molecules across the cell surface area and the area of an individual face on the cell surface mesh.
Every molecule on a given face is assumed to be located at the centroid of that face, and so the
spatial uniformity of the molecules is dictated by the refinement of the mesh. As a consequence
of this mesh dependency, there may be a non-integer number of molecules on a given face to
ensure the proper number of globally available molecules. If a rounding method had been used
there would be no way to maintain the uniformity of molecules across the surface. The loss of
uniformity would impart some inherent bias to areas that had been rounded up rather than
rounded down. This bias would make it very difficult to maintain the proper overall number
density, and ensure that a proportional number of molecules had been either rounded up or
down such that the total number of molecules on the surface was representative of a real cell. To
accommodate for the non-integer number of molecules, the loop controlling the random num-
ber generator was modified such that it would calculate a random number for every molecule or
fractional molecule on the face. For each full molecule, the random number is compared against
the probability value that was found for that face. For the fractional molecule, the random num-
ber is compared against a modified probability, which is the original probability value multiplied
by the fractional amount of the molecule. For instance, if a given face is found to have 8.3 adhe-
sion molecules on its surface, nine random numbers will be generated. The first eight will be
compared against the probability value P, and the ninth will be compared against 0.3P, thus
making it less likely but still possible for a bond to form.

Next was the assessment of the probability model controlling bond breakage kinetics. In gen-
eral, it is assumed that a given bond has a certain expected lifetime, which makes it more likely
for the bond to break after it has existed for a given period of time. This would require each
formed bond to have an indicator of howmany timesteps the bond has existed. However, in gen-
eral these calculations are only done across the population, and represent the total number of
bonds that exist at a certain time. Since the probability of bond breaking is tested at every time-
step, each probability test can be assumed to represent an independent event. These independent
events are all dictated by the same probability of breakage and consider only the amount of time
that has elapsed since bond breakage was last calculated. The increased likelihood of bond break-
age is accommodated for by allowing the bond multiple opportunities to break.

Having bonds exist through multiple timesteps means their location in space must be
recorded. In a single timestep, the location of a bond is defined by the location of the two inter-
acting mesh faces, and is easily stored within NPHASE. However, the grid is regenerated every
timestep.

The final consideration was how to calculate kon in a local setting in a way that both takes
advantage of the CFD capabilities and remains aligned with empirical data and models from
real cells. No model currently exists representing a distribution of bond formation rates across
a cellular contact area. As has been previously discussed, the model used here assumes that the
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existing model for calculating kon,

kon ¼ ALðnLÞk0onexp
�stsðd � lÞ2

2kbT

� �
ð24Þ

can be scaled down to represent individual grid face areas and distances while maintaining the
accuracy of the model. The values of kon given by this equation will be proportional to their
actual distribution, and must be adjusted by a global kon value such that the average local value
and the global value are equivalent. This theory for finding a non-uniform local kon distribution
is based exclusively on the assumption that the existing model is accurate at the molecular
(rather than just cellular) scale.

According to the adhesion model equations used here, each molecule has the ability to
behave as a spring. The value of sts represents the ability of a molecule to deform from its equi-
librium length and form bonds with other molecules within a certain range of distances cen-
tered around the equilibrium distance [5]. The computational routine forces the value of kon to
zero when the distance is greater than double the equilibrium distance. Because the equations
are only meant to mimic molecular behavior and are only approximations, a value of kon could
be calculated at every distance. The value would become prohibitively small for bond formation
at distances much greater than the equilibrium distance. However, distances only slightly devi-
ating from equilibrium, kon would be non-zero and bonding would be possible. The cut-off dis-
tance is used to limit unnecessary calculations.

Currently, the cells in the simulation are modeled as non-deformable bodies. Previous work
has shown that the ability to deform will play a critical role in the binding kinetics between the
two cells [6, 8]. It is expected that there would be less bond formation in the simulated rigid
cells than in real cells, given the same rate of bond formation. Therefore, altering the parame-
ters used to calculate kon within the adhesion model such that the overall total bonding
observed and modeled are equivalent would likely lead to making each simulated molecule
more likely to form a bond than any real molecule. Calibration of this part of the model must
wait until cell deformation is incorporated. The model is generalized so that adhesion can be
calculated using the same method regardless of the geometry of the cells, since the routine
accepts the location of each face in the grid as input. Altering the deformability of cells will
only change the values of input to this routine, and will have no effect on how that input is pro-
cessed. The authors are pursuing the reintroduction of structural mechanics modeling as dem-
onstrated in our earlier work [10, 15], and that advancement will not require modification to
the biochemical interaction model.

Many researchers have determined methods for empirically calculating the spring constant,
s, of a molecule [31–33]. Bell et al. (1984) determined numerically that the spring constant of
α-helical proteins must fall between 10−2 and 103 dyn/cm, and their approximation of s = 0.1
dyn/cm has since been largely accepted [20]. Recent researchers have used atomic force
microscopy to apply a force to opposite ends of a bound molecular complex and determine the
magnitude of the applied force, as well as measure the change in length of the complex in order
to determine an empirical value s representing the linear spring constant [33, 34].

Experimental data so far has suggested that the interactions between ICAM-1 and LFA-1 are
primarily responsible for the initial tethering of a melanoma cell to a PMN [1]. The interactions
between ICAM-1 andMac-1 played a greater role in stabalizing the adhesion between the two
cells, even in the presence of shear flow, after the initial tethering had taken place. It is likely that
this difference of roles between the two molecule types should be reflected in the simulation by
different parameters describing their behaviors. Possibly the initial reliance on LFA-1 can be
explained simply by its increased membrane concentration compared to Mac-1. However, the
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distinction of Mac-1 playing a greater role in combating shear forces possibly reflects a differ-
ence in the strength of bonds formed between ICAM-1 andMac-1, or a difference in the typical
lifespan of those bonds as reflected in k0off . The bond strength variation, if proven to be the case,

should be reflected in a different value for the spring constants that represent molecular bond
forces as spring forces for the ICAM-1 to Mac-1 interaction than the value assigned to the
ICAM-1 to LFA-1 interaction. Currently both types of bonds are governed by the same parame-
ters, but it is likely that experimental verification of parameter values will reveal differences
between the two molecule types that can explain their differences in behavior.

Conclusions and Future Work
The major contribution of this work has been the development of a numerical model for com-
puting local bond formation rates in a manner that is consistent with a time dependent
Computational Fluid Dynamics (CFD) framework of a full system model with an arbitrary
number of interacting flowing cells.

The assumption upon which this model was derived is that the existing calculation for kon at
the cellular-level is physically accurate and therefore can be extrapolated to a smaller scale. The
equation itself implies that bonding is most likely to occur at exactly the equilibrium distance,
and becomes less likely if the molecules are either too close to each other or if they are further
away.

The model was presented in detail, verified to behave as required in multi-cell, multi-face
simulations, and has been implemented for a flowing TC-adherent PMN system. It was also
found that the model is not dependent of the resolution of the CFD mesh, which allows mesh
resolution to be solely determined by the fluid dynamics.

As this capability has been established, the authors are pursuing several advancements
including: 1) A multiscale simulation effort, wherein the cell-molecular scale presented here is
interfaced with population scale modeling to predict clinical environment aggregation behav-
ior, 2) At the molecular level, calibration of parameters for k0on and k

0
off using comparisons with

bulk adhesion observations in the literature and our laboratory, 3) Inclusion of many different
cell-type combinations, not only the TC-PMN pair, and, 4) Reintroduction of structural
mechanics modeling per our earlier work [10], 5) Incorporation of a physically-based localized
repulsion model to resolve nonspecific repulsive forces.
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