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Abstract
Identifying genes that are differentially expressed in response to social interactions is infor-

mative for understanding the molecular basis of social behavior. To address this question,

we described changes in gene expression as a result of differences in the extent of social

interactions. We housed threespine stickleback (Gasterosteus aculeatus) females in either

group conditions or individually for one week, then measured levels of gene expression in

three brain regions using RNA-sequencing. We found that numerous genes in the hind-

brain/cerebellum had altered expression in response to group or individual housing. How-

ever, relatively few genes were differentially expressed in either the diencephalon or

telencephalon. The list of genes upregulated in fish from social groups included many

genes related to neural development and cell adhesion as well as genes with functions in

sensory signaling, stress, and social and reproductive behavior. The list of genes expressed

at higher levels in individually-housed fish included several genes previously identified as

regulated by social interactions in other animals. The identified genes are interesting targets

for future research on the molecular mechanisms of normal social interactions.

Introduction
Social interactions with conspecifics are found across all animal taxa, and the fundamental pro-
cesses that govern social behavior are highly conserved. Among vertebrates, the core brain cir-
cuitry and key neuropeptides and neuromodulators that mediate social behavior are shared
([1,2]; but see [3]). Furthermore, recent work has shown that gene networks that regulate social
behavior are even conserved across invertebrates and mammals [4].

To identify genes and molecular pathways involved in social behavior, previous studies have
examined animals with different social experiences to determine which genes show changes in
expression [5–7]. These studies have either examined the expression of candidate genes or
have employed expression arrays or transcriptome sequencing to more globally sample gene
expression changes [5–8]. Global expression studies in vertebrates have identified numerous
genes that are socially regulated, highlighting genes not previously associated with social
behavior [4,8–15]. These studies have been informative for dissecting the molecular mecha-
nisms of sociality [4,5].
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Here we sought to identify the genes that play a role in normal interactions among fish in a
social group. We used threespine sticklebacks (Gasterosteus aculeatus), which are a longstand-
ing model for studies of social behavior and have a wealth of genomic resources available,
which facilitates transcriptomic analyses [16,17]. Marine sticklebacks are highly social, and are
typically found in social groups [17,18]. We modulated the extent of social interactions of indi-
vidual fish by housing fish either in social groups or individually for a one-week period. This
manipulation should permit detection of a state change that is not due to the process of isola-
tion (i.e. not within several hours), but also avoids the detrimental effects of long-term isolation
on increasing stress and anxiety [19]. We then used RNA-sequencing (RNA-seq) to compare
gene expression in brains of group- or individually-housed fish.

Materials and Methods

Fish and sample collection
Fish were from a lab-reared population of Japanese Pacific Ocean marine fish originally
derived from the Bekanbeushi River in Japan. Fish were reared in 110-L tanks in 3.5 ppt seawa-
ter (Instant Ocean, United Pet Group, Blacksburg, VA) at 16 C, and under 16 h light / 8 h dark
lighting conditions. Fish were fed Artemia nauplii and mysis shrimp. All fish were treated in
accordance with the guidelines of the Institutional Animal Care and Use Committee of the
Fred Hutchinson Cancer Research Center (FHCRC), protocol number 1575.

For social housing manipulation, fish from a single community tank were caught and trans-
ferred to four new 38-L tanks. Fish were either housed individually (n = 2 tanks) or in groups
of eight mixed sex fish (n = 2 tanks). After one week of individual or group housing, we
removed a single fish from each tank for analysis such that we had two individually-housed
and two group-housed fish. We replicated this experiment with a second tank of fish so that we
had a total of four biological replicates for both individually- and group-housed fish, from two
original home tanks. Gonads were visually inspected to identify sex and maturity. Only pre-
reproductive females were included in the experiment. Fish were euthanized with MS-222 and
their brains were removed into RNA-later (Life Technologies, Carlsbad, CA) and stored at -20
C. Brains of individual fish were then dissected into three portions: 1) the telencephalon, 2) the
diencephalon, pituitary, and rostral midbrain, and 3) the caudal midbrain, hindbrain, and cere-
bellum. We will refer to these portions as telencephalon, diencephalon, and hindbrain/cerebel-
lum for simplicity. Tissue was homogenized using a pellet pestle (Kimble-Chase, Vineland, NJ)
and total RNA was isolated using Trizol (Life Technologies, Carlsbad, CA). We performed the
dissection and RNA isolation in separate batches on two different days, such that fish from one
experimental replicate (i.e. home tank of origin) were processed on the same day.

RNA-seq
Barcoded RNA libraries from 24 samples (eight fish each with three brain regions) were gener-
ated in the FHCRC Genomics facility using Illumina’s TruSeq RNA Sample Prep Kit v2 (Illu-
mina, San Diego, CA) and a Sciclone NGSWorkstation (PerkinElmer, Waltham, MA).
Libraries were multiplexed, split across three lanes, and 50-bp paired-end sequences were gen-
erated on an Illumina HiSeq 2500 (Illumina, San Diego, CA). Demultiplexing was performed
using Illumina's CASAVA v1.8.2 software, allowing for a single mismatch in the index read.
Fastq files have been deposited to the Sequence Read Archive (Study Accession SRP056943).
We used a local instance of Galaxy [20–22] to perform alignment and to quantify reads align-
ing to genes. Reads were first aligned to the stickleback genome (BroadS1 [16]) using the
default parameters in tophat2 (version 2.0.9, Galaxy tool version 0.6 [23]). Next, reads that fell
within predicted genes (Ensembl genes 76) were counted using htseq-count (“Count reads in
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features with htseq-count” Galaxy tool v1.0 [24]). In htseq-count, we used the following
parameters:-q-m intersection-nonempty-s no-a 0-t exon-i gene_id. The resulting matrix was
exported from Galaxy and imported into R (http://r-project.org) where we used edgeR, version
3.8.6, [25] to identify differentially expressed genes. A multidimensional scaling (MDS) plot
was generated in edgeR. We also calculated the biological coefficient of variation (BCV) of
samples using edgeR.

We first analyzed expression differences as a function of brain region, independent of social
environment, by performing three analyses: telencephalon vs. diencephalon and hindbrain/cer-
ebellum; diencephalon vs. telencephalon and hindbrain/cerebellum; and hindbrain/cerebellum
vs. telencephalon and diencephalon. We filtered out genes that did not have at least 1 count per
million reads in at least two samples. We present and discuss the top 10 differentially expressed
genes for each brain region, all of which were significant at a False Discovery Rate (FDR) of
P< 0.05.

To identify genes differentially expressed as a function of social environment, we next per-
formed a General Linear Model (GLM) analysis separately for each brain region by comparing
read counts in group- and individually-housed fish. We included experimental replicate (1 or
2) as a factor in the model to control for home tank of origin and RNA isolation-batch effects.
We filtered out genes that did not have at least 1 count per million reads in at least two samples.
Differentially expressed genes were those that had FDR of 0.05. We present and discuss the
genes upregulated in group- and individually-housed fish separately, so for simplicity we report
the log 2 fold change (log2FC) as positive for both comparisons.

Functional annotation and enrichment analysis
We used DAVID to perform functional annotation and enrichment analysis [26]. DAVID tests
enrichment of Gene Ontology (GO) terms, as well as other annotation categories including
Interpro domains, KEGG pathways, and SMART protein domains. Ensembl gene identifiers
were first converted to zfin identifiers specifically for these analyses. Fold-enrichment of all sig-
nificant up- or down-regulated genes was calculated over the background gene list, which
included all genes expressed in the hindbrain/cerebellum. Functional annotation terms that
were significantly enriched are reported, and are organized into clusters based on DAVID’s
functional annotation clustering.

We also tested for enrichment of glutamate receptors in genes upregulated in group-housed
fish. We counted the number of glutamate receptor and GABA receptor genes in the upregu-
lated list and the list of all genes expressed in the hindbrain/cerebellum. We then used the test
of equal proportions in R to determine whether there was significant enrichment of these gene
classes.

Results and Discussion
Sequencing generated an average of 42 ± 2 million total reads per sample, of which 88 ± 1%
aligned to the genome. Of the aligned reads, 40 ± 2% fell within a predicted gene, thus were
counted by htseq-count, and included in the analysis. Genes expressed at low levels were not
included, leaving a total of 17,095 genes for the telencephalon, 17,553 for the diencephalon,
and 17,081 for the hindbrain/cerebellum.

Differential expression as a function of brain region
We first compared gene expression as a function of brain region, independent of social housing
condition. A multidimensional scaling plot showed clear separation of samples based on brain
region (Fig 1). The top ten differentially expressed genes in each brain area based on log2FC
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included genes with known functions in these parts of the brain (Table 1). For example, the top
ten genes enriched in the hindbrain/cerebellum were all known or predicted homeobox (Hox)
transcription factors (Table 1).Hox genes are involved in hindbrain patterning during develop-
ment and are expressed in the adult brain [27]. Eight of the top ten differentially expressed
genes in the diencephalon encode pituitary hormones (Table 1), which was expected as this
portion of the brain contained the pituitary. The other two diencephalon-enriched genes were
Nr5a1a, which is expressed in the diencephalon of zebrafish [28] andMibp, whose function in
the brain has not been studied. In the telencephalon, the top ten differentially expressed genes
included: 1) genes that are known to be involved in forebrain patterning and/or used as fore-
brain markers (Eomesa and Emx3 [29], Tbr1b [30], Scgn [31]), 2) a gene expressed in the fore-
brain of zebrafish (Rtn4rl2b [32]), and 3) genes with unclear function in the brain (Apod,
Ctrb1). The genes identified as being highly enriched in specific brain regions may prove to be
useful markers of different neuronal populations in future neuroanatomy studies in stickle-
backs and other fish.

Differential expression as a function of social housing
We next identified genes that were differentially expressed as a result of social experience.
There were numerous genes that were differentially expressed in the hindbrain/cerebellum (985
higher in group and 401 higher in isolate; all significant genes are shown in S1 File; the top 25
are shown in Tables 2 and 3). However, few genes were differentially expressed in either the
diencephalon (5 higher in group) or telencephalon (1 higher in isolate). Four of the five differ-
entially expressed genes in the diencephalon (Table 2) were also upregulated in the hindbrain/
cerebellum of group-housed fish (S1 File; hindbrain/cerebellum values: Cyr61: log2FC = 2.4;
FDR< 0.008, Tgm8: log2FC = 1.5; FDR = 0.008, Etv5a: log2FC = 0.9; FDR< 0.001, and
Fam46d: log2FC = 1; FDR< 0.012). The fifth gene, novel gene ENSGACG00000012907, was
not differentially expressed in the hindbrain/cerebellum (log2FC = 0.3; FDR = 0.13). Etv5a is a

Fig 1. Multidimensional scaling plot reveals separation of samples based on brain region.
Multidimensional scaling plot shows leading log2 fold-change (log2FC) differences between samples. Brain
regions are colored as follows: blue = telencephalon; red = diencephalon; black = hindbrain/cerebellum. Inset
shows schematic of brain with the same colors representing dissected brain regions. Circles = group-housed
samples; diamonds = individually-housed samples.

doi:10.1371/journal.pone.0137726.g001
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transcription factor involved in specification of dopaminergic cells in C. elegans, and has been
shown to co-localize with diencephalic dopaminergic cell populations in fish [33]. Cyr61 is
expressed at the midbrain-hindbrain boundary in developing zebrafish, but its function is
unknown [34]. Tgm8 shares distant homology with the transglutaminase family, which are
enzymes involved in protein cross-linking [35]. Tgm8 was highly differentially expressed in all
three brain regions, although it did not reach an FDR threshold of p< 0.05 in the telencephalon
(higher in group; log2FC = 1.9; FDR = 0.13). Fam46d has an unknown neural function but is
known to be expressed at higher levels in a mouse model of autism [36]. The single gene that
was differentially expressed in the telencephalon is Proca1, whose function is unknown other
than it is found in a protein complex with the cell division gene cyclin A1 (Table 3).

Table 1. Top ten genes enriched in each brain region.

Ensembl Gene ID Log2FC FDR Symbol Description

Telencephalon

ENSGACG00000017663 8.7 1.57E-110 Ctrb1 Chymotrypsinogen B1

ENSGACG00000016370 8.5 2.37E-108 Emx3 Empty spiracles homeobox 3

ENSGACG00000016991 7.2 8.62E-38 Apod Apolipoprotein D

ENSGACG00000005648 6.6 2.31E-87 Tbr1b T-box, brain, 1b

ENSGACG00000003160 6.5 0 Eomesa Eomesodermin homolog a

ENSGACG00000018955 6.4 1.44E-23 NA Protein family: Solute Carrier Family 12

ENSGACG00000003159 6.4 2.07E-142 NA Novel protein

ENSGACG00000009609 6.2 8.14E-73 Scgn Secretagogin

ENSGACG00000013917 6.0 1.49E-24 NA Novel protein

ENSGACG00000017836 6.0 5.99E-56 Rtn4rl2b Reticulon 4 receptor-like 2b

Diencephalon

ENSGACG00000009153 9.0 2.57E-133 Cga Glycoprotein hormones, alpha polypeptide

ENSGACG00000006561 9.0 5.05E-248 Prl Prolactin

ENSGACG00000014829 8.9 2.75E-153 Gh1 Growth hormone 1

ENSGACG00000009521 8.7 1.07E-239 Pomca Proopiomelanocortin a

ENSGACG00000018017 8.4 2.54E-284 Pmchl Pro-melanin-concentrating hormone, like

ENSGACG00000018317 8.4 1.05E-76 Nr5a1a Nuclear receptor subfamily 5, grp A, mbr 1b

ENSGACG00000006593 8.0 1.76E-126 Smtla Somatolactin alpha

ENSGACG00000005276 7.9 6.85E-70 Tshb Thyroid stimulating hormone, beta subunit

ENSGACG00000011475 7.7 1.80E-18 Lhb Luteinizing hormone, beta polypeptide

ENSGACG00000015226 7.5 8.56E-37 Mipb Major intrinsic protein of lens fiber b

Hindbrain/Cerebellum

ENSGACG00000009421 9.7 2.69E-47 Hoxc4a Homeobox c4a

ENSGACG00000007108 9.0 1.48E-27 Hoxa5a Homeobox a5a

ENSGACG00000007100 8.1 3.51E-33 Hoxa4 Homeobox a4

ENSGACG00000004548 7.5 3.86E-64 Hoxd3a Homeobox d3a

ENSGACG00000004551 7.2 1.10E-28 Hoxd4a Homeobox d4a

ENSGACG00000009416 7.2 3.84E-17 Hoxc5a Homeobox c5a

ENSGACG00000005631 7.0 3.11E-43 Hoxb3a Homeobox b3a

ENSGACG00000005626 6.9 1.54E-10 NA Protein family: Homeobox

ENSGACG00000003945 6.7 2.24E-12 Hoxb5b Homeobox b5b

ENSGACG00000005633 6.6 6.06E-42 Hoxb2a Homeobox b2a

Log2FC = log2 fold-change, FDR = false discovery rate, Symbol = gene name, NA = novel gene with no associated name.

doi:10.1371/journal.pone.0137726.t001
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It was interesting that many genes were differentially expressed in the hindbrain/cerebellum
compared with few in either the telencephalon and diencephalon, which both contain nuclei
known to be involved in the control of social behavior [37]. There are several possible explana-
tions for this result. First, the hindbrain and cerebellum may indeed show a greater response to
this alteration in social housing than the rest of the brain. Social interactions are associated
with sensory stimulation, and this is reduced in individually-housed fish. The hindbrain serves
as a primary sensory relay for several senses, and thus may show an increased transcriptional
response to this manipulation. Alternatively, lack of detection of differentially expressed genes
in the telencephalon and diencephalon could theoretically result from increased heterogeneity
of these regions compared with the hindbrain/cerebellum. However, the coefficient of variation
is similar across all brain regions (telencephalon BCV = 0.212; diencephalon BCV = 0.206;

Table 2. Genes significantly upregulated in group-housed fish.

Ensembl Gene ID Log2FC FDR Symbol Description

Diencephalon

ENSGACG00000017235 3.0 0.001 Cyr61 Cysteine-rich, angiogenic inducer, 61

ENSGACG00000003741 1.8 0.000 Tgm8 Transglutaminase 8

ENSGACG00000008646 1.3 0.000 Etv5a Ets variant 5a

ENSGACG00000018558 0.8 0.041 Fam46d Family with sequence similarity 46, member D

ENSGACG00000012907 0.8 0.041 NA Novel protein

Hindbrain/Cerebellum

ENSGACG00000007463 3.9 0.025 Syne2a Spectrin repeat containing, nuclear envelope 2a

ENSGACG00000005626 3.4 0.001 Hoxb5 Homeobox B5

ENSGACG00000001172 3.2 0.002 NA Protein family: Histone lysine N methyltransferase

ENSGACG00000005716 3.1 0.017 NA Protein family: Hyaluronidase

ENSGACG00000018064 3.1 0.008 NA Novel protein

ENSGACG00000003170 3.0 0.047 NA Protein family: Multiple PDZ domain

ENSGACG00000002950 3.0 0.044 Szt2 Seizure threshold 2 homolog

ENSGACG00000017590 2.9 0.007 Crema cAMP responsive element modulator a

ENSGACG00000003945 2.9 0.003 Hoxb5b Homeo box B5b

ENSGACG00000002005 2.9 0.015 NA Novel protein

ENSGACG00000013776 2.7 0.005 Herc2 Hect domain and RLD 2

ENSGACG00000001636 2.7 0.044 NA Novel pseudogene

ENSGACG00000011127 2.7 0.048 Stard9 StAR-related lipid transfer domain containing 9

ENSGACG00000009610 2.6 0.008 NA Novel protein

ENSGACG00000008919 2.5 0.013 Kcnk9 Potassium channel, subfamily K, member 9

ENSGACG00000018488 2.5 0.004 NA Protein family: High affinity choline transporter 1

ENSGACG00000007108 2.4 0.002 Hoxa5a Homeo box A5a

ENSGACG00000009416 2.4 0.020 Hoxc5a Homeo box C5a

ENSGACG00000014677 2.4 0.009 Prrc2c Proline-rich coiled-coil 2C

ENSGACG00000011293 2.4 0.015 Hectd4 HECT domain containing E3 ubiquitin ligase 4

ENSGACG00000004479 2.4 0.008 Sst1.1 Somatostatin 1, tandem duplicate 1

ENSGACG00000011057 2.4 0.004 NA Novel protein

ENSGACG00000004861 2.4 0.012 Agrn Agrin

ENSGACG00000007999 2.4 0.038 Rarb Retinoic acid receptor, beta

ENSGACG00000004506 2.3 0.008 S100u S100 calcium binding protein U

All five significant genes from diencephalon and top 25 from hindbrain/cerebellum are shown; no genes were significantly upregulated in the

telencephalon. Log2FC = log2 fold-change, FDR = false discovery rate, Symbol = gene name, NA = novel gene with no associated name.

doi:10.1371/journal.pone.0137726.t002
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hindbrain/cerebellum BCV = 0.201), suggesting that this is not the cause in this case. More-
over, another study of stickleback gene expression differences that dissected the brain into sim-
ilar portions did detect gene expression differences in all regions 30 min after social
stimulation [14]. In that study, the diencephalon had the largest number of differentially
expressed genes, whereas the telencephalon had the fewest. Thus, it is likely that there are dif-
ferences in which brain regions respond to different stimuli. In addition, timing of stimulus
exposure likely has an important impact on differential gene expression; this should be tested
more thoroughly in future studies.

Genes upregulated in the hindbrain of group-housed fish
The 25 genes that were higher in the hindbrain of group-housed fish, based on fold-change, are
shown in Table 2. Many of these genes were involved in developmental processes. The Hox
genes and retinoic acid receptor (Rarb) are specifically involved in hindbrain development
[38]. Several additional genes are otherwise implicated in neural development (Agrn [39] and

Table 3. Genes significantly upregulated in individually-housed fish.

Ensembl Gene ID Log2FC FDR Symbol Description

Telencephalon

ENSGACG00000011223 2.3 0.003 Proca1 Protein interacting with cyclin A1

Hindbrain/Cerebellum

ENSGACG00000001322 2.5 0.029 NA Novel protein

ENSGACG00000005350 2.2 0.037 Slc16a1 Solute carrier family 16 member 1

ENSGACG00000017681 2.0 0.043 Pmt Phosphoethanolamine methyltransferase

ENSGACG00000004653 2.0 0.045 NA Novel protein

ENSGACG00000001231 1.9 0.019 NA Novel protein

ENSGACG00000021449 1.9 0.006 NA Novel miRNA

ENSGACG00000002911 1.9 0.004 Tcf24 Transcription factor 24

ENSGACG00000001910 1.6 0.027 NA Protein family: MHC class I antigen

ENSGACG00000007674 1.5 0.047 NA Protein family: Glutathione S transferase

ENSGACG00000008596 1.4 0.011 Ddit4 DNA-damage-inducible transcript 4

ENSGACG00000004576 1.4 0.028 Mad2l1bp Mad2l1 binding protein

ENSGACG00000022181 1.3 0.003 NA Novel miRNA

ENSGACG00000007379 1.3 0.000 Stmn1b Stathmin 1b

ENSGACG00000015933 1.3 0.025 Clec18b C-type lectin domain family 18, member B

ENSGACG00000012872 1.2 0.019 Eps8l1 Eps8-like1

ENSGACG00000011011 1.2 0.015 NA Novel protein

ENSGACG00000018331 1.2 0.009 Mxd3 MAX dimerization protein 3

ENSGACG00000002889 1.2 0.044 Sox1b SRY-box containing gene 1b

ENSGACG00000021538 1.2 0.040 NA Novel miRNA

ENSGACG00000017065 1.1 0.048 Clul1 Clusterin-like 1 (retinal)

ENSGACG00000006502 1.1 0.048 Parp6b Poly (ADP-ribose) polymerase, member 6b

ENSGACG00000019774 1.1 0.020 NA Novel protein

ENSGACG00000015028 1.1 0.048 Gatm Glycine amidinotransferase

ENSGACG00000015636 1.1 0.000 Cdk2ap1 Cyclin-dependent kinase 2 associated protein 1

ENSGACG00000015171 1.1 0.002 NA Novel protein

One significant gene from telencephalon and top 25 from hindbrain/cerebellum are shown. Log2FC = log2 fold-change, FDR = false discovery rate,

Symbol = gene name, NA = novel gene with no associated name.

doi:10.1371/journal.pone.0137726.t003
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Syne2a [40]) or intellectual disability (Herc2 [41] and Kcnk9 [42]), and Stard9 is involved in
cell division [43]. Functional annotation and enrichment analysis echoed the finding that
developmental genes are strongly enriched in the list of genes upregulated in group-housed
fish (Table 4). All of the significantly enriched functional clusters were related to development,
including cell morphogenesis and neural development, cell adhesion, plexin/semaphorin sig-
naling, and EGF signaling (Table 4). Semaphorins and EGF signaling are involved in neural
development [44,45]. Increased activity of developmental processes is suggestive of more
arborization and neurogenesis in group-housed fish. There is ongoing neurogenesis in the
hindbrain/cerebellum of sticklebacks [46], and previous work has shown that sensory stimula-
tion, including social housing, can alter levels of neurogenesis in other fish [47]. It is possible
that the upregulated gene expression of developmental genes in the hindbrain/cerebellum of
group-housed fish is related to increased sensory function due to higher levels of sensory
stimulation.

Other genes in the top 25 upregulated genes included Szt2 and Sst1.1. Szt2mutant mice
have a lower seizure threshold [48]. Somatostatin (Sst1.1) has previously been implicated in
decreasing growth as well as decreasing aggressive behavior in fish [49,50]. Social isolation can

Table 4. Functional annotation and clustering of genes expressed at higher levels in group-housed fish.

Cluster Term Description Fold Enrichment

1 GO:0000904 Cell morphogenesis involved in differentiation 4.2

1 GO:0007409 Axonogenesis 4.1

1 GO:0048667 Cell morphogenesis involved in neuron differentiation 4.1

1 GO:0032989 Cellular component morphogenesis 2.9

1 GO:0048812 Neuron projection morphogenesis 4.1

1 GO:0000902 Cell morphogenesis 3.1

1 GO:0031175 Neuron projection development 4.0

1 GO:0007411 Axon guidance 5.2

1 GO:0048666 Neuron development 3.2

1 GO:0048858 Cell projection morphogenesis 3.1

1 GO:0030030 Cell projection organization 2.9

2 GO:0007155 Cell adhesion 2.9

2 GO:0022610 Biological adhesion 2.9

3 IPR002165 Plexin 7.9

3 IPR003659 Plexin/semaphorin/integrin 6.4

3 SM00423 Domain found in Plexins, Semaphorins and Integrins 5.7

3 IPR001627 Semaphorin/CD100 antigen 6.9

3 SM00630 Sema 6.2

4 IPR013032 EGF-like region, conserved site 3.0

4 IPR006210 EGF-like 3.5

4 SM00181 EGF 3.2

4 IPR000742 EGF-like, type 3 3.4

4 IPR002049 EGF-like, laminin 7.7

4 SM00180 Laminin-type epidermal growth factor-like domain 7.0

4 IPR003961 Fibronectin, type III 2.9

5 IPR002909 Cell surface receptor IPT/TIG 8.4

5 SM00429 Ig-like, plexin, transcription factor domain 7.6

Terms beginning with: GO = Gene Ontology term; IPR = interpro; SM = SMART protein domain.

doi:10.1371/journal.pone.0137726.t004
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lead to increased aggression in fish [51]. It would be interesting to determine whether group
housed sticklebacks have slower growth and reduced aggression than individually-housed fish.
In addition, it would be interesting to manipulate somatostatin levels [49] and determine
whether there was an impact on growth and gene expression.

The list of 985 genes upregulated in the hindbrain/cerebellum as a result of group housing
included many other interesting genes in addition to those presented in Table 2. We will high-
light a few here, although the entire list can be found in S1 File. Many enriched genes were in
neurotransmitter or neuromodulator pathways. First, several genes related to acetylcholine
synthesis and signaling were higher in group-housed fish: acetylcholinesterase (Ache,
ENSGACG00000000728; log2FC = 0.9; FDR = 0.009), choline o-acetyltransferase (Chat,
ENSGACG00000002482; log2FC = 0.8; FDR = 0.008), and the muscarinic acetylcholine recep-
tor, Chrm2a (ENSGACG00000019948; log2FC = 1.2; FDR = 0.04) (S1 File). Acetylcholinergic
cells are found in cranial sensory and motor nuclei and throughout the reticular formation of
the hindbrain [52]. Chrm2a also expressed in cranial nuclei [53]. Given these expression pat-
terns, we speculate that increased acetylcholine signaling is related to higher levels of sensory
processing due to more sensory stimulation in the group-housing environment.

In addition, galanin receptor (Galr1; log2FC = 1.4; FDR = 0.014) and several insulin signal-
ing genes were regulated as a function of social status. Specifically, an insulin receptor (Insr,
ENSGACG00000010475, log2FC = 1.1; FDR = 0.0003), insulin-like growth factor 2 receptor
(Igf2r, ENSGACG00000005960; log2FC = 1.1; FDR = 0.016), and two insulin receptor substrate
2 orthologs (Irs2: ENSGACG00000014133; log2FC = 0.8; FDR = 0.003; ENSGACG0000000356
4; log2FC = 0.7; FDR = 0.01) were all significantly higher in the hindbrain/cerebellum of
group-housed fish (S1 File). Both galanin and insulin have been implicated in fish feeding [54],
so perhaps upregulation of these genes is related to increased competition for food in group
housing conditions. In addition, several insulin-related genes are regulated in response to social
conditions: Igf2r was shown to be increased in brains of subordinate rats [55], and insulin sig-
naling alters social behavior in honeybees [56].

Another signaling pathway gene that was differentially expressed was prostaglandin F2
receptor inhibitor (Ptgfrn; ENSGACG00000014419; log2FC = 0.8; FDR = 0.013). Prostaglandin
F2α signaling increases fish reproductive physiology [57] and behavior [58]. The females in
social groups were exposed to males but isolated females were not, so it may be that mixed-sex
housing facilitates reproduction. Investigating levels of reproductive hormones would directly
address this question.

Opiate signaling pathway genes were also regulated as a function of social status. Preprono-
ciceptin a (Pnoca, ENSGACG00000014805; log2FC = 1.7; FDR = 0.003) and its receptor, opiate
receptor-like 1 (Oprl1; ENSGACG00000010479; log2FC = 1.1; FDR = 0.02), were both
expressed at higher levels in fish in social housing. Interestingly, Pnoc and Oprl1 (aka NOP)
were also found to be higher in brains of mice housed in groups than in mice housed in isola-
tion [59]. Nociceptin signaling decreases stress and anxiety in mammals [60]. It may be that
social interactions in group-housed fish lead to increased nociceptin signaling, which results in
reduced stress and anxiety. Alternatively, individually-housed fish might have decreased levels
of nociception signaling.

Finally, 14 glutamate receptor subtypes were found in the list of significantly upregulated
genes in socially housed fish (S1 File; Gria1a, Gria4b, Grik2, Grik3, Grik5, Grin2ab, Grin2b,
Grin2bb, Grin2ca, Grin2db, Grip2b, Grm3, Grm5, Grm8). Because the glutamate receptor fam-
ily is quite large, we tested to see whether this was a specific enrichment or was simply a result
of there being a large number of glutamate receptor genes in the entire gene list. We also com-
pared the level of enrichment of another large neurotransmitter receptor family, the GABA
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receptors. This analysis showed that glutamate but not GABA receptors were significantly
enriched in fish housed in social groups (Χ2 = 43, P< 0.00001; Fig 2).

Genes upregulated in the hindbrain of individually-housed fish
We next examined genes that were higher in the hindbrain of individually-housed fish
(Table 3). The list of the top 25 genes with the highest fold-change contained genes with diverse
functions. For example, Slc16a1 has been implicated in neurogenesis in zebrafish [61]. Ddit4
may play a role in development through interactions withWnt/beta catenin signaling [62].
There were several transcription factors with varied functions (Tcf24,Mxd3, Sox1b). Gatm is
involved in creatine synthesis. Interestingly,Mad2l1bp, which has homology to a gene involved
in cell division and the spindle checkpoint pathway, was also found to be regulated by social
interactions in other populations of sticklebacks. Specifically, it was higher in males following a
territorial intrusion [14]. Finally, novel gene ENSGACG00000001910 has homology to the
MHC class 1 antigen family. A gene from this family was previously shown to be expressed at
higher levels in brains of female than male cichlids [11].

The entire list of 401 genes upregulated in individually-housed fish included several other
genes with interesting functions, and is shown in S1 File. One of these was an enzyme involved
in steroid biosynthesis, hydroxysteroid (17-beta) dehydrogenase 7, which was expressed at
higher levels (Hsd17b7; ENSGACG00000016134; log2FC = 0.6; FDR = 0.02). Hsd17b7 is
involved in the biosynthesis of cholesterol and sex steroids, and thus may play a role in regulat-
ing steroid hormone abundance in the brain. Another gene upregulated in individually-housed

Fig 2. Glutamate receptors are enriched in the list of upregulated genes from group-housed fish. The
percentage of genes in the significantly upregulated and total gene list is shown for glutamate and GABA
receptors. There is a significant enrichment in glutamate but not GABA receptors in the list of genes
upregulated in group-housed fish.

doi:10.1371/journal.pone.0137726.g002
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fish, MAD2 mitotic arrest deficient-like 1, was also shown to be higher in brains of isolated rats
(Mad2l1; ENSGACG00000001594; log2FC = 0.8; FDR = 0.007) [13].

We next performed functional annotation and enrichment analysis of the list of genes upre-
gulated in individually-housed fish. Relatively few categories were enriched, and they included
genes related to RNA processing (Table 5).

Conclusions
In summary, we found that manipulating social housing impacted the expression of genes pre-
dominantly in the hindbrain/cerebellum. In group-housed fish, many of the upregulated genes
were in developmental signaling pathways, and functional annotation reinforced the conclu-
sion that there was enrichment of development-related genes in this dataset. These results sug-
gest that fish in group-housing environments experience more neurogenesis or more axon and
dendrite outgrowth. Alternatively, because many developmental genes act as repressors, it may
be that upregulated expression of these genes is actually associated with decreased neurogen-
esis. It would be interesting to distinguish between these possibilities by directly by comparing
levels of cell division and differentiation on a cellular level. Other differentially expressed genes
were involved in stress/anxiety, social behavior, and possibly sensory processing. These find-
ings suggest interesting directions for future research on the molecular control of normal social
interactions in sticklebacks and other systems. In the future it could also be interesting to evalu-
ate different timescales of experimental manipulation, for instance social isolation for an entire
lifetime or across evolutionary timescales [63].

Supporting Information
S1 File. List of all differentially expressed genes in the hindbrain. File contains a list of all
hindbrain genes that were significantly upregulated (FDR< 0.05) in group- and individually-
housed fish, on two separate worksheets.
(XLSX)
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Table 5. Functional annotation and clustering of genes expressed at higher levels in individually-housed fish.

Cluster Term Description Fold Enrichment

1 dre03040 Spliceosome 5.4

1 SM00651 Small nuclear ribonucleoprotein involved in pre-mRNA splicing 33.5

1 IPR006649 Like-Sm ribonucleoprotein, eukaryotic and archaea-type, core 19.5

1 IPR001163 Like-Sm ribonucleoprotein, core 18.0

2 GO:0030529 Ribonucleoprotein complex 3.4

Terms beginning with: GO = Gene Ontology term; IPR = Interpro protein domain; SM = SMART protein domain; dre = KEGG pathway.

doi:10.1371/journal.pone.0137726.t005
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