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Global priorities for an effective information basis
of biodiversity distributions
Carsten Meyer1, Holger Kreft1, Robert Guralnick2 & Walter Jetz3,4

Gaps in digital accessible information (DAI) on species distributions hamper prospects of

safeguarding biodiversity and ecosystem services, and addressing central ecological and

evolutionary questions. Achieving international targets on biodiversity knowledge requires

that information gaps be identified and actions prioritized. Integrating 157 million point

records and distribution maps for 21,170 terrestrial vertebrate species, we find that outside a

few well-sampled regions, DAI on point occurrences provides very limited and spatially

biased inventories of species. Surprisingly, many large, emerging economies are even more

under-represented in global DAI than species-rich, developing countries in the tropics.

Multi-model inference reveals that completeness is mainly limited by distance to researchers,

locally available research funding and participation in data-sharing networks, rather than

transportation infrastructure, or size and funding of Western data contributors as often

assumed. Our results highlight the urgent need for integrating non-Western data sources and

intensifying cooperation to more effectively address societal biodiversity information needs.
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T
he parties to the Convention on Biological Diversity (CBD)
have agreed on 20 targets to improve the state of
biodiversity by 2020 (https://www.cbd.int/sp/targets/).

Aichi Target 19 specifically mandates the development of an
advanced and shared biodiversity knowledge base. Information
on species distributions in space is a central aspect of biodiversity
knowledge that can enable the effective management of
biodiversity and associated ecosystem services in a rapidly
changing world1–5. Species distributions are critical for
informing actions towards multiple Aichi targets, associated
environmental indicators6 and the recently launched assessment
work of the Intergovernmental science-policy Platform on
Biodiversity and Ecosystem Services7.

International efforts to mobilize and aggregate distribution
data, most notably through the Global Biodiversity Information
Facility (GBIF), have facilitated access to large quantities of digital
species occurrence records from a variety of data sources,
especially museum specimens and field observations8,9. Such
records provide vital, fine-scale information about where and
when species occur and are widely used in ecology, evolution and
conservation research. In contrast to expert knowledge or data
sets that are either non-digital or not openly shared, and thus
effectively inaccessible to most users, such mobilized records
form the bulk of de facto ‘digital accessible information’ (DAI,
originally referred to as DAK in ref. 10). Although in a recent
study11 the authors saw evidence for progress towards Aichi
Target 19 in increasing volumes of GBIF-facilitated DAI, they had
to acknowledge the critical caveat of unclear ‘taxonomic coverage
(e.g., number of species), record completeness or geographic
biases’.

Severe gaps and biases usually exist in DAI10,12–14 and these
require careful consideration in ecological modelling15–17 and
conservation research3. These data limitations may result from
the way data are collected in the field, digitized in museums or
mobilized and aggregated as digital species records into global
biodiversity data-sharing networks. Different socio-economic and
geographic drivers of data limitations have been hypothesized,
including inadequate financial and institutional resources18–20,
poor international scientific cooperation20, lack of access or
regional safety concerns20–23, or a focus on regions with certain
appeal like endemism-, species-rich or protected areas12,21,24.

The amount of data required to completely inventory species
assemblages is a function of their richness and the spatial
grain13,14,25. To be relevant for conservation applications,
distribution data sets must inform about species occurrences at
fine spatial grains26, either directly or by facilitating derived, fine-
grain models5,13. Such fine-grain models are integral to
conservation research, but can also directly influence
conservation decision-making. For instance, occurrence records
have facilitated the identification of ‘priority areas’27 in
Madagascar, where following a legal decree, no mining and
forestry activities can be permitted (Arrêté Interministériel
n18633/2008/MEFT/MEM, renewed in 2014; further examples
in ref. 5).

Identifying information gaps and factors limiting the dis-
semination of biodiversity information are recognized as
priorities both at the political28 and scientific29 levels of the
CBD. To date, magnitude and exact location of gaps in global
DAI as well as the generality and relative importance of
underlying causes remain unclear, hampering prioritization
of future data mobilization efforts30. International efforts to
mobilize biodiversity records remain un-assessed for their success
and effectiveness in addressing targets to improve and share
biodiversity knowledge.

Here we perform this assessment for 21,170 species of birds,
mammals and amphibians, and c. 157 million geographically and

taxonomically validated point records that were provided to GBIF
by 160 data publishers, including small institutions with a distinct
taxonomic and geographic focus, large internationally active
research museums and citizen science programmes. We
determine the factors currently limiting biodiversity inventory
completeness in global DAI and identify priority regions and
activities to advance it. We find that most gaps in inventories exist
in large emerging economies and DAI is mainly limited by
distance to data contributors, locally available research funding
and political commitment to data sharing. To advance global DAI
effectively, efforts to foster participation in data-sharing networks
and mobilize non-Western data sources should be prioritized.

Results and Discussion
Patterns in global DAI on species distributions. At a grain size
of 110 km grid cells, the density of terrestrial vertebrate records
varies by five orders of magnitude (Fig. 1a), peaking in parts of
Europe, North and Central America and Australia. Conversely,
48% of Asian, 35% of African and 21% of South American cells
have no records mobilized into DAI. At this spatial grain, the
finest ensuring sufficient accuracy of species expert-range
maps31,32, species richness derived from point records shows little
concordance with expected richness (Fig. 1b,c). Although spatial
patterns between the two data sources show at least weak
associations (rs¼ 0.28–0.39, see Supplementary Table 1a), only
4.2% of all 12,029 cells reach Z80% completeness (Fig. 1d).

Completeness, defined as percentage of expected richness
documented with point records, is moderately to strongly
predicted by record density (binomial generalized linear model
(GLM), d2¼ 0.59–0.90, Supplementary Fig. 1, Supplementary
Table 1b and see Supplementary Notes 1–3 for details). Whereas
high record density results in high levels of completeness in much
of the Nearctic and Australasia, this is less the case for the more
species-rich Neo- and Afrotropics (Fig. 1a,b,d,e and
Supplementary Fig. 1D). The Eastern Palaearctic and Indoma-
layan realms are characterized by particularly low levels of
completeness. Average completeness also varies greatly among
the world’s major biomes and biomes within biogeographical
realms (Fig. 1e and Supplementary Table 2a–c). Specifically,
tropical and subtropical forests, grasslands and savannas, but also
boreal forests and tundra biomes remain vastly underinventoried.
Surprisingly, we cannot confirm a pronounced ‘tropical data
gap’33 (max-t test, PDut¼ 0.27, N¼ 4,717/7,286; tropics versus
non-tropics). Instead, a severe gap emerges across most of Asia
(including temperate regions), non-Southern Africa and Brazil
(max-t test, PDuto0.01, N¼ 6,089/5,914; when comparing mean
completeness in these areas to all others; see also Supplementary
Tables 2 and 3).

Although these strong geographic differences in completeness
are broadly repeated among the three vertebrate groups (Fig. 2a),
completeness patterns among the three taxa only show
moderately strong positive associations (rs¼ 0.65–0.74 depending
on taxon and grain, max-t tests, all PDuto0.001, N¼ 323–11,522).
This suggests that the completeness pattern of a single-taxon is a
poor predictor for un-assessed taxa and highlights the need
to identify taxon-specific information gaps34. As expected
from substantially fewer records for mammals and amphibians
compared with birds (B3 and B1 M compared with B150 M,
see Supplementary Table 4), their overall level of completeness is
significantly lower (Tukey’s test, all PDuto0.001, N¼ 280–11,757,
depending on spatial grain, when comparing mammal/amphibian
completeness with bird completeness).

Completeness levels of Z80% over large extents, even at a
relatively coarse grain of 110 km, are only achieved in birds
and only in North America, Europe and Australia (Fig. 2a).
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Coarsening grains even further to 440 or 880 km substantially
increases completeness in all groups (Kruskal–Wallis test, all
Po0.001, N¼ 280–11,757, Fig. 2a,b and Supplementary Fig. 2),

but necessarily leads to inferior opportunities for inference and
application. Such coarse grains are not adequate for most
questions in ecology35 and, with land-use and conservation
actions typically set at the kilometer scale or finer, are
unsuited for effective resource management. Most species
distribution models (SDMs) connecting records with fine-
grained environmental data for extrapolation17 are unable to
provide a general remedy here, owing to their known sensitivity
to environmental bias14,36. This pervasive lack of DAI over
vast extents (for example, only o20% completeness at 880 km
grain over much of Asia, Fig. 2a) demonstrates that for many
regions with large conservation opportunities37 there are not
sufficient mobilized occurrence data to facilitate even the most
sophisticated modelling approaches. Global numbers of sampling
locations for the majority of species are far below the 50–100
typically recommmended3,38,39 as minimum SDM requirements
(54.9% of all bird species have o50 records, median¼ 37;
mammals: 79.2%, median¼ 6; amphibians: 91.3%, median¼ 2)
(compare refs 14,40).

Addressing information gaps effectively. Such glaring data gaps
highlight the need to identify and, where possible, address the
root causes of low inventory completeness. Understanding of the
key driving factors of bias is important to prioritize activities in
data mobilization. Further, drivers of bias can be explicitly
incorporated into biodiversity models41,42. To this end, we tested
12 hypotheses falling into 5 broad categories: appeal, accessibility,
security, international scientific integration, and financial and
institutional resources (details in Fig. 3 and Supplementary Notes
2 and 3, Supplementary Figs 3–6 and Supplementary Table 5).
Most hypotheses receive at least some support in our multi-model
inference framework, highlighting the complex interplay of
geographic and socio-economic factors as drivers of inventory
completeness (Fig. 3; for record density and bivariate model
results, see Supplementary Fig. 5; detailed results in
Supplementary Tables 6–8). Depending on taxon and grain,
minimum adequate models of inventory completeness explain
60%–78% of the deviance (Supplementary Table 6) and the
relative importance of factors varies more strongly among
taxonomic groups than among grain sizes (depending on the
predictor, percentages of sums of squares explained in an analysis
of variance are 16.5%–72.5% higher for factor ‘taxon’ compared
with factor ‘spatial grain’).

A strong role for data collection has been attributed to region
or species ‘appeal’, for example, researchers’ preference for
reserves, mountains or other areas of high total, rare and
range-restricted species richness21,24,43. We find this supported in
birds and mammals by strong positive effects on inventory
completeness of endemism richness and weaker effects of
protected area coverage. Surprisingly, we find relatively low
importance of on-ground accessibility from cities and proximity
to airports (Fig. 3), which have previously been suggested
to strongly constrain field collections21,23. In contrast, spatial
distance to data-contributing institutions (Supplementary
Table 9) consistently emerges as a key predictor of inventory
completeness and record density (Fig. 3 and Supplementary
Fig. 5). This highlights the imprint that long-term logistics
of maintaining field sampling and specimen transport leave on
global biodiversity information (compare refs 22,24). Insecure
conditions may discourage field sampling20,44, but we find
little evidence that security aspects are important in limiting
completeness or record density (Fig. 3, Supplementary Fig. 5 and
Supplementary Note 2). We expected our index of integration
into scientific activities, that is, country’s H-index in ecology
multiplied by level of international collaboration, to be strongly
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Figure 1 | Global unevenness and gaps in the DAI on distributions of

21,170 species of terrestrial vertebrates (birds, mammals and

amphibians). (a) Density of point records, (b) species richness from point

records, (c) species richness from expert opinion and (d) inventory

completeness (percentage of expected richness documented by records).

Grey areas do not have any mobilized records. (e) Mean inventory

completeness in biome-realm combinations. Size of black circles is

proportional to mean inventory completeness and grey areas show s.d.

All assessed over a 110-km equal-area grid.
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Figure 2 | Spatial variation in point record-based inventory completeness for three vertebrate taxa at different spatial grains. (a) Inventory

completeness at the 110- and 880-km grain. (b) Minimum grain size to reach 80% inventory completeness, mapped at 110 km. Grey grid cells (a) show

areas within the taxon’s global range without mobilized records and (b) areas that do not reach 80% completeness at 880 km.
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Figure 3 | Determinants of inventory completeness in DAI on species distributions. Effects were tested in multiple generalized linear regression models

with a binomial distribution and a logit link (GLM b and GLM % SS). All possible model subsets were ranked based on AIC scores and subsets with

DAICo10 re-run as spatial models to account for spatial autocorrelation in model residuals. Bubble size represents the relative strength of predictor–

response relationships. Vertebrate groups are represented by different colours, with shading denoting the direction of the relationship. We show the relative

importance of predictors using two different metrics: (i) the standardized coefficients of the reduced spatial multiple regression models with the lowest AIC

score (blank cells indicate variables that were not included in these models) (GLM b), and (ii) the percentage each predictor has in the total sum of squares

(GLM % SS) of a type III analysis of variance.
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correlated with inventory completeness, as it should reflect the
routine of making research results public20,33. However, it is not
an important factor for explaining completeness or record density
(Fig. 3 and Supplementary Fig. 5). Conversely, GBIF participation
emerges as a consistently strong factor determining completeness
in DAI. Supporting previous suggestions19,45, national research
funding (gross expenditure on research and development) is
strongly positively correlated with completeness (Fig. 3).
Surprisingly, however, research funding of countries where
data-publishing institutions are situated does not affect
inventory completeness in the regions of their sampling activity
(Supplementary Note 2). Finally, publisher size, estimated from
contributed data volume, only weakly predicts inventory
completeness for mammals and amphibians, but it has much
stronger effects for birds, where the largest data contributors are
not museums but aggregators of citizen-science observations
(Supplementary Table 9), pointing to the potential of alternative,
non-institution-based ways of producing DAI for certain taxa
(see discussions in refs 13,46,47).

Most of the strongest limiting factors of completeness affect
digitization and mobilization of existing data rather than the
actual collection of new records in the field. Although adequate
national research funding is vital for producing DAI on local
biodiversity, our results suggest that funding for university
research usually leading to peer-reviewed publications is not
improving our ability to close information gaps as greatly as
direct support for data mobilization programmes (Fig. 3:
‘Scientific activities’ versus ‘GBIF participation’). A likely reason
is that current data-archiving policies48 and academic reward
systems49 do not favour data-sharing activities. They further
suggest that the largest or best-funded museums alone are unable
to guarantee high inventory completeness in distant regions,
unless their efforts are backed by supportive local conditions,
such as locally available research funding, mobilization efforts in
local research institutions and national commitment to data
sharing. The most effective strategy for closing gaps in DAI may
therefore lie in supporting mobilization efforts in institutions
nearby identified data gaps and supporting participation in
international data-sharing programmes. Dedicated funds and
specialized personnel for data mobilization in developed, often
low-diversity countries may be better applied to support efforts in
countries that lag behind, due to lack of expertise or cyber
infrastructure50, for example, through direct partnerships or
capacity building assistance.

The need to mobilize more data to increase completeness is
obvious: 69%–95% of the deviance in completeness explained
by our minimum adequate models can also be explained by
differences in record density (Supplementary Table 7a). However,
we find that there is much room for improving the effectiveness
of such mobilization: representing each known species of the
three vertebrate groups once in every 110 km cell within its range,
and thus achieving 100% inventory completeness globally at that
spatial grain, would require c. 3.7 M ideally sampled records.
Currently, about 42 times that many (157 M) validated records
represent only 21.6% (0.8 M) of these 3.7 M unique species-grid
cell combinations, demonstrating a huge level of informational
redundancy concentrated in a few places (Fig. 4, compare ref. 47).
Such intensive but localized sampling and data mobilization may
benefit local conservation efforts as well as many purely scientific
endeavors, but surely trades off against global-scale data needs,
such that gaps in DAI are particularly severe in regions where
higher-resolution data sets are most needed to support cost-
effective progress towards multiple Aichi Targets37,51. Strategic
mobilization of data sources that likely contain many missing
species-grid cell combinations could prove effective in quickly
closing gaps and reducing geographical bias in global DAI.

This in turn would facilitate robust, fine-grain distribution
models from SDM or downscaling approaches52 for a greater
and geographically more representative sample of species than
previously possible3, and could immediately support various
Aichi Targets6. Examples include land-use planning to minimize
biodiversity loss (Target 7), creating species lists for protected
areas and improving global reserve networks (Target 11),
safeguarding threatened species (Target 12) and mapping and
securing associated ecosystem services (Target 14). Targeting
sufficiently recent data sources would furthermore create strong
synergies with keeping conservation assessments up-to-date53. As
a concrete example of potential conservation impacts, GBIF-
facilitated records were recently used in the legal listing of five
species of sawfish (Pristidae) under the US Endangered Species
Act54. Increased access to occurrence information alone cannot
ensure sound application nor conservation outcomes, but it can
facilitate sound, data-driven decision-making5, which in many
parts of the world is currently impossible. We therefore argue
that data mobilization efforts should be coordinated and strive
to maximize return-on-investment for global conservation
applicability.

Immediate opportunities for addressing gaps in DAI are most
apparent at the national level: we find that even after controlling
for all investigated factors (which explain 92.1%–97.2% of
cross-national variation), country identity still explains a
significant portion of inventory completeness (2.4%–7.1% of D2;
Supplementary Table 7b), pointing to an important role of
country-specific political, legal, historical, linguistic or cultural
factors (Supplementary Note 4). If countries were equally
committed to providing access to their biodiversity information,
as agreed upon by CBD signatories, completeness should be
mainly limited by available financial resources. However, there is
only a moderate relationship between country-level completeness
and per capita gross domestic product (r2¼ 0.34, Po0.001;
Fig. 5a,b) or total conservation spending55 (r2¼ 0.16, Po0.001).
Notably, several large emerging economies including Brazil,
China, India, Indonesia, Russia or Turkey lag behind (Fig. 5b,c
and Supplementary Table 3), which is worrying given increasing
pressure on their biodiversity from rising global and domestic
consumption56,57. Success in building an adequate information
basis for global biodiversity conservation and thus globally
informed policies for environmental sustainability will depend on
their support and may be determined by political rather than
economic factors. For example, despite the large mobilization
needs owing to its megadiverse biota, Mexico has a leading role
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in biodiversity informatics due to early political support for
establishment of a national biodiversity programme58. Data-rich
institutions in economically powerful countries such as Brazil,
China and Russia12,14,24, which together account for 31% of
missing species-grid cell combinations (Fig. 5c and Supplementary
Table 3), seem particularly well-poised to contribute significantly
to globally accessible species distribution information.

As countries such as Brazil recently announced intentions to
relax biodiversity research restrictions59, as well as to improve
and unlock their data store, existing national programmes (for
example, speciesLink; http://splink.cria.org.br) will increasingly
be integrated into global DAI, and information gaps and priorities
may rapidly shift. More than current snapshots, tools for ongoing
re-evaluation (see http://patterns.mol.org/completeness) may aid
researchers to assess or account for data bias60 as well as monitor
progress in data mobilization11.

This global cross-taxon assessment represents a first in a
number of steps required for more effective understanding and
confrontation of information gaps on species distributions.
Although terrestrial vertebrates represent only c. 1.6% of

described species61, addressing the factors that emerged as
important across vertebrate taxa may hold the greatest promise
for closing gaps for biodiversity in general. Vitally, and confirmed
by the strong taxon dependence of our results, assessments of
distribution information need to be extended to more species-rich
groups such as fishes, plants and invertebrates (for example, see
refs 10,23,25 for regional assessments). Comparing ratios between
mobilized record volumes and described species numbers
suggests that gaps in DAI may be one to three orders of
magnitude more severe in those groups (average records per
species: tetrapods (31,032 spp.): 6,909; fishes (31,658 spp.): 347;
vascular plants (283,701 spp.): 317; invertebrates (1.38M spp.): 31;
numbers of geo-referenced records from GBIF website, June
2014, species numbers from ref. 61).

Such profound data limitations call for more holistic solutions.
Our assessment highlights potential ways for making institution-
based data mobilization more effective, but also the limitations of
such efforts. Point records from biocollections only represent one
of a variety of data sources13 and their targeted mobilization
should be complemented by other ways to address biodiversity
information needs. Thorough biodiversity assessments led by
trained field biologists will continue to play an important role in
the creation of primary information for unsurveyed, biodiverse
areas. In addition, novel approaches such as citizen science
projects are already providing increasingly valuable records for
certain taxa at comparatively low cost46. Improved reward
systems49 and new data publishing mechanisms and journal
requirements48 can incentivize both individual scientists and
larger project teams to openly share biodiversity records.
Much information held by conservation non-governmental or
governmental organizations may be unlocked through supportive
mechanisms, such as stronger evaluation and attribution of
progress towards declared national commitments (for example,
Aichi Target 19) and more widely adopted strategies to address
sensitive information, for example, on threatened species62.

Further opportunities for improvements lie in better use of
available information. Novel Bayesian modelling approaches can
address some of the typical limitations of classical SDMs, for
example, by connecting different data types across spatial scales52

or by explicitly modelling bias-causing processes41,42,63.
Geographically or thematically focused data platforms such as
eBird46 or Atlas of Living Australia62 have already highlighted the
opportunities of using enriched information together with
models. Novel biodiversity informatics infrastructure such as
Map of Life13 has the potential to provide an integration of
disparate information sources, and to link these with
environmental information through best-suited modelling tools
to address species distributions and their changes globally.

Rapid biodiversity loss, limited funding and potential trade-offs
with direct conservation investments64 require priorities for
future collection and mobilization of biodiversity records
into DAI. Targeted integration of available information and
assessments of gaps, along with continued evaluation of
effectiveness of DAI for conservation needs, are as vital as
increased commitment to biodiversity data sharing by political
stakeholders, institutions and individual scientists. With time
running out to meet CBD targets on biodiversity knowledge,
more effective data use and mobilization, and a cultural shift
about data sharing are urgently needed.

Methods
Species distribution data. We overlaid expert-based extent-of-occurrence range
maps for terrestrial birds (excluding pelagic feeders; N¼ 9,712), terrestrial
mammals (N¼ 5,270) and amphibians (N¼ 6,188) with four nested equal-area
grids (grain sizes: 110, 220, 440 and 880 km) to infer coarse-resolution species
richness patterns. As a representation of international efforts to collect, digitize and
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Figure 5 | Gaps in DAI on species distributions at the country level.

(a) Country-level inventory completeness, measured as the percentage of

the total unique species-grid cell combinations in each country that are

covered by GBIF records. (b) Country-level inventory completeness in

relation to per capita gross domestic product (in purchase power parity

dollars, PPP $); r2¼0.34, Po0.001. Font size of country ISO codes is

proportional to the total number of unique species-grid cell combinations

that need to be recorded in each country to reach 100% inventory

completeness at the 110-km grain. Font colour is for geographical reference

(compare inset map). Countries mentioned in the main text: BRA, Brazil;

CHN, China; IDN, Indonesia; IND, India; MEX, Mexico; RUS, Russia; TUR,

Turkey. (c) Share that each country has in the unique species-grid cell

combinations that are missing globally from a complete inventory at the

110-km grain.
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share biodiversity records, we compiled a database of nearly 200 M records for the
three groups, aggregated by GBIF (see Supplementary Tables 4 and 9, and
Supplementary Note 1). We focus on GBIF given that it is by far the largest such
effort in geographic and taxonomic scope8,9 and has an intergovernmental
mandate to openly make accessible data from a worldwide base of data publishers.
Data from GBIF represent the greatest body of existing DAI on species
occurrences, based on centuries’ worth of museum specimens, citizen science
observations, surveys, literature and other sources. GBIF also has a vital role in
sharing skills, software, tools and best practices for biodiversity data mobilization.
Thus, GBIF-facilitated DAI is currently the best available indicator of ‘shared
biodiversity knowledge, science base and technologies’ as referred to by Aichi
Target 19 (ref. 11). To link GBIF-facilitated records with range maps, extensive
taxonomic standardization was necessary (our approach as well as various filtering
and validation steps are explained in the Supplementary Note 1). We defined
inventory completeness as the percentage of expert-opinion species richness
documented by mobilized records. We note that other DAI sources play vital and
often complementary roles in progressing towards Aichi Targets (Supplementary
Note 4). Yet, other data sets may not be shared but nevertheless influence regional
research and conservation. Thus, results here should not be interpreted as definite
maps of knowledge gaps, but the analyses of drivers are likely indicative of factors
limiting biodiversity information in other data sources.

Geographic and socio-economic drivers of gaps in DAI. We analysed rela-
tionships of 12 geographic and socio-economic factors with record density and
inventory completeness. We used three variables to describe the appeal of areas to
attract collectors: (i) endemism richness65, that is, the sum of inverse range sizes of
all species present in a grid cell, was calculated from the number of 110 km cells.
(ii) To model effects of mountains on record collection, we calculated the
topographic range in each cell based on a digital elevation model. (iii) We modelled
the effects of protected areas using proportions of land area in grid cells that fall
within protected areas of International Union for Conservation of Nature
categories I–IV. We investigated three aspects of accessibility: (i) to test for effects
of on-ground accessibility, we used a data set on the time needed to travel to cities
with a population 450,000 (ref. 66). (ii) To model effects of the proximity to
airports, we created an index based on the locations of 49,300 airports and
airfields67. (iii) ‘Proximity to institutions’ was expressed as weighted geographic
proximity of a grid cell to those data publishers that contributed records for the
area surrounding the cell. Index values are high if the majority of records are
contributed by geographically close data publishers. We modelled effects of secure
conditions using the Global Peace Index68, which aggregates information on
political stability, armed conflicts and levels of public safety. We investigated two
aspects of international scientific integration: (i) to quantify integration into
‘scientific activities’, we extracted the H-index for every country based on
peer-reviewed papers published in the field ‘Ecology, Evolution, Behavior and
Systematics’ from Elsevier’s Scopus database (covering the years 1996–2011),
and multiplied it with the proportion of papers resulting from international
collaborations (see Supplementary Note 2). (ii) We tested for effects of political
commitment to data sharing using the proportion of the land area within each grid
cell that falls within GBIF-participating countries. We used three measures of
financial and institutional resources: we estimated financial resources that are
potentially available for biodiversity research from per capita gross domestic
expenditure on research and development (i) within grid cell-overlaying countries
(‘National research funding’) as well as (ii) in countries where the publishers of
records for a particular cell are situated (‘Research funding of institutions’). (iii) We
used record volumes contributed to GBIF by different data publishers to estimate
institution size. Details on calculation and transformation of predictor variables,
along with detailed information on the respective hypotheses and the limitations of
our data sources are in Supplementary Notes 2 and 4.

Statistical methods. We investigated effects of predictor variables on inventory
completeness separately for amphibians, birds and mammals at each of the
four spatial grains with simple and multiple regressions. Specifically, we used
non-spatial and spatial generalized linear models with a binomial distribution,
where completeness enters as a composite variable (‘species covered by records’,
‘species not covered but presumed present’) and where differences in species
richness are automatically accounted for. Spatial models account for residual
spatial autocorrelation by including a ‘residuals autocovariate’ built from residuals
of the non-spatial model and an optimized spatial neighbourhood structure69.
Because of long computation times for spatial models, we ran all possible
non-spatial models and re-ran those model subsets that would likely be among the
minimum adequate spatial models (with DAIC o10 to the lowest Akaike
Information Criterion score) as spatial models. We assessed model fits of minimum
adequate spatial models as the % deviance explained (D2) (Supplementary Table 6).
We investigated interactions among variables as well as nonlinear effects, but—
although many were significant—accounting for them did not greatly alter model
fit or parameter estimates of main effects in preliminary analyses. To maintain as
much simplicity as possible given 12 predictor variables and 12 separate sets of
models (3 taxa � 4 spatial grains), we decided to focus on the main effects. We
used standardized coefficients (b) of minimum adequate spatial models (with the
lowest AIC scores) to measure the relative importance of predictor variables. As an

alternative measure, we used percentages of the sums of squares attributable to
each factor, based on analyses of variance with a response variable consisting of the
AIC scores of all possible models and predictor variables coding the presence/
absence of each predictor in the respective model. As we modelled effects separately
for each of the three vertebrate groups, the over-representation of birds in terms of
species and record number does not bias the conclusions for mammals and
amphibians (Supplementary Note 4). We identified factors that are most important
for limiting inventory completeness by focusing on those effects that consistently
emerged as important across vertebrate groups, grains sizes and evaluation metrics.
For further details and references, see Supplementary Notes. P-values were adjusted
to geographically effective degrees of freedom following Dutilleul70.

Data archiving. The synonym table used for this study as well as data sets used
to plot maps and run regression models are available as Supplementary Data 1 and 2.
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