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Abstract

For cancer and many other complex diseases, a large number of gene signatures have been generated. In this study, we use
cancer as an example and note that other diseases can be analyzed in a similar manner. For signatures generated in mul-
tiple independent studies on the same cancer type and outcome, and for signatures on different cancer types, it is of inter-
est to evaluate their degree of overlap. Many of the existing studies simply count the number (or percentage) of overlapped
genes shared by two signatures. Such an approach has serious limitations. In this study, as a demonstrating example, we
consider cancer prognosis data under the Cox model. Lasso, which is representative of a large number of regularization
methods, is adopted for generating gene signatures. We examine two families of measures for quantifying the degree of
overlap. The first family is based on the Cox-Lasso estimates at the optimal tunings, and the second family is based on esti-
mates across the whole solution paths. Within each family, multiple measures, which describe the overlap from different
perspectives, are introduced. The analysis of TCGA (The Cancer Genome Atlas) data on five cancer types shows that the de-
gree of overlap varies across measures, cancer types and types of (epi)genetic measurements. More investigations are
needed to better describe and understand the overlaps among gene signatures.
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Introduction

For cancer and many other complex diseases, profiling studies
have been extensively conducted, measuring multiple layers of
molecular activities. Available measurements include gene ex-
pression, miRNA, methylation, copy number alteration (CNA),
phosphorylation, protein expression and others. In this article,
we use cancer as an example because of its clinical importance
and the huge amount of recently generated cancer profiling
data. For multiple cancer types, a large number of gene signa-
tures has been generated for various outcomes and phenotypes.

Different from many published studies, the focus of this
study is not on generating more gene signatures but on measur-
ing the degree of overlap of two (or more) signatures. Analyzing
the degree of overlap is important in multiple scenarios. First,
consider gene signatures generated on the same cancer type

and outcome in multiple independent studies. The reproducibil-
ity of gene signatures, or equivalently their high degree of over-
lap across studies, is an essential requirement for potential
clinical usage [1]. For major cancer types such as breast cancer
[1], lung cancer [2] and non-Hodgkin lymphoma [3], there are
multiple review articles discussing the overlap of gene signa-
tures across studies. Second, consider gene signatures on differ-
ent cancer types and outcomes. Multiple studies have
examined whether the signatures of two or more cancers have
overlap [4]. Such overlap has many important implications. For
instance, the degree of overlap has been used to reclassify dis-
eases [5]. Two diseases belong to the same class if their signa-
tures have a high degree of overlap. In cancer studies, the
overlapped genes have been suggested as representing the
more essential features of cancer. Studies such as the human
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disease network (HDN) [6] define the pairwise ‘distance’ be-
tween diseases using their gene signatures. It has been conjec-
tured that diseases ‘close’ to each other at the molecular level
can be treated using similar strategies. From both practical and
scientific perspectives, it is important to accurately quantify the
degree of overlap of gene signatures.

Two types of analyses have been conducted to measure the
degree of overlap. The first is more biological [7]. Studies of this
kind examine the biological functionalities of gene signatures
(for example, the enriched pathways or represented molecular
functions) by interrogating KEGG, GO and other databases. This
type of analysis is limited by our partial or even wrong know-
ledge regarding the biological functions of genes. In addition, it
is difficult to develop a mathematically rigorous measure based
on the biological functions. The second type of analysis is more
statistical. In quite a few published studies [4, 8], the number
and percentage of overlapped genes between two signatures are
calculated. Such statistical analysis does not demand extensive
knowledge of biological functions and is very easy to conduct.
However, simply counting the number of overlapped genes has
limitations. Different genes can have highly similar biological
functions and strongly correlated measurements. Since they are
different genes, they are not counted as overlapped in the sig-
natures. However, from a biological or statistical perspective,
they should be counted as ‘partially overlapped’. Another
limitation shared by the existing statistical analyses is that
the impact of tuning parameters—which are needed for
many methods—on the degree of overlap has not been given
attention [8].

In this article, we will introduce multiple measures for quan-
tifying the degree of overlap of two gene signatures. Although
the overlap of signatures has been discussed in published stud-
ies, there is still no mathematically rigorous definition of ‘over-
lap’. Thus, it is prudent to develop multiple measures, which
have different statistical interpretations and cannot replace
each other. In addition, they quantify overlap both at fixed tun-
ings and for a sequence of tunings along the solution paths. The
analysis of The Cancer Genome Atlas (TCGA) data demonstrates
that they lead to results different from those using the simple
method.

TCGA data

The overlap measures were applied to the TCGA (https://tcga-
data.nci.nih.gov/tcga/) data. To clearly set up the analysis
framework, we will first describe the data sets. TCGA is a com-
bined effort by multiple research institutes organized by the
National Cancer Institute (NCI). The tumor and normal samples
from >6000 patients have been profiled, covering 37 types of
(epi)genetic and clinical data for 33 cancer types.
Comprehensive profiling data have been published on cancers
of the breast, ovary, skin, head/neck, lung and other organs and
will soon be available for many other cancer types. TCGA data
were chosen for multiple reasons. With rigorous control by the
NCI and individual institutes, the data are of high quality. And
with almost unified data generation protocols, the comparabil-
ity across cancers/data sets is much higher than that of other
studies. In our previous study [8], we analyzed the Gene
Expression Omnibus (GEO) data and found a low degree of over-
lap within and across cancers. However, as GEO data sets were
generated independently under different protocols, their data
quality varies significantly. It is hard to determine how much of
the low overlap is attributable to the low data quality. This prob-
lem is much alleviated with TCGA. In addition, TCGA data are

multidimensional, with gene expression, CNA, methylation,
miRNA and other types of (epi)genetic measurements on the
same subjects. They are more comprehensive than data with a
single type of measurement. And they are being analyzed by
multiple research groups, making them an ideal testbed.

With TCGA, it is possible to conduct analysis on multiple
gene signatures of the same cancer type. However, TCGA is
unique in that it provides an opportunity to study multiple can-
cer types. Specifically, as shown in Table 1, we analyzed progno-
sis data on five cancer types: breast cancer (BRCA), glioblastoma
(GBM), leukemia (LAML), lung cancer (LUSC) and melanoma
(SKCM). Such data have measurements on overall survival, clin-
ical and environmental variables (details provided in the
Supplementary Appendix), gene expressions, methylation and
CNAs. miRNA data are also available. However, as the number
of miRNAs measured for two or more cancer types is extremely
small, miRNA data were not analyzed. The five cancer types
were chosen because of their clinical importance and because
their data have been analyzed multiple times in the literature.

Data processing

All data analyzed in this study are publicly available and down-
loaded from TCGA Provisional using the CGDS-R package. For
(epi)genetic measurements, processed level 3 data were down-
loaded. The following processing was conducted before ana-
lysis. In the first step, we conducted the within-cancer
processing of data on each cancer type separately using the
same approach. Take the BRCA data as an example. As shown
in Figure 1, for clinical data, we removed samples with missing
overall survival times. For (epi)genetic data, the missing rates
are low. We conducted imputation and filled in missing values
with medians across samples. Then clinical and (epi)genetic
data were merged using sample ID. In the second step, as the
goal was to compare gene signatures across data sets (cancer
types), we conducted across-cancer processing. The flowchart
for processing gene expression data is shown in Figure 1. CNA
and methylation data were processed similarly. We first identi-
fied the 13 835 gene expressions measured in all five data sets.
In principle, we can analyze all these genes. However, as the
number of genes associated with cancer prognosis was ex-
pected to be small, to improve stability, we conducted a mar-
ginal screening and selected the top 2500 gene expressions for
downstream analysis [9].

Generating gene signatures

The processed data were analyzed to generate gene signatures.
A large number of methods are applicable for such a purpose.
We refer to published studies [10–12] for relevant discussions.
Briefly, there are two families of methods. The first family ana-
lyzes one genetic unit (gene, methylation locus, etc.) at a time
and selects the top-ranked ones using, for example, marginal
P-values and the false discovery rate approach. The second fam-
ily jointly analyzes a large number of genetic units in a single
model. In the article, we used Lasso, which is a joint analysis
method, to generate gene signatures [11]. Lasso is perhaps the
most popular penalization method and has been used in a large
number of cancer genetic data analyses [10], including a recent
TCGA study [9]. A closer examination of the measures described
in the next section reveals that they are directly applicable to
gene signatures generated using other methods.

For a prognosis data set, denote T as the survival time and C
as the random censoring time. Under right censoring, one
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observes fY ¼min T;Cð Þ; d ¼ IðT�CÞg where Ið:Þ is the indicator
function. To avoid confusion of terminology, we used gene ex-
pression as an example in the description of methodology.
Denote X as the d gene expressions, Z as the s clinical/envir-
onmental variables and W ¼ ðXT ;ZTÞT . In the Cox model, denote
h ¼ ðbT; cTÞT as the coefficients of W. Assume n iid observations.
For the TCGA data and data alike, d� n� s. Under the Cox
model, the log-partial-likelihood function is

‘ hð Þ ¼
Pn

i¼1di WT
i h� log

Pn

j¼1I Yj�Yi
� �

exp WT
j h

� �h in o
. The Lasso

estimate is defined as ĥ ¼ argmax ‘ hð Þ � k
Pd

k¼1jbkj
� �

, where the

subscript k denotes the kth component. Note that only the coef-
ficients of gene expressions are penalized, as the clinical vari-
ables are low-dimensional and usually ‘of interest’ (so there is

no need for regularization or selection). In the literature, models
with gene expressions only have also been fit. Compared with
such models, the one that also includes clinical variables can
better describe cancer biology and have more clinical
implications.

Multiple software packages are available for computing the
Cox-Lasso estimates. In our numerical study, we used the R
package glmnet. With Lasso, many components of b̂ are exactly
zero, and only a small number of genes with nonzero coeffi-
cients are included in the model. The identified set of genes de-
pends on the tuning parameter k. Specifically, a smaller value of
k leads to more genes with nonzero estimated coefficients. The
dependence of identified genes on tuning is also true for many
other methods. For example, with the popular marginal

Table 1. Description of the five TCGA data sets

Data type BRCA GBM LAML LUSC SKCM

Clinical variables
Number of patients 739 299 180 308 366
Overall survival (month) (0.00, 196.97) (0.13, 76.90) (0, 95.37) (0, 176.53) (1, 362.5667)
Event rate 7.58% 88.96% 64.44% 35.39% 37.98%

Gene expression
Platform Agilent 244K Custom

Gene Expression
G4502A_07

Agilent 244K Custom
Gene Expression
G4502A_07

Affymetrix Human
Genome HG-
U133_Plus_2

Agilent 244K Custom
Gene Expression
G4502A_07

Illumina HiSeq 2000
RNA Sequencing
Version 2 analysis

Number of patients 526 500 173 154 371
Features before clean 15 639 16 407 18 131 15 521 19 425
Features after clean 2500 2500 2500 2500 2500

DNA methylation
Platform Illumina DNA

Methylation 27/
450 (combined)

Illumina DNA
Methylation 27/
450 (combined)

Illumina DNA
Methylation 450

Illumina DNA
Methylation 27/
450 (combined)

Illumina DNA
Methylation 450

Number of patients 929 398 194 385 373
Features before clean 1662 1622 14 959 1578 193
Features after clean 193 193 193 193 193

Copy number alteration
Platform Affymetrix Genome-

Wide Human SNP
Array 6.0

Affymetrix Genome-
Wide Human SNP
Array 6.0

Affymetrix Genome-
Wide Human SNP
Array 6.0

Affymetrix Genome-
Wide Human SNP
Array 6.0

Affymetrix Genome-
Wide Human SNP
Array 6.0

Number of patients 934 563 191 178 374
Features before clean 20 500 20 501 20 501 17 869 23 689
Features after clean 2500 2500 2500 2500 2500

GBM 
16407 features 

BRCA
15639 features

Clinical data
739 samples

GE 
526 samples 

CNA
934 samples

methy
929 samples

Merge 

Clinical data
403 samples

GE 
403 samples 

methy
403 samples

CNA
403 samples

LAML
18131 features

LUSC
15521 features

SKCM
19425 features

Merge 
11814 features 

Screen 

BRCA
2500 features

GBM 
2500 features 

LAML
2500 features

LUSC
2500 features

SKCM
2500 features

Figure 1. Flowchart of data processing.
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analysis approach, the cutoff of P-value can be viewed as a tun-
ing. For the boosting, thresholding and other joint analysis
methods, there are also one or multiple tunings.

Prediction analysis

To further motivate examining the overlap of gene signatures
across cancer types, we conducted prediction analysis. The
flowchart is shown in Supplementary Figure A1.

Consider two cancer types, say A and B. The analysis con-
sisted of the following steps: (a) randomly split cancer A data into
a training set and a testing set with sizes 3:1; (b) conduct within-
cancer prediction: (b.1) apply the Cox-Lasso method to the train-
ing set; (b.2) use the training set model to make a prediction for
the testing set subjects. Compute the logrank statistic to quantify
prediction performance [9]; (c) conduct across-cancer prediction:
(c.1) apply the Cox-Lasso method to the data on cancer B; (c.2)
using the cancer A training data and genes identified in (c.1), fit a
Cox model; (c.3) using the model generated in (c.2), make a pre-
diction for the cancer A testing data in the same manner as in
(b.2); (d) repeat (a)-(c) 100 times. In each split, two logrank statis-
tics are generated. The one generated in (b.2) measures prediction
performance in an ‘ordinary’ way: the model and genes are iden-
tified using cancer A training data and used to make a prediction
for cancer A testing data. The second logrank statistic, generated
in (c.3), differs from the first one and those in published studies.
Specifically, the genes are identified using cancer B data but used
to make a prediction for cancer A subjects. If the two cancers
have no similarity at the molecular level, then insignificant pre-
diction should be expected in (c.3).

The prediction results are shown in Supplementary Table A1.
Most of the across-cancer logrank statistics are not significant.
(The logrank statistic has a chi-squared distribution with degree
of freedom one. A logrank statistic >3.84 is significant at the 0.05
level.) However, there are a few significant or close-to-significant
ones. For example, the across BRCA and SKCM logrank is 4.837.
Although prediction and gene signature construction are differ-
ent analysis goals, the across-cancer prediction may still suggest
that the signatures of some cancers have overlap.

Measures of the degree of overlap between
gene signatures

Different gene signatures contain a different amount of infor-
mation. Some contain information on the set of identified im-
portant genes, their estimates and significance level. As shown
in Table 1, different data sets can be generated using different
platforms (for example, three different platforms have been
used for gene expression), and the measurements are not dir-
ectly comparable, leading to incomparable estimates. For joint
analysis methods including Lasso, inference techniques are still
being developed, and there is a lack of consensus. Thus, in what
follows, we focus on evaluating the degree of overlap of the sets of
identified genes. In principle, we can evaluate the overlap of mul-
tiple signatures. For description simplicity, we compared two
gene signatures. To facilitate future applications, the analysis
code is available at http://works.bepress.com/shuangge/48/.

Measures at fixed tuning

With Cox-Lasso, the tuning parameter is not specified a priori and
needs to be chosen data-dependently. In the data analysis, we
chose k using cross validation, which is the default in glmnet. For
some other methods (for example, marginal analysis), the tuning
parameters can be pre-fixed but can also vary.

Denote XA and XB as the matrices of gene expressions for
cancers A and B, respectively. Consider the Cox-Lasso estimates
at the optimal tuning parameter values. For cancer A (B), denote
IA (IB) as the index set of identified genes with size p (qÞ.
Further, denote XIA

A as the sub-matrix of XA corresponding to IA.
Assume n iid samples for cancer A.

Index-based measure
This measure has been adopted in multiple published studies
[8] and serves as a benchmark here. It starts with simply count-
ing the number of genes identified in both signatures. Taking
into account the sizes of IA and IB, it is defined as

m1 IA; IBð Þ ¼ #fIA\IBg
# IA[IBf g :

The numerator and denominator are sizes of the intersection
and union, respectively, similar to the Jaccard index [13].

This measure has the strictest definition of overlap. Despite
its simplicity, it has limitations. Consider a scenario in which
two different genes have highly correlated measurements,
which is not uncommon in practice. This measure counts such
genes as different (not overlapped). However, from a statistical
modeling perspective, they should be counted as ‘similar’ or
‘partially overlapped’. The following measures are motivated by
such a consideration.

Rank-based measure
With Cox-Lasso and many other methods, the covariate effects
are linear combinations of selected genes. Mathematically, if
any linear combination of variables in the first set can be writ-
ten as a linear combination of variables in the second set, these
two sets are linearly equivalent. Motivated by such a consider-
ation, we developed the rank-based measure, which quantifies
the degree of overlap based on the similarity of two variable
sets in a linear sense. Specifically, with XIA

A and XIB
A , which are

sets IA and IB on XA, the measure is defined as

m2 IA; IBð Þ ¼
r XIA

A

� �
þ r XIB

A

� �
� r XIA[IB

A

� �
r XIA[IB

A

� � ;

where rð:Þ denotes the rank of a matrix. This measure has the fol-
lowing properties. When IA and IB are linearly equivalent, m2

equals 1. When IA and IB are linearly orthogonal, m2 equals 0. A
value of m2 between 0 and 1 indicates partial overlap, with a
higher value corresponding to a higher degree of overlap.

Note that m2 defined above is calculated using the observed
gene expressions on cancer A. Using the cancer B data, another
measure can be computed in the same manner and is not ne-
cessarily equal to the one computed above. This may be incon-
venient in practice but is reasonable. The observed rank,
computed on a finite sample, is a stochastic realization of the
population rank. It is expected that, as the sample sizes grow,
the two measures computed using cancers A and B data will
converge to the same population value, and hence the discrep-
ancy will disappear. In practical data analysis with finite sample
sizes, we suggest computing two m2 values, using data on can-
cers A and B separately. If desired, a simple average can be com-
puted to remove discrepancy.

To calculate m2, we must calculate the ranks of multiple matri-
ces. This can be realized through singular value decomposition:
the rank of a matrix is equal to its number of nonzero singular val-
ues. In data analysis, we found that some singular values are very
close to zero, and counting such singular values may lead to

738 | Shi et al.

,
Analysis
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbu049/-/DC1
 (Appendix)
``
''
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbu049/-/DC1
 (Appendix)
greater than 
,
http://works.bepress.com/shuangge/48/
Fixed 
Tuning
: 
``
''
``
''
: 


unstable results. To tackle this problem, we calculated the rank of

a matrix as
P

j I rj > c
� �

; where rj’s are the singular values and c

is the user-defined tolerance level (0.1 in our data analysis).

For XIA[IB
A , the tolerance level is calculated as

minfri
AI ri

A > c
� �

g ^minfrj
BI rj

B > c
� �

g. In data analysis, the rank-

based measure is calculated with the assistance of R package svd.

Correlation-based measure
The rank-based measure quantifies overlap using the linear
spaces spanned by two gene sets. It is not easy to identify which
genes contribute to the overlap. The correlation-based measure,
on the other hand, may better reflect contribution(s) (to overlap)
from individual genes. This measure starts with computing the
correlation coefficients between individual genes. Specifically, let
qij ¼ cor XIA

A;i; XIB
A;j

� �
be the correlation between gene i in IA and

gene j in IB, computed using the cancer A data. We proposed

m3ðIA; IBÞ ¼

P
i

P
jIfjqijj > qg
pq

:

It calculates the percentage of correlations above a cutoff q and
counts how many pairwise correlations are strong enough.

The cutoff q is determined based on the Fisher transform-
ation. Specifically, let zij ¼ 0:5logðð1þ qijÞ=ð1� qijÞÞ. If the correl-

ation between XIA
A;i and XIB

A;j is zero,
ffiffiffiffiffiffiffiffiffiffiffiffi
n� 3
p

zij is approximately

distributed as Nð0; 1Þ [14]. We can use this result to determine a

threshold n for
ffiffiffiffiffiffiffiffiffiffiffiffi
n� 3
p

zij. The corresponding threshold for qij is

q ¼ ðexp 2nffiffiffiffiffiffiffi
n�3
p
� �

� 1Þ=ðexp 2nffiffiffiffiffiffiffi
n�3
p
� �

þ 1Þ. A counterpart of m3 can be

computed using the cancer B data.

R-squared-based measure
The above measure is built on the correlation between two indi-
vidual genes. Another scenario of correlation is that a gene in IA
is correlated with a linear combination of multiple genes in IB,
not necessarily a specific gene.

This R-squared-based measure starts with regressing a
gene in IA onto genes in IB. The R-squared statistic of this
regression is then calculated, with a higher value indicating a
higher correlation. When q is moderate to large compared to the
sample size, the ordinary least squares estimation and
calculation of R-squared cannot be straightforwardly
conducted. To solve this problem, we resorted to penalized
regression. Define the Lasso estimate for gene i in IA as

ĝ ¼ argminfkA;iIA

XfIAgfA;ig
� XIB

A gk2 þ s
Pq

j
jgjjg, where g is a q� 1 vec-

tor of regression coefficients. The R-squared statistic was then
calculated using only variables corresponding to the nonzero
components of ĝ. With the regularized regression and
R-squared statistics, the degree of overlap measure is defined as

m4ðIA; IBÞ ¼

P
iIfRi > 0:5g

p
:

The cutoff of 0.5 can be somewhat subjective. In practice, users
may change this cutoff if warranted.

Remarks
Four measures have been described. They take different angles.
The first, the index-based measure, is more ‘mechanistic’ and
only accounts for the identity of genes but not their values. The
rest are built on the values of genes and, with finite sample
sizes, also depend on whether data on cancer A or B are used.

The rank-based measure is on the overlap of linear spaces
spanned by the two gene sets. The correlation-based measure is
built on the pairwise similarity of genes. And the R-squared-
based measure is built on the similarity between a gene and a
set. There are multiple other ways of defining correlation [15].
The ones described above perhaps have the simplest definitions
and are the most commonly adopted.

Measures that use the whole solution paths

Analyzing gene signatures at fixed tunings may face problems.
First, multiple approaches can be used to choose the tuning par-
ameter with Lasso as well as other estimation methods, and dif-
ferent approaches lead to different tunings. Thus, the gene
signatures and their overlap depend on the tuning selection ap-
proach. Cross validation is the default in glmnet, but other
approaches (such as Generalized Cross Validation (GCV) and
Bayesian Information Criterion (BIC)) have also been extensively
used. Second, the analysis may lack stability. A small deviation
from the selected tuning may result in a significant change in
the identified gene signature and, hence, overlap.

With Cox-Lasso, when we vary the tuning parameter, a se-
quence of estimates can be generated, which is referred to as the
‘solution path’ in the literature [16]. A sample plot of the solution
path (GBM data, gene expression measurement) is shown in
Supplementary Figure A2. Recent studies suggest that estimates
corresponding to other tuning parameter values can provide in-
formation beyond what is selected using cross validation [17]. Let
kmax be the smallest value of tuning under which all components
of b are estimated as zero. Let kmin be the minimum value of k, set
as 0:01kmax. Along the solution path, we select K equally spaced
tuning parameter values. In the numerical study, we set K ¼ 500:

Integrate the point-wise measures along the solution path
For each data set (cancer type) along the solution path, we now
have K sets of genes identified using Cox-Lasso. For cancers
A and B, denote the K index sets as fIA1;. . .; IAKg and fIB1;. . .; IBKg.
We proposed first evaluating the degree of overlap between IAk

and IBk for each k and then summarizing across the K measures.
We noted that the tuning parameter values corresponding to
each k for cancers A and B are different. However, since they oc-
cupy the same position between the smallest and largest tunings,
they roughly represent the same degree of regularization.
Hence, it is meaningful to compare IAk and IBk. At each k, meas-
ures mlðl ¼ 1; ::; 4Þ can be computed as described in the last section.

It is not appropriate to simply sum up the ml values along
the solution path. Estimates with tunings close to the optimal
can be more informative than those with very small/large tun-
ings (which select a large/small number of genes). Motivated by
such a consideration, we proposed the weighted sum measure
of the degree of overlap as

Sl A;Bð Þ ¼
X

k

w k; c;nð ÞmlðIAk; IBkÞ;

where l ¼ 1;. . .; 4 and w k; c;nð Þ is the weight at the kth point and
defined as

k; c;nð Þ ¼

2k
nc
; 0 < k�c

2ðn� kÞ
nðn� cÞ ; c < k�n

0; k > n

:

8>>>>><
>>>>>:

Further, c is the point of optimal tuning. This weight function
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has the following properties. The sum of all weights is equal to
1. The largest weight is assigned to the point of optimal tuning.
The weights get smaller as the tunings get away from the opti-
mal. A linear-decreasing function is used for simplicity.

Frequency-based measure
The above integrated measures are the weighted sums of K
measures. Loosely speaking, if a gene is included in more of the
K Cox-Lasso estimates, it has more contributions to the K indi-
vidual overlap measures and hence to the integrated measures.
This observation shares a similar spirit with that of quantifying
the relative importance of genes based on their reproducibility
(stability) [18].

Motivated by the role reproducibility plays in gene signa-
tures, we proposed the frequency-based measure, which is cal-
culated as follows: (a) For cancer A and cancer B separately,
compute the K Cox-Lasso estimates as described in the above
sections. (b) For gene jð¼ 1;. . .; dÞ, count the frequencies of it
being selected, and denote as fj

A and fj
B, respectively. These fre-

quencies quantify its importance relative to other genes, with a
higher frequency indicating more importance. (c) Let f A (f B) be
the sorted gene frequency lists in a decreasing order and rj

A (rj
B)

be the position of the jth gene. (d) Define the degree of overlap
measure as

Sf A; Bð Þ ¼
Xd

j¼1

1
rj

A

1
rj

B :

This measure has been partly motivated by published studies
[19]. Its value gets larger if there are more genes with higher
rankings for both cancers. It is not strongly related to the meas-
ures defined in the above sections and has different magnitudes
and interpretations.

Remarks

The concept of gene signature overlap has been discussed mul-
tiple times in the literature. However, there is still no rigorous
mathematical definition. Because of that, it is prudent to de-
velop multiple measures to address overlap from different
angles. The proposed measures have different definitions and,
as to be shown below, lead to different numerical results.
Choosing a proper measure in practice needs to be done on a
case-by-case basis and heavily depends on the analysis goal.
When there is high confidence in the selected tunings, the
measures at fixed tunings should be adopted. Otherwise, those
integrating over solution paths are preferred. When it is desir-
able to stress the contribution of individual genes to overlap,
the correlation- and R-squared-based measures should be
adopted. Otherwise, the rank-based measure is appropriate. In
some studies, reproducibility is emphasized, which calls for the
frequency-based measure. With these considerations, we
do not expect a universally optimal measure for practical data
sets. The differences in measures mostly stem from the differ-
ent aspects they address. To facilitate application, we have de-
veloped the above measures with computational simplicity and
intuitive interpretability in mind. We acknowledge that there
can be other measures but likely with more complicated
formulations.

The proposed measures provide point estimates of overlap.
In statistics, downstream analysis would include inference (sig-
nificance level). Our literature search suggests that no published
study has examined the inference aspect of gene signature

overlap. We conjecture that it is possible to apply a per-
mutation approach and conduct inference. However, we note
that statistical inference with high-dimensional data, even the
‘simple’ Lasso estimate, is still being debated. Thus in this
study, we focus on estimation and do not pursue the inference
aspect.

Analysis of TCGA data

We analyzed the TCGA prognosis data on five cancers. There
are a small number of recent studies developing integrative
gene signatures that are composed of multiple types of (epi)gen-
etic measurements. Here, we took the more common approach
and analyzed each type of measurement separately.

The results on the degree of overlap evaluated at the optimal
tunings are shown in Table 2. We also ‘decomposed’ Table 2
and present the results on each measure separately in
Supplementary Table A2a–d. Multiple observations have been
made.

The first is that different measures lead to different conclu-
sions. Take gene expression data for BRCA and LAML as an ex-
ample. The index-based measure is 0, indicating that there is no
gene identified in both signatures. The rank-based measure is
0.049. The union of the two identified gene sets has a rank of 41,
while the intersection has a rank of 2, suggesting a small but
nonzero overlap of the two signatures. In all, 35.9% of the
pairwise correlations are statistically significant. None of the
R-squared statistics is >0.5. The proposed rank, correlation and
R-squared measures identify small but nonzero overlap not ob-
servable with the index-based measure. The second observation
is that different types of (epi)genetic measurements lead to dif-
ferent results. Again, take BRCA and LAML as an example. For
gene expression, methylation and CNA, the rank-based
measures are 0.049, 0.118 and 0.1, respectively. The dimension
of methylation measurements is much lower than that of gene
expression and CNA. However, we do not believe this causes
the higher degree of overlap of the methylation signatures. For
example, for GBM and LUSC, the methylation signatures
actually have a lower rank-based measure. Different types of
(epi)genetic measurements describe different molecular
activities. Gene expression is regulated by CNA and methyla-
tion, as well as other known and unknown mechanisms. CNA
and methylation affect prognosis by regulating gene expression.
In addition, they can also modify molecular profiles by
influencing DNA profiles, without ‘passing’ gene expression.
With different types of (epi)genetic measurements containing
different information on prognosis, it is reasonable that their
signatures have different degrees of overlap. The third ob-
servation is that, in general, the degree of overlap is low. This is
reasonable, as there is no strong evidence that the five can-
cers share highly related molecular mechanisms. The fourth
observation is that the matrix in Table 2 is not symmetric, sug-
gesting a need to compute the overlap measures in both
directions.

The results on the degree of overlap evaluated along the so-
lution paths are shown in Table 3 and Supplementary Table A3.
Some observations are similar to those in Table 2. Specifically,
different measures and different types of (epi)genetic measure-
ments lead to different conclusions, and the matrix is asymmet-
ric. To facilitate a more graphical comparison of the results in
Tables 2 and 3, in Supplementary Figure A3 we pool the results
across cancer types for each type of measure and plot the box-
plots. For the correlation-based measure, the results at the opti-
mal tunings and those integrating across the solution paths
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have similar distributions. However, for the other three meas-
ures, the distributions are significantly different. Namely, the
measures that integrate along the solution paths tend to be
higher. Along the solution paths, there are many other models
beyond those at the optimal tunings. The higher degrees of
overlap (of the integrated measures) observed in
Supplementary Figure A3 suggest that the gene signatures at
tunings other than the data-selected optimal have higher
overlap.

The results on the frequency-based measure are shown in
Table 4. Take BRCA and GBM as an example. We first compared
the lists of genes (methylation loci, CNAs) identified across the
whole paths. For gene expression, methylation and CNA, the
numbers of overlapped indexes are 12, 94 and 91, respectively.
When we used the Jaccard index to account for the sizes of sig-
natures, the degree of overlap of methylation signatures was
much higher. However, the result was reversed with the fre-
quency-based measure, under which the CNA signatures have a
higher degree of overlap. This observation suggests that, for this
specific analysis, the Jaccard index-based result may lack stabil-
ity, and the frequency-based measure can provide additional in-
formation beyond the other measures. In Supplementary Figure
A4, for BRCA and GBM, we plotted the frequencies of genes
identified along the solution paths. For gene expression, there
are only a few genes with high frequencies for both BRCA and
GBM. However, for methylation and CNA, there are quite a few
genes with high frequencies for both cancers. As described
above, the genes with high frequencies for both cancer types
make the main contribution to the overlap. In viewing
Supplementary Figure A4, we can identify which genes lead to
the overlap of signatures for GBM and BRCA.

Even though different measures quantify the overlap from
different aspects, it is still of interest to quantify the consistency
among measures. In Supplementary Table A3, we present the
correlation coefficients between the overlap measures. It is
observed that all correlation coefficients are positive, indicating
overlap results in the same ‘direction’. Correlations tend to be
higher within each type of measures (at optimal tuning, across
path and frequency based) than across different types of meas-
ures. In general, the measures that take the whole path into
consideration are more highly correlated than those at the

optimal tuning. Overall, Supplementary Table A3 suggests rea-
sonable consistency across different overlap measures.

Biological interpretations

We have also looked into possible biological interpretations of
the overlap results. The five cancers occur at different organs.
A literature search does not suggest any strong evidence of two
or more of them being caused by the same molecular changes.
Thus it is reasonable that the overlap measures are mostly
small to moderate. On the other hand, there are also abundant
evidences in the literature showing that the five cancer types
can be connected at the molecular level. For example, it has
been suggested that GBM is ‘correlated’ with breast cancer [20],
and such correlation is partly attributable to genes regulating
sex hormones. Cilia gene dysregulation has been associated
with GBM, breast cancer, lung cancer and several other cancer
types [21]. Gene NF1 has been suggested as important in the
prognosis of GBM and melanoma. Gene ERBB2 plays an import-
ant role in GBM and breast cancer prognosis. Genes TP53 and
PIK3R1 are important in the prognosis of multiple cancer types
including those analyzed in this study. BRCA2, a hallmark gene
of breast cancer, is also implicated in the progression of
leukemia [22]. Family history of breast cancer is a risk factor for
leukemia, suggesting their possible genetic connections [23].
Patients with breast cancer or melanoma have a significant
higher risk of developing the other. Genetic factors are expected
to play a role in such a correlation. Genes possibly shared by
breast cancer and melanoma have also been identified by Wang
and others [24]. A study conducted by Yanaihara and others [25]
has looked into the correlation between lung cancer and
leukemia and attributed that correlation partly to microRNAs.
Genetic changes that can lead to the Li-Fraumeni syndrome
may be associated with the progression of breast cancer, leuke-
mia and several other cancer types. Genetic changes on
chromosome 9p have been suggested as associated with
melanoma, GBM, lung cancer and leukemia [26]. Genes in
the RAS-BRAF pathway have been implicated in the progression
of multiple cancer types, especially including lung cancer
and melanoma [27]. The EGFR pathway has been implicated in
the prognosis of multiple cancers including those analyzed.

Table 2. Degree of overlap between the signatures of different cancer types measured at the optimal tunings

BRCA GBM LAML LUSC SKCM

I R RR C R2 I R RR C R2 I R RR C R2 I R RR C R2 I R RR C R2

BRCA 0.000 0.037 1/27 0.490 0.000 0.000 0.049 2/41 0.359 0.000 0.000 0.100 1/10 0.286 0.000 0.000 0.023 1/44 0.360 0.000

0.000 0.025 1/40 0.450 0.025 0.097 0.118 8/68 0.524 0.325 0.127 0.119 8/67 0.474 0.275 0.021 0.044 2/45 0.450 0.075

0.000 0.029 1/34 0.450 0.000 0.000 0.100 1/10 0.455 0.000 0.000 0.125 1/8 0.636 0.000 0.000 0.045 1/22 0.600 0.000

GBM 0.000 0.037 1/27 0.396 0.000 0.000 0.033 2/61 0.365 0.250 0.000 0.107 3/28 0.440 0.000 0.000 0.032 2/63 0.392 0.333

0.000 0.025 1/40 0.283 0.000 0.000 0.025 1/40 0.427 0.333 0.000 0.026 1/39 0.392 0.333 0.091 0.200 2/10 0.296 0.333

0.000 0.034 1/29 0.225 0.000 0.000 0.028 1/36 0.352 0.150 0.020 0.057 2/35 0.248 0.150 0.016 0.067 3/45 0.243 0.250

LAML 0.000 0.024 1/42 0.154 0.000 0.000 0.068 4/59 0.186 0.077 0.000 0.022 1/45 0.293 0.000 0.000 0.053 4/76 0.215 0.179

0.097 0.158 9/57 0.272 0.410 0.000 0.029 1/35 0.248 0.000 0.145 0.161 9/56 0.280 0.385 0.043 0.105 4/38 0.256 0.154

0.000 0.200 1/5 0.182 0.000 0.000 0.120 3/25 0.536 0.727 0.000 0.125 1/8 0.421 0.000 0.000 0.059 1/17 0.553 0.364

LUSC 0.000 0.100 1/10 0.179 0.000 0.000 0.033 1/30 0.143 0.000 0.000 0.070 3/43 0.114 0.143 0.000 0.043 2/46 0.153 0.000

0.127 0.167 10/60 0.283 0.425 0.000 0.054 2/37 0.375 0.050 0.145 0.197 12/61 0.321 0.450 0.043 0.071 3/42 0.281 0.075

0.000 0.028 1/7 0.000 0.000 0.020 0.086 3/35 0.120 0.909 0.000 0.077 1/13 0.041 0.000 0.029 0.083 2/24 0.207 0.364

SKCM 0.000 0.023 1/44 0.293 0.000 0.000 0.066 4/61 0.298 0.024 0.000 0.013 1/79 0.268 0.073 0.000 0.043 2/46 0.373 0.000

0.021 0.043 2/47 0.742 0.444 0.091 0.333 3/9 0.704 0.111 0.043 0.067 3/45 0.735 0.667 0.043 0.065 3/46 0.792 0.556

0.000 0.048 1/21 0.520 0.080 0.016 0.040 2/50 0.427 0.480 0.000 0.069 2/29 0.309 0.000 0.029 0.077 2/26 0.469 0.280

Note. I, R, RR, C and R2 correspond to the index-based, rank-based, rank ratio, correlation-based and R-squared based measures, respectively. In each cell, rows 1–3 correspond to gene

expression, methylation and CNA.
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Studies reported in the aforementioned references and in the
literature suggest that it is plausible to observe overlaps of gene
signatures for the five analyzed cancers. However, the pub-
lished studies have been mostly focused on a small number of
genes, and it is not possible to infer the overall overlap of gene
signatures from those studies.

Remarks

Published studies [6, 28, 29] have suggested that even a small
overlap in gene signatures may have important implications.
Thus, the presented results can still be valuable. In the litera-
ture, the existing studies on gene signature overlap have

focused on the overlap of individual genes (i.e. the index-based
measure). With a few overlapped genes, the study authors have
been able to examine the downstream products of the
overlapped genes to draw biological conclusions and conduct
functional validation studies. This study has an analytic nature.
We acknowledge the limitation of not being able to conduct
biological validation, which should be the ultimate criterion
for evaluating the analysis results. The proposed measures
may face challenges not encountered by the simple index-
based measure. Specifically, they are on the overlap of whole
gene signatures. With the great heterogeneity across cancer
types, we do not expect two cancers to have highly
overlapped gene signatures. It is not entirely clear how to design

Table 3. Degree of overlap between the signatures of different cancer types measured along the whole solution paths

BRCA GBM LAML LUSC SKCM

I R C R2 I R C R2 I R C R2 I R C R2 I R C R2

BRCA 0.032 0.091 0.413 0.172 0.073 0.076 0.372 0.153 0.012 0.152 0.355 0.013 0.10 0.09 0.40 0.26
0.279 0.251 0.438 0.372 0.264 0.162 0.477 0.401 0.224 0.181 0.410 0.276 0.33 0.29 0.53 0.40
0.019 0.082 0.397 0.254 0.039 0.076 0.427 0.315 0.029 0.104 0.433 0.125 0.06 0.08 0.40 0.52

GBM 0.020 0.107 0.387 0.265 0.052 0.188 0.370 0.370 0.025 0.131 0.406 0.133 0.06 0.33 0.37 0.48
0.160 0.269 0.340 0.221 0.370 0.282 0.410 0.495 0.282 0.205 0.383 0.354 0.32 0.37 0.37 0.41
0.017 0.125 0.243 0.294 0.002 0.085 0.263 0.220 0.056 0.176 0.247 0.387 0.03 0.14 0.26 0.45

LAML 0.050 0.113 0.243 0.121 0.047 0.319 0.198 0.207 0.016 0.131 0.296 0.080 0.06 0.41 0.23 0.26
0.197 0.183 0.214 0.232 0.370 0.297 0.258 0.426 0.282 0.194 0.268 0.287 0.35 0.28 0.27 0.39
0.033 0.197 0.401 0.206 0.002 0.176 0.419 0.216 0.003 0.117 0.321 0.182 0.03 0.18 0.31 0.23

LUSC 0.011 0.212 0.126 0.123 0.044 0.328 0.162 0.231 0.023 0.306 0.144 0.204 0.05 0.34 0.16 0.29
0.175 0.314 0.207 0.305 0.297 0.343 0.375 0.449 0.290 0.270 0.324 0.526 0.31 0.34 0.23 0.46
0.032 0.121 0.140 0.242 0.065 0.160 0.161 0.609 0.004 0.065 0.096 0.055 0.03 0.13 0.17 0.40

SKCM 0.054 0.115 0.372 0.053 0.061 0.126 0.327 0.143 0.063 0.092 0.268 0.122 0.032 0.082 0.341 0.027
0.271 0.228 0.676 0.409 0.377 0.342 0.751 0.580 0.404 0.239 0.747 0.668 0.353 0.175 0.776 0.495
0.027 0.121 0.405 0.343 0.033 0.127 0.506 0.389 0.028 0.104 0.273 0.070 0.027 0.129 0.385 0.282

Note. I, R, RR, C and R2 correspond to the index-based, rank-based, correlation-based and R-squared based measures, respectively. In each cell, rows 1–3 correspond to gene expression,

methylation and CNA.

Table 4. Evaluation of similarity/overlap between the signatures of different cancer types using the frequency-based measure

GBM LAML LUSC SKCM

mRNA methy CNA mRNA methy CNA mRNA methy CNA mRNA methy CNA

BRCA
Raw 12 94 91 12 67 144 4 36 26 22 93 78
Jaccard 0.032 0.490 0.094 0.047 0.396 0.129 0.022 0.277 0.060 0.057 0.492 0.113
Overlap score 3.097 23.596 28.362 5.373 14.584 44.605 0.746 9.269 8.459 6.347 26.028 23.814

GBM
Raw 31 141 412 10 72 103 49 187 237
Jaccard 0.074 0.731 0.286 0.028 0.375 0.109 0.090 0.969 0.211
Overlap score 8.878 38.684 97.607 3.878 18.402 30.281 13.421 46.849 61.942

LAML
Raw 5 49 135 27 139 275
Jaccard 0.021 0.297 0.122 0.061 0.728 0.215
Overlap score 1.362 13.939 38.494 8.137 34.630 79.060

LUSC
Raw 10 69 61
Jaccard 0.026 0.361 0.088
Overlap score 3.004 17.880 19.716

mRNA, methy and CNA correspond to gene expression, methylation and CNA, respectively.
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functional studies to validate the partial overlap of gene
signatures.

All of the proposed measures are sums of individual
terms. Potentially, as a remedy to the aforementioned
problem, we can examine each term, identify which terms con-
tribute more to the overlap, and examine the correspond-
ing genes. For example in Supplementary Figure A4, those
genes with their names marked are potentially more
interesting.

Discussion

For many complex diseases, a large number of gene signatures
have been generated. Recent effort has been devoted to evaluat-
ing the degree of overlap of gene signatures. However, most of
the existing analyses have focused on the index-based measure,
which has multiple limitations. The main addition of this study
to the literature is a set of new measures, which have very solid
statistical basis and can overcome some of the limitations of
the index-based measure. All of the proposed measures have
intuitive interpretations and can be easily realized. To facilitate
their applications, we have also made the computer code pub-
licly available. The analysis of TCGA data demonstrates that the
new measures can lead to conclusions different from using the
simple index-based measure. This observation suggests that
some conclusions on gene signature overlap, for example, those
on GEO data [8] and in HDN studies, may need to be
reexamined.

In this study, we used cancer prognosis data as an example.
The proposed measures are directly applicable to other diseases
and other types of data (etiology, continuous biomarker, etc.).
We used Lasso as the tool for generating signatures. The pro-
posed measures are also directly applicable to other analysis
methods. In the data analysis, we observed different results for
different cancer types, different types of (epi)genetic measure-
ments, different measures and different approaches. There is a
lack of a clear pattern. Such results are reasonable. Different
measures quantify different aspects of gene signatures.
Multiple measures will be needed to comprehensively describe
the relationship between two signatures. We have not tried to
match the overlap results with the prediction results in
Supplementary Table A1. The proposed measures focus on the
overlap of gene sets. Prediction depends on the set of genes as
well as magnitudes and signs of their estimates. Thus, we do
not expect the computed overlap measures to be able to fully
explain the prediction results.

The research on overlap between gene signatures is still im-
mature. Some studies—including the present one—are statis-
tical, whereas others are biological. To really comprehensively
measure the overlap of two signatures, both biological and
statistical information is needed. The proposed measures focus
on the sets of identified genes. Information on the estimates
and significance level is not used. When the estimates are
comparable across data sets, it is desirable to develop
methods that can take the estimates and significance into ac-
count. More methodological development is needed, and more
research is needed to comprehend and use the overlap
information.

Supplementary data

Supplementary data are available online at http://bib.
oxfordjournals.org/.

Key Points

• It is important to evaluate the overlap of gene signa-
tures on a single cancer type and outcome and on mul-
tiple different cancer types.

• Multiple measures for the degree of overlap, under
fixed tunings and multiple tunings along the whole so-
lution paths, have been examined.

• The analysis of TCGA data on the prognosis of five
cancer types suggests that different measures generate
different results, and the proposed measures can pro-
vide additional insights beyond the existing simple
measure.

• More investigations are needed to evaluate and under-
stand the overlap between gene signatures.
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