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Mixed Model with Correction for Case-Control
Ascertainment Increases Association Power

Tristan J. Hayeck,1,2,* Noah A. Zaitlen,3 Po-Ru Loh,2,4 Bjarni Vilhjalmsson,2,4 Samuela Pollack,2,4

Alexander Gusev,2,4 Jian Yang,5,6 Guo-Bo Chen,5 Michael E. Goddard,7 Peter M. Visscher,5,6

Nick Patterson,2 and Alkes L. Price1,2,4,*

We introduce a liability-threshold mixed linear model (LTMLM) association statistic for case-control studies and show that it has a well-

controlled false-positive rate and more power than existing mixed-model methods for diseases with low prevalence. Existing mixed-

model methods suffer a loss in power under case-control ascertainment, but no solution has been proposed. Here, we solve this problem

by using a c2 score statistic computed from posterior mean liabilities (PMLs) under the liability-threshold model. Each individual’s PML

is conditional not only on that individual’s case-control status but also on every individual’s case-control status and the genetic relation-

ship matrix (GRM) obtained from the data. The PMLs are estimated with a multivariate Gibbs sampler; the liability-scale phenotypic

covariance matrix is based on the GRM, and a heritability parameter is estimated via Haseman-Elston regression on case-control pheno-

types and then transformed to the liability scale. In simulations of unrelated individuals, the LTMLM statistic was correctly calibrated

and achieved higher power than existing mixed-model methods for diseases with low prevalence, and the magnitude of the improve-

ment depended on sample size and severity of case-control ascertainment. In a Wellcome Trust Case Control Consortium 2 multiple

sclerosis dataset with >10,000 samples, LTMLM was correctly calibrated and attained a 4.3% improvement (p ¼ 0.005) in c2 statistics

over existing mixed-model methods at 75 known associated SNPs, consistent with simulations. Larger increases in power are expected

at larger sample sizes. In conclusion, case-control studies of diseases with low prevalence can achieve power higher than that in existing

mixed-model methods.
Introduction

Mixed-model association statistics are a widely used

approach to correct for population structure and

cryptic relatedness in genome-wide association studies

(GWASs).1–11 However, recent work shows that existing

mixed-model association statistics have less power than

standard logistic regression in studies of ascertained case

and control subjects.11 It is widely known that appropriate

modeling of case-control ascertainment can produce sub-

stantial increases in power for case-control studies with

fixed-effect covariates,12–14 but such increases in power

have not yet been achieved with models that include

random effects.

We developed an association-score statistic based on

a liability-threshold mixed linear model (LTMLM). The

LTMLM statistic relies on the posterior mean liability

(PML) of each individual; the PML is calculated with a

multivariate Gibbs sampler.15 The PML of each individual

is conditional on the genetic relationship matrix (GRM),

the case-control status of every individual, and the disease

prevalence. Existing methods use a univariate prospective

model to compute association statistics, but here we use

a multivariate retrospective model.

The LTMLM statistic provides an increase in power in

simulations of case-control studies of diseases with low
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prevalence, as demonstrated in settings of either simulated

or real genotypes. In a Wellcome Trust Case Control

Consortium 2 (WTCCC2) multiple sclerosis (MS) dataset

with >10,000 samples, LTMLM was correctly calibrated

and attained a 4.3% improvement (p ¼ 0.005) in c2 statis-

tics over existing mixed-model methods at 75 known asso-

ciated SNPs, consistent with simulations.
Material and Methods

Overview of Method
We improve upon standard mixed-model methods11 by using a

retrospective association-score statistic (LTMLM) computed from

PMLs under the liability-threshold model. The improvement

over previous approaches comes from appropriate modeling of

case-control ascertainment. We consider all individuals simulta-

neously and incorporate prevalence information.

Our method consists of three steps. First, the GRM is calculated,

and a corresponding heritability parameter is estimated, modeling

the phenotype covariance of all individuals (see ‘‘Estimation of

Heritability Parameter’’). The heritability parameter is estimated

with Haseman-Elston (H-E) regression on the observed scale and

then transformed to the liability scale. Second, PMLs are estimated

with a truncated multivariate normal Gibbs sampler (see ‘‘PMLs’’).

The PML of each individual is conditional on that individual’s

case-control status, on every other individual’s case-control status,

and on disease prevalence and liability-scale phenotypic
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Figure 1. Genetic Relatedness to a Dis-
ease-Affected Case Subject Can Increase
an Individual’s PML
In (A) and (B), we plot distributions of lia-
bilities for a set of 10,000 individuals under
(A) random ascertainment or (B) case-con-
trol ascertainment for a disease with a
prevalence of 0.1% (see Figure 2 in Lee
et al.16). In (C) and (D), we plot the same
distributions but condition on an individ-
ual’s having a genetic relatedness of 0.5
with a disease-affected case subject while
assuming a heritability of 1 on the liability
scale.
covariance. Third, a c2 (1 degree of freedom) association-score sta-

tistic is computed on the basis of the association between the

candidate SNP and the PML (see ‘‘LTMLM Association Statistic’’).

The toy example in Figure 1 illustrates how genetic relatedness

to a disease-affected case subject can increase an individual’s

PML. In Figures 1A and 1B, we plot the distribution of liabilities

in 10,000 unrelated individuals who were randomly ascertained

and ascertained according to case-control status (for a disease

with a prevalence of 0.1%), respectively. In Figures 1C and 1D,

we plot the same distributions but condition on an individual’s

having a genetic relatedness of 0.5 with a disease-affected case sub-

ject while assuming a liability-scale heritability of 1.0. In each case,

the posterior distribution of liabilities (and hence the PML) is

shifted upward. (The magnitude and direction of this effect would

be different for an individual with a genetic relatedness of 0.5 with

a control subject). Our main focus below is on much lower levels

of genetic relatedness (identity by state) among many unrelated

samples, but the same principles apply.

Estimation of Heritability Parameter
Mixed-model association statistics rely on the estimation of a her-

itability parameter.We note that this heritability parameter, which

Kang et al.4 refer to as ‘‘pseudo-heritability,’’ is generally lower

than the total narrow-sense heritability (h2) in datasets not domi-

nated by family relatedness but can be larger than the heritability

explained by genotyped SNPs (hg
2)17 in datasets with population

structure or family relatedness. However, for ease of notation, we

use the symbol h2 to represent this heritability parameter. A list

of all notation used below is provided in Table S1.

The goal is to test for association between a candidate SNP and a

phenotype. We first consider a quantitative trait:

4 ¼ bxþ uþ e: (Equation 1)
The American Journal of Huma
The phenotypic data (transformed to have

mean 0 and variance 1) can be represented

as a vector (4) with values for each individ-

ual (i). Genotype values of candidate SNPs

are transformed to a vector (x) with mean

0, variance 1, and effect size b. The quanti-

tative trait value depends on the fixed ef-

fect of the candidate SNP (bx), the genetic

random effect excluding the candidate

SNP (u), and the environmental compo-

nent (e). We extend to case-control traits

via the liability-threshold model, in which

each individual has an underlying, unob-

served, normally distributed trait called
the liability. An individual is affected by a disease if the liability ex-

ceeds a specified threshold (t), corresponding to disease preva-

lence16 (Figure S1).

Standard mixed-model association methods generally estimate

h2 from a GRM and phenotypes by using restricted maximum

likelihood (REML).4,11 Genotypic data (excluding the candidate

SNP11) are used for building a GRM:

bQ ¼ XTX

M
; (Equation 2)

where X is a matrix of non-candidate SNPs normalized to mean

0 and variance 1 and M is the number of SNPs. We estimate h2

by using H-E regression followed by a transformation to the liabil-

ity scale. We obtain the H-E regression estimate by regressing the

product of the case-control phenotypes on the off-diagonal terms

of the GRM:18,19

dh2
HE ¼

P
iskpipk

bQikP
isk
bQ2

ik

; (Equation 3)

where pi denotes the case-control status of individual i and bQ ik is

the genetic relatedness of individuals i and k. This gives an esti-

mate on the observed scale, and then the estimate is transformed

to the liability scale:20

dh2
HE;l ¼ dh2

HE

½Kð1� KÞ�2
z2ðPð1� PÞÞ; (Equation 4)

where z is the height of the standard normal density (ð1=2pÞe�t2=2)

at the liability threshold t, K is disease prevalence, and P is the pro-

portion of case subjects in the sample.20

Then, the variance between the individuals is modeled as the

phenotypic covariance,
n Genetics 96, 720–730, May 7, 2015 721



V ¼ h2 bQ þ �I � h2
�
I ; (Equation 5)

where bQ is the N 3 N GRM, V is the phenotypic covariance, h2 is

the heritability parameter, and I is the identity matrix.

Using the phenotypic covariance matrix V, the liability is

modeled as a multivariate normal distribution:

Lð4Þ ¼ ð2pÞ�n
2 j ðVÞ j �1=2exp

��1

2
ð4ÞTðVÞ�1ð4Þ

�
: (Equation 6)

We note that we observe the case-control phenotypes of the indi-

viduals and not the continuous liabilities.

PMLs
We first consider the univariate PML (PMLuni), constructed inde-

pendently for each individual; we generalize to the multivariate

setting below. As described in Equations 11 and 12 in Lee

et al.,20 these correspond to the expected value of the liability

and are conditional on the case-control status:

PMLuni;case ¼ E½4 jpi ¼ 1� ¼ z
�

PMLuni;control ¼ E½4 jpi ¼ 0� ¼ �z
�ð1� KÞ: (Equation 7)

These values are calculated analytically in the univariate setting,

and depending on case or control status, they can be thought of

as the mean of a truncated normal distribution above or below,

respectively, the liability threshold t.20

We next consider the multivariate PML (PMLmulti), estimated

jointly across individuals. The PMLmulti for each individual is

conditional on that individual’s case-control status, on every other

individual’s case-control status, and on their phenotypic covari-

ance. The PMLmulti is estimated with a Gibbs sampler, as in pre-

vious work15 (which focused on family relatedness and did not

consider association statistics). The Gibbs sampler is an iterative al-

gorithm that generates random variables from conditional distri-

butions in order to avoid the difficult task of explicitly calculating

the marginal density for each random variable.

For each individual in turn, the conditional distribution of the

liability is calculated on the basis of all of the other individuals,

and a new value is generated. The algorithm is as follows:

Initialization: for each individual j,

4i ¼ PMLuni;case if pi ¼ 1 or 4i ¼ PMLuni;control if pi ¼ 0

(Equation 8)

For each Markov Chain Monte Carlo (MCMC ) iteration n

For each individual i

Sample 4i from the constrained conditional univariate normal

distribution

L(4i) ~exp(–4
TV�14/2) and constraint 4i R t if pi ¼ 1, 4i < t if

pi ¼ 0

(where 4si are fixed)

Weuse100burn-in iterations followedby1,000additionalMCMC

iterations.We estimate thePMLmulti by averaging overMCMC iter-

ations. We reduce the number of MCMC iterations needed via Rao-

Blackwellization, which averages (across n iterations) the posterior

means of the distributions from which each 4i is sampled.

LTMLM Association Statistic
The LTMLM association statistic is calculated with the PMLmulti.

For simplicity, we first consider the case where the liability is
722 The American Journal of Human Genetics 96, 720–730, May 7, 2
known. We jointly model the liability and the genotypes by using

a retrospective model, enabling appropriate treatment of sample

ascertainment. We concatenate the two vectors (4, x) and derive

the joint likelihood for these combined terms. The covariance of

4 and x between individuals i and k is

Covð4i;xkÞ ¼ E½4i;xk� � E½4i�E½xk � ¼ E½4i;xk� ¼ E½bxi;xk� ¼ bQi;k;

(Equation 9)

where Q is the true underlying GRM from which genotypes are

sampled. (We note that Q, which is unobserved, is different

from the GRM bQ estimated from the data). The variance of (4,

x) as a function of effect size b is

CðbÞ ¼
�

V bQ

bQT Q

�
: (Equation 10)

Thus,

CðbÞ�1 ¼
�

V�1 �bV�1

�b
�
V�1

�T
Q�1

�
þO

�
b2
�
; (Equation 11)

where both of these matrices are 2N 3 2N. (We note that

the product of the matrices in Equations 10 and 11 is 
I þ Oðb2Þ 0

0 IþOðb2Þ

!
; whose difference from the identity con-

tains only O(b2) terms.)

The joint likelihood of the liability and genotypes is distributed

as a multivariate normal N(0,C(b)), and thus

Lðx;4 jbÞ ¼ ð2pÞ�n
2 jCðbÞ j �1=2exp

��1

2
ð4;xÞTCðbÞ�1ð4;xÞ

�
:

(Equation 12)

Taking the derivative of the log-likelihood results in the score

equation. The determinant of the matrix V does not have any

terms linear in b, so the terms with V alone drop out when we

take the derivative:

Sðx;4 jbÞ ¼ d

db
lnLðx;4 jbÞ ¼ d

db

�1

2
ð4;xÞTCðbÞð4;xÞ

¼ d

db
ð4;xÞT

�
V�1 �bV�1

�b
�
V�1

�T
Q�1

�
ð4;xÞ ¼ V�14x:

(Equation 13)

The marginal score statistic tests the null hypothesis, which

is that the fixed effect of the candidate SNP is 0 (H0: b ¼ 0),

against the alternative hypothesis (HA: b s 0). The denominator

of the score statistic is the variance of the score evaluated under

the null:

VarðSðx;4 jbÞÞ ¼ �V�14
�T
Q
�
V�14

�
: (Equation 14)

This leads to the score statistic

ðxTV�14Þ2
ðV�14ÞTQðV�14Þ; (Equation 15)

where Q, the true underlying genetic relatedness of the individ-

uals, can be approximated by the identity matrix in datasets of

unrelated individuals.

In Equations 9, 10, 11, 12, 13, 14, and 15, the liability was

assumed to be known for simplicity. We now consider a case-con-

trol trait, with unobserved liability, and derive the score function

by using the observed case-control status, p, of each individual.
015



Table 1. List of Association Statistics

ATT MLM LTMLM

Quantitative or case-control trait both both case-control

Estimates of heritability parameter none REML H-E regression

Prospective or retrospective prospective prospective retrospective

Equation ðxTp�Þ2
xTx

ðxTp�V�1Þ2
xTV�1x

¼ ðxTV�1PMLuniÞ2
xTV�1x

ðxTV�1PMLmultiÞ2
ðV�1PMLmultiÞT IðV�1PMLmultiÞ

Corrects for confounding? no yes yes

Models case-control ascertainment no no yes

We list properties of the Armitage trend test (ATT), standard mixed-model association statistic (MLM), and proposed statistic (LTMLM). p* is the normalized case-
control status (mean 0 and variance 1), x is the normalized genotype, PMLuni is the univariate PML conditional on the case-control status of a single individual,
PMLmulti is the multivariate PML conditional of the case-control status of all individuals, I is the identity matrix, and V is the phenotypic covariance (on the
observed scale for MLM and on the liability scale for LTMLM).
When we return to the score function and conditioning on case-

control status,

Sðx;4 jb;pÞb¼0 ¼ d

db
lnLðx;4 jb; pÞb¼0 ¼

dLðx;4 jb;pÞb¼0

db

Lðx;4 jb;pÞb¼0

:

(Equation 16)

When we introduce the unobserved quantitative liability, 4, the

score function can be rewritten in terms of the probability density

of the liability:

dLðx;4 jbÞb¼0

db

Lðx;4 jbÞb¼0

¼
R
Pð4Þ dLðx;4 jbÞb¼0

db
d4

Lðx;4 jbÞb¼0

Sðx;4 jb;pÞ ¼ C

Z
Pð4ÞSðx;4 jb;pÞd4 ¼ Sðx;E½4 jp� jbÞ;

(Equation 17)

where P(4) is the probability density of the liability and E[4j p] is
the PML. It follows that an appropriate LTMLM score statistic is

ðxTV�1PMLmultiÞ2
ðV�1PMLmultiÞTQðV�1PMLmultiÞ

: (Equation 18)

Again,Q can be approximated by the identitymatrix in datasets of

unrelated individuals; we note that this choice affects only a con-

stant calibration factor (because the denominator is the same for

each candidate SNP) and that other calibration options are avail-

able (see below). As with other association statistics, the LTMLM

score statistic generalizes to non-normally distributed geno-

types.21–23 The overall computational cost of computing the

LTMLM statistic is O(MN2) when M > N > number of iterations

(Table S2). We have fixed the number of iterations at 100 burn-

in iterations followed by 1,000 additional iterations.

We calculate the GRM via leave one chromosome out (LOCO)

analysis, i.e., for each candidate SNP on a given chromosome,

we calculate GRMby using all of the other chromosomes. This pre-

vents deflation due to double counting of the candidate SNP as

both a fixed effect and a random effect in the mixed model.4,6,11
Simulated Genotypes and Simulated Phenotypes
We performed simulations both by using simulated genotypes and

simulated phenotypes and by using real genotypes and simulated

phenotypes (see below). Quantitative liabilities for each individual

were generated from SNP effects and an environmental compo-
The Am
nent. All simulations includedM candidate SNPs and an indepen-

dent set ofM SNPs used for calculating the GRM (so that candidate

SNPs were not included in the GRM). For each scenario, a set of

100 simulations were run. We set ten candidate SNPs and ten

GRM SNPs to be causal in simulations with N ¼ 1,000 samples

and set 50 candidate SNPs and 50 GRM SNPs to be causal in sim-

ulations with N ¼ 5,000 samples to ensure that causal SNPs had

similar average c2 statistics independent of M and N. We then

dichotomized the resulting quantitative liabilities on the basis of

the liability threshold to categorize each individual as a case or

control subject. Case-control ascertainment was performed and

simulated 50% case and 50% control subjects. We compared Ar-

mitage trend test (ATT), logistic regression (LogR), mixed linear

model (MLM), and LTMLM statistics (see Table 1). MLM statistics

were computed with the genome-wide complex trait analysis

(GCTA)-LOCO statistic described in Yang et al.,11 and the heritabil-

ity parameters were estimated with the GCTA software.24 We eval-

uated performance by using average c2 statistics at causal, null,

and all markers, lGC at all markers (median c2 divided by

0.455),25 and the proportion of causal and null markers that

were significant at the p value thresholds of 0.05, 0.001, 1 3

10�6, and 5 3 10�8.

In the primary analyses, we simulated individuals without pop-

ulation structure or linkage disequilibrium (LD) with N ¼ 1,000 or

5,000 samples; M ¼ 1,000, 5,000, or 50,000 SNPs; and prevalence

K ¼ 50%, 10%, 1%, or 0.1%. Genotypes were sampled from inde-

pendent binomials with allele frequencies sampled from a uni-

form distribution over the values [0.1, 0.9]. In secondary analyses,

we simulated population structure by simulating two populations

with FST ¼ 0.01 and allele frequencies drawn from beta distribu-

tions with parameters p(1 – FST)/FST and (1 – p)(1 – FST)/FST, based

on ancestral allele frequency p sampled from a uniform distribu-

tion over the values [0.1, 0.9].

To test the impact of the generative distribution, we simulated

the underlying distribution by using a logit model instead of a li-

ability-thresholdmodel. The ten causal candidate SNPs were simu-

lated with alternating fixed-effect sizes of b ¼ 0.4 or b ¼ �0.4.

Then, case-control phenotypes were generated from a binomial

distribution where the probability of being a case subject was

ðcaseÞ ¼ 1=ð1þ expð�½c þ bx�ÞÞ, shifted by the affine term (c) and

based on the desired disease prevalence.

WTCCC2 Genotypes and Simulated Phenotypes
We also conducted simulations by using real genotypes from

WTCCC2 to incorporate LD and realistic population structure.
erican Journal of Human Genetics 96, 720–730, May 7, 2015 723



Table 2. Results for Simulated Genotypes and Simulated Phenotypes

Prevalence Set Statistic ATT (SE) LogR (SE) MLM (SE) LTMLM (SE)

N ¼ 5,000 and M ¼ 5,000

50% causal average 16.492 (0.325) 16.399 (0.321) 16.880 (0.332) 16.867 (0.332)

null average 0.988 (0.002) 0.988 (0.002) 0.990 (0.002) 0.989 (0.002)

all average 1.143 (0.004) 1.142 (0.004) 1.148 (0.004) 1.148 (0.004)

all lGC 1.010 (0.003) 1.010 (0.003) 1.014 (0.003) 1.014 (0.003)

25% causal average 18.637 (0.388) 18.509 (0.383) 19.014 (0.396) 19.056 (0.398)

null average 1.000 (0.002) 1.000 (0.002) 1.000 (0.002) 1.001 (0.002)

all average 1.177 (0.005) 1.175 (0.005) 1.180 (0.005) 1.181 (0.005)

all lGC 1.012 (0.004) 1.012 (0.004) 1.013 (0.004) 1.013 (0.004)

10% causal average 25.235 (0.501) 25.014 (0.492) 25.386 (0.506) 25.778 (0.514)

null average 0.993 (0.002) 0.992 (0.002) 0.991 (0.002) 0.992 (0.002)

all average 1.235 (0.006) 1.233 (0.006) 1.235 (0.006) 1.24 (0.007)

all lGC 1.005 (0.003) 1.005 (0.003) 1.007 (0.003) 1.008 (0.003)

1% causal average 45.376 (0.878) 44.682 (0.852) 42.594 (0.825) 46.691 (0.913)a

null average 1.000 (0.002) 0.999 (0.002) 0.990 (0.002) 1.000 (0.002)

all average 1.444 (0.011) 1.436 (0.011) 1.406 (0.010) 1.457 (0.011)

all lGC 1.020 (0.003) 1.020 (0.003) 1.011 (0.003) 1.019 (0.003)

0.1% causal average 68.648 (1.301) 67.099 (1.248) 56.303 (1.082) 70.810 (1.364)a

null average 1.000 (0.002) 1.000 (0.002) 0.918 (0.002) 1.000 (0.002)

all average 1.677 (0.016) 1.661 (0.016) 1.472 (0.013) 1.698 (0.017)

all lGC 1.026 (0.003) 1.026 (0.003) 0.942 (0.005) 1.025 (0.003)

N ¼ 5,000 and M ¼ 50,000

50% causal average 16.624 (0.331) 16.529 (0.327) 16.673 (0.332) 16.69 (0.333)

null average 1.000 (0.001) 0.999 (0.001) 1.000 (0.001) 1.000 (0.001)

all average 1.015 (0.001) 1.015 (0.001) 1.016 (0.001) 1.015 (0.001)

all lGC 1.003 (0.001) 1.002 (0.001) 0.999 (0.001) 0.999 (0.001)

25% causal average 18.965 (0.37) 18.843 (0.366) 19.030 (0.372) 19.040 (0.372)

null average 1.003 (0.001) 1.003 (0.001) 1.003 (0.001) 1.003 (0.001)

all average 1.021 (0.001) 1.020 (0.001) 1.021 (0.001) 1.021 (0.001)

all lGC 1.006 (0.001) 1.006 (0.001) 1.003 (0.001) 1.003 (0.001)

10% causal average 23.710 (0.444) 23.528 (0.437) 23.868 (0.449) 23.910 (0.450)

null average 1.001 (0.001) 1.000 (0.001) 1.001 (0.001) 1.001 (0.001)

all average 1.023 (0.001) 1.023 (0.001) 1.024 (0.001) 1.024 (0.001)

all lGC 1.007 (0.001) 1.007 (0.001) 1.005 (0.001) 1.004 (0.001)

1% causal average 46.683 (0.883) 45.969 (0.859) 46.44 (0.881) 47.368 (0.905)

null average 0.999 (0.001) 0.999 (0.001) 0.999 (0.001) 0.999 (0.001)

all average 1.045 (0.001) 1.044 (0.001) 1.045 (0.001) 1.045 (0.001)

all lGC 1.004 (0.001) 1.004 (0.001) 1.001 (0.001) 1.000 (0.001)

(Continued on next page)
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Table 2. Continued

Prevalence Set Statistic ATT (SE) LogR (SE) MLM (SE) LTMLM (SE)

0.1% causal average 67.059 (1.278) 65.561 (1.225) 65.232 (1.251) 68.618 (1.333)a

null average 0.999 (0.001) 0.999 (0.001) 0.999 (0.001) 0.999 (0.001)

all average 1.065 (0.002) 1.063 (0.002) 1.063 (0.002) 1.067 (0.002)

all lGC 1.004 (0.001) 1.004 (0.001) 1.000 (0.001) 1.000 (0.001)

We report average c2 statistics across 100 simulations for each individual scenario.N is the number of individuals, andM is the number of SNPs. The set indicates all
SNPs, the 1% causal SNPs, or the 99% null SNPs. The disease prevalence ranges from 50% (no case-control ascertainment) to 0.1%.
aThe settings where LTMLM demonstrated at least a 5% improvement over MLM in c2 statistics at causal markers.
The WTCCC2 data contained 360,557 SNPs and 15,633 samples,

as described previously.11 Because the goal of the power study is

to demonstrate a comparison of the statistics under case-control

ascertainment, we used N ¼ 1,000 samples (500 case and 500 con-

trol subjects) and simulated phenotypes with a prevalence of 50%,

25%, and 10%. The prevalence was restricted to a lower bound of

10% because of the limitation of having only 15,633 WTCCC2

samples for simulating case-control ascertainment. We computed

ATT, LogR, MLM, and LTMLM statistics as described above.
WTCCC2 Genotypes and MS Phenotypes
Finally, we analyzed WTCCC2 individuals with ascertained case-

control phenotypes for MS,11 a disease with a prevalence of

around 0.1%. As in previous work, we assume that the disease

prevalence is known on the basis of external epidemiological liter-

ature.20,26,27 For theWTCCC2MS data, we used a threshold of 3.0,

corresponding to a disease prevalence of 0.1%.26 We computed

ATT, LogR, MLM, and LTMLM statistics as described above.

Although the underlying MS study was appropriately matched

for ancestry,28 the data made available to researchers included

only pan-European case and UK control subjects. Thus, the

WTCCC2 dataset shows a severe mismatch in ancestry of case

and control subjects; this severe mismatch between case and con-

trol subjects is not representative of a typical GWAS. We thus

restricted our primary analysis to 10,034 samples with only amod-

erate mismatch in ancestry, but we also performed analyses of

unmatched and stringently matched datasets (Figure S2). The un-

matched dataset contained 10,204 case and 5,429 control subjects.

We performed matching by first calculating 20 principal compo-

nents (PCs) in the full cohort and weighing the contribution of

each PC on the basis of how much phenotype variance it ex-

plained in a multiple regression. A Euclidean distance over these

20 weighted dimensions was then computed for all pairs of indi-

viduals, and each case subject was greedily assigned the nearest

unmatched control subject until no matched case-control pairs

could be identified. Finally, any matched case-control pairs who

were not within 6 SDs of themean pairwise distance were removed

as outliers, yielding the 5,017 case and 5,017matched control sub-

jects used in our primary analysis. We performed stringent match-

ing by additionally removing any matched case-control pairs who

were not within 2 SDs of the mean pairwise distance, yielding the

4,094 case and 4,094 matched control subjects used in our strin-

gently matched analysis.

We compared association statistics at 75 published SNPs

associated with MS.11 We used a jackknife approach to assess the

statistical significance of differences in association statistics by

excluding each of the 75 published SNPs in turn.
The Am
Results

Simulations: Simulated Genotypes and Simulated

Phenotypes

We first conducted simulations by using simulated geno-

types and simulated ascertained case-control phenotypes

(see Material and Methods). Our main simulations

involved unrelated individuals with no population struc-

ture, but the impact of population structure is explored

below. We evaluated the power of ATT, LogR, MLM, and

LTMLM. We report average c2 statistics at causal, null,

and all markers and lGC at all markers in Table 2, and we

report the proportion of causal and null markers that

were significant at various p value thresholds in Table S3.

For diseases with low prevalence, the LTMLM statistic out-

performed the ATT, LogR, and MLM statistics. Improve-

ments in average c2 statistics at causal markers (which

are naturally interpreted as the increase in effective sample

size) were larger than improvements in power to detect an

association at a given p value threshold, most likely as a

result of the variable (normally distributed) effect sizes in

this simulation (see below). For LTMLM and MLM at dis-

ease prevalences of 0.1%, 26%, and 5%, improvements in

average c2 statistics at causal markers were observed in sim-

ulations with 5,000 SNPs and 50,000 SNPs, respectively.

Smaller improvements were observed at higher disease

prevalences. Test statistics were well calibrated at null

markers. Simulations at other values of M and N indicated

that the magnitude of the improvement depends on the

value of N/M (Tables S3 and S4). Simulations with popula-

tion structure demonstrated similar results but also showed

inflation in the ATT statistic as expected (Tables S5 and S6).

The MLM statistics were calculated with an h2 parameter

estimated via REML,4 but the LTMLM statistics were calcu-

lated with an h2 parameter first estimated via H-E regres-

sion on case-control phenotypes and then transformed

to the liability scale18,20 (see Material and Methods). As

case-control ascertainment became more severe, the H-E

regression estimate of h2 remained unbiased, whereas the

variance-component estimate was severely downwardly

biased even after transformation to the liability scale (Table

3 and Table S7), consistent with previous work (see Golan

et al.29 and Table S9 in Yang et al.11). Population structure

resulted in bias for both REML and H-E-regression
erican Journal of Human Genetics 96, 720–730, May 7, 2015 725



Table 3. Heritability-Parameter Estimates from Simulated
Genotypes and Phenotypes

Prevalence

Liability Scale Observed Scale

H-E (SE) REML (SE) H-E (SE) REML (SE)

N ¼ 5,000 and M ¼ 5,000

50% 0.255 (0.006) 0.253 (0.006) 0.162 (0.004) 0.161 (0.004)

25% 0.24 (0.005) 0.236 (0.004) 0.172 (0.003) 0.17 (0.003)

10% 0.24 (0.004) 0.23 (0.004) 0.228 (0.004) 0.219 (0.004)

1% 0.25 (0.004) 0.21 (0.002) 0.453 (0.007) 0.381 (0.004)

0.1% 0.253 (0.003) 0.158 (0.000) 0.719 (0.009) 0.449 (0.001)

N ¼ 5,000 and M ¼ 50,000

50% 0.272 (0.009) 0.274 (0.009) 0.173 (0.006) 0.174 (0.006)

25% 0.246 (0.010) 0.252 (0.010) 0.177 (0.007) 0.181 (0.007)

10% 0.225 (0.004) 0.231 (0.004) 0.214 (0.004) 0.219 (0.004)

1% 0.246 (0.004) 0.241 (0.004) 0.445 (0.008) 0.437 (0.008)

0.1% 0.259 (0.004) 0.241 (0.004) 0.734 (0.012) 0.684 (0.01)

We report results, on both the liability and observed scales, averaged over 100
simulations. The true h2, explained by the SNPs used for building the GRM, is
25% on the liability scale for all simulations. These results correspond to the
same sets of simulations in Table 2.
estimates of h2, although the bias for the REML estimates

was higher (Table S8). These biases did not inflate LTMLM

or MLM statistics under the null hypothesis (Tables S5 and

S6). We note that previous work has shown that running

MLM with the correct h2 parameter does not ameliorate

the loss in power for MLM.11

We also evaluated performance in settings where the li-

ability threshold (equivalently, the disease prevalence) was

misspecified (Tables S9 and S10). The LTMLM statistic re-

mained properly calibrated under the null and continued

to outperform the MLM statistic given that the impact of

misspecifying the liability threshold was small. Misspeci-

fying the liability threshold led to bias in liability-

scale heritability estimates as a result of the inaccurate

conversion from the observed scale to the liability scale

(Table S11).

Finally, we evaluated performance when phenotypes

were generated with a logit model instead of a liability-

threshold model; for simplicity, we used a fixed effect

size for causal candidate SNPs (see Material and Methods).

At low disease prevalence, we observed improvements for

LTMLM both in average c2 statistics at causal markers

(Table S12) and in power to detect an association at a given

p value threshold (Table S13); improvements in power

depend heavily on the distribution of causal effect sizes

and are larger in simulations with fixed causal effect sizes

than in simulations with variable causal effect sizes.

Simulations: WTCCC2 Genotypes and Simulated

Phenotypes

We next conducted simulations by using real WTCCC2 ge-

notypes and simulated phenotypes from ascertained case
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and control individuals (see Material and Methods).11,28

For a given value of M (M SNPs for calculating the GRM

plus M candidate SNPs for a total of 2M SNPs), we used

the firstM/2 SNPs from each of the first four chromosomes.

The GRMwas calculated with SNPs on chromosomes 3 and

4, and SNPs on chromosomes 1 and 2 were treated as the

candidate SNPs. The simulated phenotypes were generated

from chromosomes 1 and 3, where 1% of the SNPs were

randomly selected as being causal. Results are reported

for causal SNPs on chromosome 1 and for null SNPs on

chromosome 2, the latter of which were not used for build-

ing the GRM.

Results for simulations including 1,000 and 10,000 SNPs

(M) and sample sizes fixed at 500 case and 500 control sub-

jects are displayed in Table 4 and Tables S14 and S15. Once

again, the LTMLM statistic outperformed ATT and MLM as

case-control ascertainment became more severe. (A limita-

tion of these simulations is that performing case-control

ascertainment on a fixed set of individuals limits case-con-

trol sample size; thus, these simulations were restricted to a

disease prevalence of 10% or higher. It is reasonable to

infer that for rarer diseases with more extreme case-control

ascertainment the LTMLM statistic would achieve even

higher power gains, as was demonstrated in simulations

with simulated genotypes.)

The h2 parameter estimates for simulations with real ge-

notypes are displayed in Table 5. The H-E regression esti-

mates are unbiased, but the REML estimates are again

downwardly biased at lower prevalence and large N/M.

WTCCC2 MS Dataset

We analyzed the WTCCC2 genotypes together with MS

case-control phenotypes: 5,172 MS case subjects and

5,172 control subjects were genotyped on Illumina

chips11,28(see Material and Methods). We compared ATT,

ATT with five PCs (ATT þ PCs),22 LogR, LogR with five

PCs (LogR þ PCs), MLM, and LTMLM. We evaluated cali-

bration by using the average c2 and lGC over all SNPs; we

note that the average c2 and lGC are expected to be greater

than 1 as a result of polygenic effects.11,30 We believe that

LTMLM is effective in correcting for confounding and that

a higher value of lGC for LTMLM than for MLM is most

likely due to true polygenic signal and reflects the higher

power of LTMLM.

We evaluated power by using the average c2 over the 75

published SNPs (Table 6) and the proportion of published

SNPs that were significant at various p value thresholds

(Table S16). The LTMLM method performed best: it had a

4.3% improvement in average c2 statistics scaled by lGC

over MLM (jackknife p ¼ 0.005; see Material and Methods)

and an even larger improvement over ATT and ATT þ PCs,

consistent with simulations (Table 2 and Table S3). LTMLM

also detected 56/75 known associations as nominally sig-

nificant (p < 0.05) after lGC correction, whereas MLM

detected only 53/75, although this difference is not statisti-

cally significant. Similar results were obtained when associ-

ation statistics were calibrated via LD-score regression31
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Table 4. Results on Real Genotypes and Simulated Phenotypes

Prevalence Set Statistic ATT (SE) ATT þ PCs (SE) LogR (SE) LogR þ PCs (SE) MLM (SE) LTMLM (SE)

M ¼ 1,000

50% causal average 16.234 (0.723) 15.775 (0.705) 15.566 (0.674) 15.14 (0.658) 17.48 (0.780) 17.412 (0.775)

null average 1.444 (0.011) 1.425 (0.010) 1.433 (0.010) 1.415 (0.010) 1.472 (0.011) 1.471 (0.011)

all average 1.592 (0.014) 1.569 (0.013) 1.574 (0.013) 1.552 (0.013) 1.632 (0.015) 1.630 (0.015)

all lGC 1.214 (0.017) 1.224 (0.017) 1.214 (0.017) 1.223 (0.017) 1.234 (0.017) 1.226 (0.016)

25% causal average 19.277 (0.771) 18.581 (0.754) 18.47 (0.721) 17.822 (0.706) 20.493 (0.820) 20.642 (0.831)

null average 1.551 (0.012) 1.507 (0.011) 1.538 (0.012) 1.495 (0.011) 1.571 (0.012) 1.577 (0.013)

all average 1.728 (0.015) 1.678 (0.014) 1.707 (0.015) 1.658 (0.014) 1.761 (0.016) 1.768 (0.016)

all lGC 1.256 (0.016) 1.245 (0.017) 1.255 (0.016) 1.245 (0.017) 1.241 (0.015) 1.243 (0.015)

10% causal average 22.838 (0.961) 21.406 (0.878) 21.618 (0.881) 20.336 (0.808) 23.865 (1.022) 24.661 (1.064)

null average 1.664 (0.014) 1.583 (0.012) 1.647 (0.014) 1.568 (0.012) 1.668 (0.014) 1.695 (0.015)

all average 1.876 (0.018) 1.781 (0.016) 1.846 (0.017) 1.756 (0.015) 1.890 (0.019) 1.925 (0.019)

all lGC 1.271 (0.016) 1.285 (0.015) 1.270 (0.016) 1.284 (0.015) 1.251 (0.017) 1.270 (0.016)

M ¼ 10,000

50% causal average 16.898 (0.702) 16.815 (0.698) 16.229 (0.659) 16.156 (0.655) 17.279 (0.725) 17.26 (0.725)

null average 1.078 (0.002) 1.083 (0.002) 1.074 (0.002) 1.078 (0.002) 1.078 (0.002) 1.076 (0.002)

all average 1.094 (0.002) 1.099 (0.002) 1.089 (0.002) 1.094 (0.002) 1.095 (0.002) 1.092 (0.002)

all lGC 1.039 (0.005) 1.047 (0.005) 1.039 (0.005) 1.046 (0.005) 1.039 (0.005) 1.035 (0.005)

25% causal average 17.573 (0.726) 17.293 (0.696) 16.856 (0.679) 16.61 (0.654) 17.976 (0.749) 18.077 (0.758)

null average 1.076 (0.002) 1.078 (0.002) 1.071 (0.002) 1.073 (0.002) 1.074 (0.002) 1.073 (0.002)

all average 1.092 (0.002) 1.094 (0.002) 1.087 (0.002) 1.089 (0.002) 1.091 (0.002) 1.090 (0.002)

all lGC 1.040 (0.004) 1.045 (0.004) 1.040 (0.004) 1.044 (0.004) 1.040 (0.004) 1.039 (0.004)

10% causal average 24.379 (1.026) 24.116 (1.014) 23.127 (0.944) 22.894 (0.934) 24.987 (1.071) 25.399 (1.091)

null average 1.112 (0.002) 1.115 (0.002) 1.107 (0.002) 1.110 (0.002) 1.108 (0.002) 1.111 (0.002)

all average 1.136 (0.003) 1.138 (0.003) 1.129 (0.002) 1.132 (0.002) 1.131 (0.003) 1.135 (0.003)

all lGC 1.051 (0.005) 1.059 (0.004) 1.050 (0.005) 1.058 (0.004) 1.044 (0.004) 1.047 (0.004)

We report average c2 statistics. M is the number of SNPs, and sample size is fixed at 500 case and 500 control subjects.
(Table S17). A perfectlymatched dataset with 4,094MS case

subjects and 4,094 control subjects yielded a similar

improvement for LTMLM over MLM (Table S18). We also

applied LTMLM to the full unmatched dataset of 10,204

MS subjects and 5,429 control subjects, where a severe

mismatch in ancestry between case and control subjects

was not representative of a typical GWAS. The LOCO esti-

mates of h2 demonstrated inflation before we controlled

for population structure (Table S19). In this analysis, the

H-E regression estimate of h2 produced an unrealistic value

of 7.3 on the observed scale (corresponding to 2.8 on the

liability scale), which is outside the plausible 0–1 range,

suggesting severe population stratification or other severe

problems with the data. We do not recommend the use

of LTMLM on unmatched samples when such severe

problems are detected. For completeness, we report the re-

sults of running LTMLM, which results in a loss of power

(Table S18).
The Am
Discussion

We have shown that controlling for case-control ascertain-

ment by using the LTMLM statistic can lead to significant

power improvements in case-control studies of diseases of

low prevalence. This was demonstrated via simulations us-

ing both simulated and real genotypes and in WTCCC2

MS case-control data.We emphasize that the improvement

applies to case-control studies of diseases with low preva-

lence. We note that logistic and linear regression generally

produce similar results and that logistic mixed-model score

tests that do not explicitly model case-control ascertain-

ment are likely to produce results similar to those of stan-

dard linear mixed-model methods.

The LTMLM statistic should not be used if the inferred

liability-scale h2 parameter is outside the plausible 0–1

bound, given that this is indicative of severe population

stratification or other severe problems with the data (this
erican Journal of Human Genetics 96, 720–730, May 7, 2015 727



Table 5. Heritability-Parameter Estimates on Real Genotypes and
Simulated Phenotypes

Prevalence

Liability Scale Observed Scale

H-E (SE) REML (SE) H-E (SE) REML (SE)

M ¼ 10,000

50% 0.259 (0.013) 0.252 (0.010) 0.165 (0.008) 0.161 (0.006)

25% 0.241 (0.010) 0.238 (0.008) 0.173 (0.007) 0.171 (0.006)

10% 0.245 (0.011) 0.242 (0.007) 0.233 (0.010) 0.230 (0.007)

M ¼ 10,000

50% 0.236 (0.014) 0.245 (0.013) 0.150 (0.009) 0.156 (0.008)

25% 0.250 (0.014) 0.264 (0.013) 0.180 (0.010) 0.190 (0.010)

10% 0.259 (0.012) 0.261 (0.009) 0.246 (0.011) 0.248 (0.009)

These results are from the same simulations used to generate Table 4 and
Tables S14 and S15. We report results on both the liability and the observed
scales. The true h2 explained by the SNPs used for building the GRM is 25%
on the liability scale for all simulations.
can also be assessed via PC analysis; see Figure S2). In such

settings, either matching based on ancestry should first be

performed or other statistics should be used.

Several limitations of LTMLM are directions for future

study. First, previous work has shown that using the

PMLs in conjunction with fixed effects such as body

mass index, age, or known associated SNPs will further in-

crease power.12,20 The incorporation of fixed-effect covari-

ates into the LTMLM statistic is not considered here and

remains a future direction. Second, the calibration of our

statistic in unrelated samples relies on an approximation

that works well in the WTCCC2 data analyzed but that

might not work well in all datasets. Here, calibration

via LD-score regression offers an appealing alternative.31

Third, we did not consider case-control studies in family

datasets, which also represents a future direction. The

LTMLM score statistic in its current form is appropriate

for association testing in population case-control samples

with low levels of relatedness. In family datasets, other ap-

proaches to calibration, such as LD-score regression, could

potentially be explored.31 Fourth, the method relies on the

assumption of an underlying normally distributed liability.

Although this assumption is widely accepted by many ge-

neticists,32,33 and the method also performs well under a

different generative model (Tables S12 and S13), further
Table 6. Results on WTCCC2 MS Dataset

Category Metric ATT (SE) ATT þ PCs (SE) Log

Published mean 11.661 (1.169) 9.98 (0.984) 11.

Genome-wide mean 1.379 (0.003) 1.152 (0.003) 1.3

Genome-wide lGC 1.343 1.125 1.3

Published mean/lGC 8.695 8.880 8.6

We report, going down the rows, the average c2 over 75 published SNPs, the ave
lGC, and then the average c2 across 75 published SNPs after normalization by th
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work on whether case-control traits are accurately modeled

by normally distributed liabilities is warranted. Fifth, the

method does not estimate odds ratios; in this respect, the

method is similar to other mixed-model association

methods.4,5,8,11 However, liability-scale effect sizes can be

converted to odds ratios.13 Sixth, analogous to standard

mixed-model association methods, LTMLM requires

running time O(MN2) when M > N > number of MCMC

iterations. This might be computationally intractable

in very large datasets. We are developing much faster

mixed-model methods,34 but these methods do not

consider case-control ascertainment and should not be

applied to ascertained case-control data for diseases of

low prevalence. The incorporation of the ideas we have

described here into these methods is an open question.

Seventh, potential application of the LTMLM statistic to

rare-variant datasets is not considered here and remains a

future direction. Finally, our methods could potentially

be extended to multiple traits.7,27,35
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