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Abstract: The inclusion of embedded sensors into a networked system provides useful 

information for many applications. A Distributed Control System (DCS) is one of the 

clearest examples where processing and communications are constrained by the client’s 

requirements and the capacity of the system. An embedded sensor with advanced 

processing and communications capabilities supplies high level information, abstracting 

from the data acquisition process and objects recognition mechanisms. The implementation 

of an embedded sensor/actuator as a Smart Resource permits clients to access sensor 

information through distributed network services. Smart resources can offer sensor services 

as well as computing, communications and peripheral access by implementing a self-aware 

based adaptation mechanism which adapts the execution profile to the context. On the 

other hand, information integrity must be ensured when computing processes are 

dynamically adapted. Therefore, the processing must be adapted to perform tasks in a 

certain lapse of time but always ensuring a minimum process quality. In the same way, 

communications must try to reduce the data traffic without excluding relevant information. 

The main objective of the paper is to present a dynamic configuration mechanism to adapt 

the sensor processing and communication to the client’s requirements in the DCS. This 

paper describes an implementation of a smart resource based on a Red, Green, Blue, and 

Depth (RGBD) sensor in order to test the dynamic configuration mechanism presented.  
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1. Introduction 

In a Distributed Control System (DCS) [1], visual sensors usually offer the information in a raw data 

format. It means that Red, Green, and Blue (RGB) frames must be sent to every client, with the 

corresponding bandwidth consumption. Additionally, every frame must be processed by each client based 

on their own requirements, for example, to recognize a specific form or to detect a particular colour. 

In this context, in the case that different clients need to obtain identical outcomes, as well as when 

they need to recognize exactly the same form with the same colour, they have to do the same 

processing tasks, which implies unnecessary and redundant processing and also unnecessary 

bandwidth consumption. 

Nowadays, in order to reduce the processing load on the client side, networked visual sensors are 

evolving to provide more processed information by moving part of the processing from clients to the 

visual sensors. Consequently, bandwidth consumption can be reduced by sending processed 

information instead of raw data from the sensor. For example, a visual sensor provides only a message 

with the colour of a detected form instead of the full RGB frame. This type of visual sensors is 

included in the smart device paradigm [2] which defines a smart device as a sensor and/or an actuator 

with capacity of processing. 

Using this model, in opposite to raw data clients and visual sensors need to increase the complexity 

of communications in order to configure the details of data processing, such as the colour to be 

detected by the visual sensor process, and to access visual sensors processed data. Consequently, 

clients will need a mechanism to configure the visual sensors depending on their requirements and, in 

the same way, the use of interfaces to access processed data will be required. 

The introduction of new technologies is increasing the development with this type of visual sensors 

in the last years. For example, the Microsoft Kinect [3] or Asus Xtion with similar properties [4], 

provide RGB and depth information of frames. These visual sensors are known as RGBD sensors [5]. 

Possible applications of these RGBD sensors range from industrial applications [6] to consumer 

oriented products, which can be easily accessible through web-based services from a personal 

computer, smartphone and wearable tools [7], mobile robot platforms [8], unmanned aerial  

vehicles [9], perception systems [10], and people management [11] can also take advantage of 

distributed RGBD sensors to obtain processed information to satisfy the environment knowledge 

requirements of the system. 

In certain applications, RGBD sensors can receive numerous petitions from different clients by 

requesting different type of information. For example, in robot navigation under uncertain environment 

conditions, where the context is changing dynamically, the information requested to detect people to 

avoid them or to recognize doors to generate a map could be very different in comparison.  

The processing load of the RGBD sensor depends on the number of client requests and their type. 

Anyway, the RGBD sensor should ensure some specific service requirements that depend on the 
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internal constraints, as for example Central Processing Unit (CPU) load. These service requirements 

can be specified with the quality of context (QoC) [12] and quality of service (QoS) [13] parameters.  

A client requests a specific QoS, for example the minimal resolution for the images, and the RGBD 

sensor provides this QoS according to its QoC, for example, by adjusting the image resolution in order 

to not to exceed a specific CPU load. Therefore, the smart resource should have an internal mechanism 

that allows adapt the processing to the constraints according to QoS and QoC.  

According to this, the main objective of the paper is to present a dynamic configuration mechanism 

to adapt the visual sensor processing and communication to the client requirements in the DCS. To 

achieve this objective, the following goals are established: 

• Using a communications interface that provides an adequate level of abstraction to access to smart 

devices. The aim is that clients can access transparently to smart devices by means of resources 

provided by them. This introduces the proposed concept called smart resource, where clients can 

access resources regardless of the devices that produce the information and where they are placed. 

• To structure the processing of a smart device by means of isolated processes called plugins. Plugins 

offer basic functions that can be composed between them to perform more complex functions 

depending on the processing required by the clients. 

• To propose an internal adaptation mechanism based on plugins to configure smart devices 

according to the QoS and QoC. 

• To characterize a RGBD sensor into a smart resource, based on the publish/subscribe paradigm [14], 

and to test the proposed internal adaptation mechanism by implementing a case of study. 

The paper is organized as follows: in Section 2 some related work is introduced. The current 

framework is presented in Section 3. Context adaptation mechanisms are detailed in Section 4. The 

implementation of a RGBD smart resource is explained in Section 5 by introducing its processing and 

recognition capabilities. The influence of adaptation in the recognition quality is evaluated in Section 6. 

Finally in Section 7 some conclusions are summarized and future work is introduced. 

2. Related Work 

The evolution of embedded system capabilities has brought the possibility to perform more complex 

tasks and to provide smarter services. Therefore, embedded systems can implement self-aware 

mechanisms as well as routines to adapt their context. Quality measures allow systems to check their 

performance, detect an undesirable execution context, and warn about system malfunctions.  

In order to make the system able to adapt to its/the context, it has to have the proper mechanisms to 

detect the need/necessity of being adapted. QoS-based communication systems [15], are one of the 

clearest examples. Through the evaluation of some measures like deadlines or timestamps, among 

other QoS measures, they offer mechanisms to warn about communication problems such as delays or 

data loss. As some examples, in [16] a QoS-based application for the enhancement of manufacturing 

communication networks is introduced, while in [17] the implementation of QoS aware mechanisms 

for dealing with real-time embedded databases is detailed and the work presented in [18] shows an 

application of QoS in mobile robotics systems. 
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Beyond the QoS policies, many other works are designed to achieve a quality measure to evaluate 

the performance of a certain process. In [19] the concept of Quality of Context (QoC) is introduced as 

a set of measures which checks the precision, probability of correctness, trustworthiness, resolution, 

and up-to-dateness of context information. In such way, QoC offers mechanisms for analysing and 

evaluating the performance according to the current context and allowing one to design quality-aware 

systems just as detailed in [20]. This kind of qualities is usually oriented to measure the quality that 

involves only end-point devices. 

Once the system has mechanisms to detect an undesirable operation performance, or even a system 

malfunction, it can execute an adaptation process to solve these issues suited to the current context. 

The QoS detection mechanisms always lead to the implementation of some adaptation routines. One 

example is introduced in [21], where a QoS based framework which implements several run time 

adaptation mechanisms is presented. Another example is also presented in [22] where a QoS 

adaptation procedure is designed to fit to the different constraints of resource availability and input 

quality into a decentralized nodes coordinated system. Furthermore, others works have tried to apply 

machine intelligence tools in combination with QoS to predict failures and force adaptation before the 

quality decreases [23]. 

In the case of the QoC, several implementations also provide context adaptation mechanisms. In [24] 

a detailed research focused on how to adapt services to the current execution context is presented and a 

middleware to manage this QoC adaptation is proposed. Adaptation is a well-known topic in  

control systems [25]. Thus, these systems can implement QoC adaptation mechanisms to adapt the 

control execution to the context in order to enhance the general performance of the system just as is 

introduced in [26]. 

To make the adaptation process evolve based on previous decisions, there are many learning 

algorithms that can be applied [27]. The Support Vector Machine (SVM) tool [28] has been 

implemented in several works in order to improve the quality of the system by offering adaptive fault 

diagnosis mechanisms [29–31] that allow one to select the most proper system context. One example is 

presented in [32], where SVM is used to implement a non-linear fuzzy control in order to provide an 

acceptable control quality. 

According to these works, three main key concepts are introduced: the capability to measure the 

system performance through the quality measures management mechanisms just as QoS or QoC, the 

need of offering procedures to adapt the system performance to the requirements anytime and, finally, 

enhance and optimize this adaptation by implementing adaptation algorithms. 

3. Framework 

As presented in the introduction, this contribution is framed into a DCS system in which 

decentralized devices exchanges information in order to execute control tasks. In this frame, sensors 

can operate independently or can be established as part of a more complex system, which requires 

certain knowledge of the environment in order to perform an interaction. 

Distributed sensor devices are usually designed to execute data processing and classification 

mechanisms in order to provide high-level information about their sensing. As a result, both the amount of 

exchanged data and the bandwidth are reduced by supplying to the DCS only the relevant information. 
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The overview of the framework of our system is detailed in Figure 1. In a down-top approach three 

different layers are established: execution, communication and plan. The execution layer is carried out 

by a set of devices with a given computation capabilities which execute different types of tasks: 

sensorization, processing and actuation. These devices are established as smart devices because they 

can operate independently and offer high level data management. They are structured in three main 

components: the Control Kernel Middleware (CKM), the Smart Plugin Topology (SPT) and the Task 

Configuring Module (TCM) such as will be described in the next section. 

 

Figure 1. Topology of a distributed control system based on smart devices. 

The communication layer is provided by an Application Programming Interface (API) based on a 

Publish/Subscribe distributed network that allows accessing to smart devices transparently. Finally, the 

client layer is composed by the client processes in order to perform different missions which are 

achieved through the execution of tasks. Some of these tasks are executed in the distributed smart 

devices and the communications API offers to clients the mechanisms to configure the parameters of 

the execution of these tasks and the mechanisms to access and monitor processed data. In this paper, a 

smart device based on RGBD camera is implemented to test the described DCS. 

3.1. Smart Devices 

Smart devices (Figure 2) execute their tasks by using a CKM which provides real-time and data 

management support. The current implementation of the CKM is based in the original proposal 

described in [33], where is introduced the theoretical background of this control middleware. The 

CKM also provides field bus communications in order to manage sensors and actuators. 

During the acquisition step, the smart device is set to store sensor data at a proper rate which always 

grants to suit the Nyquist theorem [34]. Raw data is interpreted by a process plugin or a composition of 

several ones. A plugin is defined as a process function, which extracts information from raw values or 

the result of another plugin. 

The raw data process is based in the work presented in [35] and occurs in three different parts: 

segmentation, blob detection and feature recognition. First of all the segmentation process allows one 

to extract same colour and depth regions from the raw image. Next some of these regions are grouped 
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forming image blobs by using the seed region growing (SRG) technique [36]. Finally some shape, size, 

density and colour characteristics will be analyzed in order to recognize some environment features. 

 

Figure 2. Smart resource: components and relations. 

Plugins have been organized within the SPT [37]. The main objective of the SPT is to improve and 

optimize the processing step defining the plugin configuration and composition capabilities [38] as is 

detailed in Figure 2. Composition is needed since one plugin output may be useful to another for 

obtaining more complex information. Therefore, plugins in the SPT can be combined in order to avoid 

code duplicity and inappropriate use of the system resources. That way, the SPT can dynamically 

compose a set of plugins to suit the specific requirements of the system. 

Different configurations can be specified for parameterizing the process execution. In each case, 

plugins must be designed to allow some possible configurations enhancing the flexibility of these 

mechanisms. To select the more suitable plugin configuration for each situation, it must be analyzed 

the system context by evaluating the Service Requirements (SR), the communication QoS and other 

quality measures called Quality of Context (QoC) which are relative to the current state of the device 

and the available resources. QoC will be detailed in next section as end-point metadata quality 

information. As a result of this evaluation, the execution profile of the smart device is set to perform in 

the most suitable configuration. The configuration mechanisms are implemented by means of the Task 

Configuration Module (TCM) that will be fully detailed in next section. 

3.2. Publish-Subscribe Communications 

In the introduction of our framework, the communication has been characterized as a 

publish/subscribe paradigm. As any implementation of this topology, information is organized by 

topics. That way each process in the network can publish information in a certain topic in order to send 
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the information between all the processes subscribed to that one. In this way, each device is only aware 

of the information which concerns its performance. Smart devices are designed to deal with two main 

types of topics: 

• Configuration topics: These topics are used by the client processes to specify the required task of a 

certain smart device or a group of them. 

• Data topics: These topics are used by the clients and smart devices to exchange information. 

The quality of communications is an important reliability factor which has to be evaluated in order 

to ensure proper tasks execution. In this paper QoS policies, such as deadline or lifespan [39], are 

implemented in order to measure the performance of the communications. 

3.3. Smart Resources 

As stated before, smart devices have been introduced to provide high-level data management, 

working with well-defined data structures, instead of raw data. In this way, client processes don’t need 

to use raw values when dealing with sensors and actuators. By adding the communication layer, any 

process can access this data structures in a homogeneous way through the given API. As a result, a 

smart device turns into an abstract network resource which offers well defined interaction capabilities 

for configuring its tasks and requiring or supplying data structures. These resources are named smart 

resources (Figure 2). 

A smart resource realizes its operation in a smart device with service-based distributed 

communications support. A smart device implements the CKM for supporting the execution of the 

tasks, the SPT that organizes tasks in plugins and the TCM that configures dynamically the plugins. 

Communications capabilities are established as a publish/subscribe network as introduced in previous 

subsections. Following, the description of the TCM will be detailed. 

4. Task Configuration Module (TCM) in a Smart Resource 

How to detect changes in the state of the systems, how to select which scenario suits it more 

accurately, and how to design the most desirable configuration, are the main contributions of this 

work. Due to its importance, all these matters will be detailed along this section, where QoS and QoC 

mechanisms are defined as the most significant tools for achieving the proposal. 

4.1. Quality Policies: Communication QoS and End-Point QoC 

DCS usually implements quality of service (QoS) mechanisms to add reliability and fault  

tolerance [40] and offer real-time capabilities [41]. Nevertheless, other quality of context (QoC) 

measures can be evaluated in order to fix the system function. That way, quality of context is defined as 

some end-point metadata quality policies that will also be analyzed to bring new adaptation mechanisms 

to the system.  

These QoC policies and its meaning could be managed in very different ways depending on the 

application and the goal. For this reason smart resource services must be developed in order to support 

different quality policies, in both terms QoS and QoC, bounded by their application needs. That way, 
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during the design of a new control system, smart resource services must be parametrized to suit the 

requirements of the system. These requirements can be included in one of the following domains: 

• Temporal: Related with time values as periods, latency, or delays. Temporal requirements are hard 

constraints for reliable control system execution. 

• Spatial: Lack of memory, memory inconsistency, and data isolation problems could lead to  

system malfunction. 

• Performance Reliability awareness: Awareness of incoherent values, out of bound data, or 

undesirable combination of system variables, between other, are key evaluators to trigger smart 

resource reconfiguration to select a more proper scenario. 

4.2. System Profiles 

Control systems can operate in many different execution profiles, ranging from idle mode to the 

edge of its capacities, executing one or several different tasks. One system, ever with only one well 

defined task, can face different requirements with different tolerances along the progression of its 

tasks. That way, each possible situation, with its own requirements, define a new system profile. 

More detailed, a certain system profile (SP) is characterized by a particular configuration (PgMode) 

of the plugins (Pg) defined in the SPT and a set of requirements (Qmode) of the Quality (Q)-policies 

which have to be met.  

Therefore, the TCM (Figure 3) is composed of a set of possible profiles and its mission is the 

dynamic selection of the most appropriate profile depending on the service requirements. 

As shown in Equation (1), the TCM is formalized as a set of System Profiles SP, which are 

designed to execute P different process plugins, and to adapt Q different quality requirements. That 

way, a TCM is defined by a set with P·Q number of possible system profiles:  ܶܯܥ = {ܵ ܲ|݆ = 1,… , ܲ| ݇ = 1,… , ܳ} (1)

Consequently in Equation (2), a system profile SP is defined by a certain Plugin PgMode, from the 

given set of P plugins, and a certain quality requirement Qmode from the set Q requirements. These 

PgModes and Qmodes are respectively defined in the TCM:  ܵ ܲ = ൛ܲ݃݁݀ܯ, ݆|݁݀݉ܳ = 1,… , ܲ| ݇ = 1,… , ܳൟ (2)

A CPgxj is the particular configuration of the pluginx according to the PgModej and S is the number 

of the execution plugins implemented in the SPT: ܲ݃݁݀ܯ = ൛݃ܲܥ௫|ݔ = 1,… , ܵൟ (3)

Equation (4) introduces a Qmodek as the requirement of the Q-policyz defined by QRzk, where R is 

the number of the Q-policies considered in the TCM. That is, QRzk defines the range of values that are 

appropriate and acceptable for the Q-policyz: ܳ݉݁݀ = {ܴܳ௭|ݖ = 1,… , ܴ} (4)

The TCM has to evaluate dynamically if present Q-policy values (Q’) are meeting the requirements 

(they are within the ranges specified). In a formal description, any quality policy is evaluated along 
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time t, and is presented as a set of qualities values QValue(t) into the domain above described and 

referenced in Equation (5): 

QValue(t) = ൛ܳᇱ௭(ݐ)|ݖ = 1,… , ܴൟ (5)

 

Figure 3. TCM description. 

4.3. Profile Selection 

Once the definition of the quality policies, system profiles, and the description of the TCM have 

been detailed, the process for profile selection will be described. The main purpose of the TCM is to 

active the most suitable profile of all the possibilities according to the service requirements  

(plugin requirements and quality requirements). Therefore, active profile will remain while the 

Configuration of the Plugins (CPg) doesn’t change and Quality Requirements (QR) are fulfilled. If one 

of these conditions are not satisfied, adaptation mechanisms will change the active profile. 

The new active profile is selected by suiting the system execution according to the recent events and 

the evaluation of each possible profile. This evaluation is calculated by implementing some techniques 

based on active learning. Therefore, Soft Margins [28] are applied to compute the state of each profile 

as is introduced in Equation (6): 										ܸܧ_ܵ ܲ(ݐ) = ݓ · ݂௩൫ܳ݉݁݀, ,(ݐ)݁ݑ݈ܸܽܳ ൯ߦ − ℎݐ |݆ = 1,… , ܲ|	݇ = 1,… , ܳ (6)

where ܸܧ_ܵ ܲ(ݐ) is the evaluation of the system profile SPjk at time t, and P·Q is the number of possible 

profiles. The evaluation function returns a value is between 0 (not suitability) and 1 (full suitability) and it 

is calculated according to ܸ݈ܳܽ(ݐ)݁ݑ (present quality values), ܳ݉݁݀ (quality requirements defined in 

the profile jk) and ߦ (penalization factor for the profilejk). The weight value wjk is a fixed measure for the 

profilejk that allows to modify the result of this evaluation function. Two different profiles with a same 

result for the fev can be differentiated because different weight values. That way, system will lead to the 
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execution of preferred profiles in case of evaluation draw. Finally, th is a common threshold value for all 

profiles which allows to bound the global evaluation for all the profiles in the system. 
The value of ߦ  in this equation reflects a penalization factor which avoids the system to oscillate 

between active profiles. This value is updated, ߦ′, by computing the inequation presented in Equation (7) 

when the expulsion of an active profile takes part due to a policy failure: 

݂௩൫ܳ݉݁݀, ,(ݐ)݁ݑ݈ܸܽܳ ൯ߦ ≥ ቀ1 − ᇱቁ (7)ߦ

where ߦ′  is the updated value for ߦ  when the profilejk is substituted. According to this, a good 

evaluation from fev will be reflected as a decrement of ߦ′ from its previous value ߦ, while a poor 

evaluation result will reflect an increment of this value. As this evaluation is also conditioned by the 

penalization value, it prevents the system to oscillate between high and low evaluation results. As will 

be shown in the results section, it leads to a more stable execution of the system. 
The fev algorithm is detailed using pseudo-code in Algorithm 1, where QRzk and ܳᇱ௭(ݐ) are the 

requirement and the present value respectively of the Q-policyz according to the ܳ݉݁݀  of the 

profilejk, and R is the number of the Q-policies considered in the TCM. 

Algorithm 1. Calculating return value of function fev 
1: function fev (Qmodek, ܸ݈ܳܽߦ ,(ݐ)݁ݑ). 

2: acc  0 

3: for z1 to R do 

4:  if Q’z(t) = QRzk then 

5:   acc  acc + 1 

6:  end if 

7: end for 

8: suit  acc/n 
9: affectedSuit  suit * (1 − ߦ). 

10: return affectedSuit. 

11: end function 

 

Figure 4. Task configuration selection mechanism implemented based on the service requirements. 
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The graphical representation of this proposal is shown in Figure 4. In this figure the flow of one step 

in the profile selection mechanism can be observed. How the quality requirements are conditioning the 

switch between profiles is also presented. This adaptation mechanism is integrated to suit the profile 

selection into the smart resource TCM implementation. 

5. Case of Study: Smart Resource Implementation Based on a RGBD Camera 

In this section is introduced a case of study where a smart resource which is designed in order to 

extract 3D visual information from the environment is implemented. For this purpose, the smart 

resource will integrate a smart device with an Asus Xtion camera as main component (Figure 5). The 

Asus Xtion is a RGB-D sensor which is characterized to provide RGB and depth image measurements. 

A triple buffer [42] implementation ensures it always has fresh data available without interfering with 

the acquisition. 

 

Figure 5. Smart resource implementation based on a RGBD camera. 

Two kinds of plugins have been implemented according to the type of the supplied image  

(RGB or depth). The combination of these will result in a more accurate knowledge of the sensed 

environment. As a result, the smart resource will produce high-level information structures from the 

sensor data for being accessible through the communications API by offering distributed services. 

Therefore, next process plugins are implemented: 

• Basic Colour Element Extraction: These plugins extract the information about the elements in the 

image which are bounded in only one (R, G, B) colour spectre. 

• RGB Elements Extraction: As a combination of the previous plugins, all R, G, and B elements are 

extracted at the same time from the source image. 
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• Depth Elements Extraction: This plugin uses the depth image to extract object located in a same 

range of distance from the sensor. 

• Colour Depth Elements Extraction: As the most complex plugin, it combines the two previous ones 

obtaining the colour elements according to their depth values. 

The graphical composition of these plugins is detailed in Figure 6. The information obtained as a 

result of a certain plugin execution is published in a specific topic in order to allow clients to access it. 

 

Figure 6. Plugins composition. 

These plugins can be configured to detect environment elements. Since the scope of this work is not 

to introduce a recognition system, simple object detection mechanisms have been designed. For this 

purpose, some basic colour blobs with their depth values are computed, just as is depicted in Figure 7. 

The System Plugin Topology (SPT) offers highly parameterizable operation processes through the 

plugin configuration and composition. Thus, the RGBD camera could be set for working with some 

different image resolution and different colour formats. 

In this implementation quality requirements have been set in terms of both QoS and QoC. As main 

QoS, the time needed to process the information and publish the result is measured to compare it with 

a deadline in order to detect unexpected delays on data supply. The evaluated QoC policies are related 

with the resource usage of the smart device, that way the CPU and memory consumption are 

measured. To suit the quality requirements each plugin can be configured to perform at different levels 

of resolution in order to reduce the resources consumption and the response time. Three different 

levels of resolution are implemented: Video Graphics Array (VGA) (640 × 480), Quarter Video 

Graphics Array (QVGA) (320 × 240) and Q2VGA (160 × 120). 
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Figure 7. Elements detection. 

As has been introduced, a profile is composed by a particular configuration of the plugins of the 

SPT and some required quality policies. The set of available system execution profiles to be adopted 

by the current smart resource are defined in Tables 1 and 2. 

Table 1. PgModes for system profiles. 

 
Pg1 = Red 

Detection 

Pg2 = Green 

Detection 

Pg3 = Blue 

Detection 

Pg4 = Depth 

Detection 
Pg5 = Composition 

Pg6 = Colour 

Depth Recognition 

PgModej 

{null, VGA,  

QVGA,  

Q2VGA} 

{null, VGA, 

QVGA, Q2VGA } 

{null, VGA,  

QVGA, 

Q2VGA } 

{null, VGA,  

QVGA,  

Q2VGA} 

{null, Pg1 + Pg2 + 

Pg3} 
{null, Pg4 + Pg5 } 

Table 2. Possible Qmodes for system profiles. 

 Q1 = CPU [min.,max.] Q2 = Memory Q3 = Deadline 

Qmode1 [20%, 40%] 15 MB 50 ms 
Qmode2 [40%, 60%] 15 MB 50 ms 
Qmode3 [60%, 80%] 15 MB 50 ms 

6. Experiments and Results 

A set of tests were designed in order to validate the implemented RGBD smart resource (Figure 8). 

In these tests, four different clients publish on the configuration topic in order to apply for the 

execution of a new type of plugin. Each client applies for a specific plugin in every execution and the 

number of plugins and their configurations will change during the tests. Along these executions, 

qualities will be monitored, in addition with the active system profile in each time and the penalization 

factor for each one of them. 

Figure 9 shows the scalability of the system. Both, clients and smart resources may be added to the 

distributed system by using the publish/subscribe infrastructure based on topics. In the case of the 

experiments presented in this paper, the client scalability is tested in order to validate the configuration 

selection mechanism proposed for the smart resource. 
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Figure 8. RGBD smart resource based on XTion and BeagleBoard working. 

 

Figure 9. Scalability of the system. 

In the experiment, testbeds consist on one to four clients that are executed sequentially 180 times. 

The first client requests for blue objects, the second one requests for red objects, the third client 

requests for objects placed in a specific distance range and, finally, the last one requests for green 

objects. After that, in the same order, clients request the end of each service requested. As a 

consequence of each client request, necessary plugins to serve the request are started in one RGBD 

smart resource. The execution of new plugins can produce changes in the quality values and can 

trigger an alarm if these values exceed required quality ranges. As a result, the TCM adapts 

dynamically the configuration of the plugins by changing the active system profile due to the number 

of active clients (Figure 10). The evolution of this execution test is detailed in Figures 11 and 12. And 

the consequences of the execution in the QoC (memory and CPU load) are detailed in Figures 13 and 14. 
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Vertical lines in Figure 10 shows in the horizontal axis the moments in which relevant events happen. 

Horizontal axis of the Figure 10 corresponds with the horizontal axis of Figures 11–14. 

 

Figure 10. Number of clients along experiments and alarms produced. 

In Figure 11 the evaluated qualities and the established limits for each value are shown. As can be 

observed, the deadline (Figure 11a) and the CPU (Figure 11b) measurements are the most critical 

qualities, due to existence of outline values beyond the specified bound in each case. The memory 

usage is permanently below the limit defined (Figure 11c). Memory is depicted as the full usage 

accumulated by every plugin in the processor. Whenever a plugin changes its configuration  

(for example, as a consequence of an alarm) it leaves the processor and reduces its memory load to 

zero, for this reason every vertical line in Figure 11c represents a plugin’ context switch. 

 
(a) 

 
(b) 

Figure 11. Cont.  
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Figure 11. QoS and QoC values along tests performed: deadline (a); CPU load (b); and 

memory usage (c). 

When quality limits are exceeded, the CKM detects the event and the corresponding alarm is 

triggered. As a result, the TCM evaluates the profiles and selects a new active profile decreasing the 

resolution of the images (Figure 12a). Table 3 shows the evolution of these changes: active plugins and 

PgModes associated to the different active profiles with their corresponding image resolution. 

Table 3. Evolution of PgModes 

 Client 1 Client 2 Client 3 Client 3 Client 3 Client 4 

PgModes  

(Trigger Driven) 

Pg3 = Blue 

Detection 

Pg1 = Red 

Detection 

Pg4 = Depth 

Detection 

Pg5 =  

Composition 

Pg6 = Colour Depth 

Recognition 

Pg2 = Green 

Detection 

 PgMode1 VGA      

PgMode2 VGA VGA     

PgMode3 QVGA VGA     

PgMode4 QVGA QVGA     

PgMode5 QVGA QVGA VGA Pg1 + Pg2 + Pg3 Pg4 + Pg5  

PgMode6 QVGA QVGA QVGA Pg1 + Pg2 + Pg3 Pg4 + Pg5  

PgMode7 Q2VGA Q2VGA QVGA Pg1 + Pg2 + Pg3 Pg4+ Pg5  

PgMode8 Q2VGA Q2VGA QVGA Pg1 + Pg2 + Pg3 Pg4 + Pg5 VGA 

PgMode9 Q2VGA Q2VGA Q2VGA Pg1 + Pg2 + Pg3 Pg4+ Pg5 QVGA 

PgMode10 Q2VGA Q2VGA Q2VGA Pg1 + Pg2 + Pg3 Pg4 + Pg5 Q2VGA 

PgMode11  Q2VGA Q2VGA Pg1 + Pg2 + Pg3 Pg4+ Pg5 Q2VGA 

PgMode12   Q2VGA Pg1 + Pg2 + Pg3 Pg4 + Pg5 Q2VGA 

PgMode13   QVGA Pg1 + Pg2 + Pg3 Pg4 + Pg5 Q2VGA 

PgMode14   QVGA Pg1 + Pg2 + Pg3 Pg4 + Pg5 QVGA 

PgMode15      QVGA 

PgMode16      VGA 

The changes between image resolutions according to the requirements of the system are detailed in 

Figure 12a. As can be shown, a certain number of plugins leads to a stable configuration of plugins, 

but at the same time the TCM is always evaluating the resources in order to increase again the 

resolution. This resource evaluation is conditioned by the evolution of the penalization factor as 

depicted in the respective graph (Figure 12b). In Section 4.3 the function of this penalization value has 

been theoretically introduced, which in this test proves to suit the dynamics of the system, leading to a 

resolution change only when the context meets the requirements. 
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(a) (b) 

Figure 12. Evolution of the plugin image resolution (a); and the penalization factor (b).  

The results of this test, depicted in Figures 10–12, are numerically analyzed in Table 4 where a 

quantitative analysis of the evolution of the system variables according to the number of active clients, 

which reflects in fact the number of active plugins, is gathered. As the numbers of clients are 

augmented, the activation time of higher resolutions decreases whereas the deadline, CPU and memory 

measures are augmented. Once the system resources are employed to the edge of its capabilities, the 

number of alarms produced by the system is increased. As the number of alarms increases, the global 

penalization of the system augments. A significant increment on the alarms, and consequently the 

penalization, can be interpreted as an approach to the maximum system resource usage according to 

the specified quality bounds. 

Table 4. Quantitative study of the system evolution. 

N. Clients Resolution % Active Events Alarms Deadline CPU Memory Penalization

 VGA 0.4637       
1 QVGA 0.5631 0 0 0.0142 34.34 1.048 0.24 
 Q2VGA 0.0000       

 VGA 0.0321       
2 QVGA 0.6877 4 0 0.0169 39.11 1.069 0.54 
 Q2VGA 0.2800       

 VGA 0.0160       
3 QVGA 0.1860 4 0 0.0190 43.97 1.089 0.69 
 Q2VGA 0.7980       

 VGA 0.0220       
4 QVGA 0.1090 2 13 0.0221 48.27 1.130 0.76 
 Q2VGA 0.8660       

In order to analyse the global performance of the system a scatterplot in which the average resolution of 

the 180 experiments performed during this test is compared with its correspondent usage of system 

resources is depicted in Figure 13. Although the point dispersion is significant, it can be set a lower limit 

which can be interpreted as the minimum usage of resources that can be obtained with a specific data 

resolution. According to the point dispersion, the deterministic behaviour of the system must be studied. In 

order to test the repeatability of its execution, a specific test will be repeated for a previous analysis of its 

statistical characteristics. 
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Figure 13. Data resolution vs. used resources. 

In Table 5 are analyzed the variance and the standard deviation of the global resolutions and 

qualities measured throw the 180 experiments. As the values obtained are very similar, it can be said 

that the experiment is repeatable and, consequently, validate the results scientifically. 

Table 5. Variance and standard deviation. 

 Active Resolution QoS (Deadline) QoC (CPU & Memory)

Variance 0.0078 0.00000025 0.007799 
Standard Deviation 0.0709 0.00047322 0.007280 

The presented adaptation mechanism has been characterized as a useful tool to align the system 

performance to the system context. However, a decrease on the process quality in order to fit the 

dynamic requirements could lead to several failures on the development of their tasks. In this case of 

study, a down-scale in the image resolution can avoid the smart resource to perceive or recognize an 

environment object. For this reason, a set of experiments in which is characterized the influence of this 

adaptation in the quality of the information has been designed. 

During each experiment, the smart resource will be forced to work with a fixed profile in order to 

determine the quality of the recognition in each one. Every profile is configured to use a different 

resolution: VGA in Profile 1, QVGA in Profile 2, and Q2VGA in Profile 3. During each experiment 

when the perception fails (an environment element is not detected) and the recognition fails (a detected 

element is not recognized) will be annotated in order to summarize the obtained error in each profile, 

Table 6 shows the total of perception and recognition fails in each profile. This table also adds 

information about the false positives, defined in these cases as an environment element that has been 

erroneously recognized as an object. Finally, Figure 14 shows the evolution of the accumulated error 

along the experiment for each profile. As expected, Profiles 2 and 3 offers much lower reliability than the 

Profile 1 but the total error is not significant. 
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Table 6. Table of accumulated errors. 

Scenarios Profile 1 Profile 2 Profile 3

Perception Fail % 0.0060 0.0230 0.2740 
Recognition Fail % 0.0000 0.1752 0.013 

False Positive % 0.0020 0.0000 0.0000 
Total Error % 0.0027 0.0661 0.0957 

 

Figure 14. Accumulated errors. 

7. Conclusions 

In this paper a smart resource which allows to apply for high-level information through a set of 

distributed services has been introduced. This allows devices to perform more complex tasks (like 

sensor or actuator data adequacy) through the SPT. In the case of a RGBD sensor, it allows us to apply 

it for detected objects without requiring any knowledge of computer vision mechanisms. 

Services are configured to fit some quality policies in order to not to exceed the resource usage limit 

of each service in the smart device (the cyber-physical device, not the smart resource abstraction). 

TCM has been tested in order to analyse the dynamic adaptation of the SPT in order to fit the 

different services required along time through the management of Q-alarms. 

The system is limited by its available resources. A strict demand of quality could lead to a constant 

failure to meet the quality policies. Nevertheless the system will be adapted to offer the more adequate 

execution profile between all the available profiles. In some cases this quality adaptation reflects a 

decrease of the data quality in order to fit the quality policies. 

As future work, it would be convenient to continue the study about the effect of this adaptation in 

the quality of the provided data by using a partitioned smart resource with mixed criticality services. 

Additionally, more experiments with more than one smart resource distributing to several clients can 

demonstrate the influence of network features, like bottlenecks or throughput penalisation, in a 

distributed system based on smart resources. 
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