
Sensors 2015, 15, 18080-18101; doi:10.3390/s150818080

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Dynamic Reconfiguration of a RGBD Sensor Based on QoS and
QoC Requirements in Distributed Systems

Eduardo Munera †, Jose-Luis Poza-Lujan †,*, Juan-Luis Posadas-Yagüe †,

José-Enrique Simó-Ten † and Juan Fco. Blanes Noguera †

University Institute of Control Systems and Industrial Computing (ai2), Polytechnic University of

Valencia (UPV), Camino de Vera, Valencia 46022, Spain; E-Mails: emunera@ai2.upv.es (E.M.);

jposadas@ai2.upv.es (J.-L.P.-Y.); jsimo@ai2.upv.es (J.-E.S.-T.); pblanes@ai2.upv.es (J.F.B.N.)

† These authors contributed equally to this work.

* Author to whom correspondence should be addressed; E-Mail: jopolu@ai2.upv.es;

Tel.: +34-96-387-000 (ext. 75757); Fax: +34-963-877-579.

Academic Editor: Vittorio M.N. Passaro

Received: 17 May 2015 / Accepted: 17 July 2015 / Published: 24 July 2015

Abstract: The inclusion of embedded sensors into a networked system provides useful

information for many applications. A Distributed Control System (DCS) is one of the

clearest examples where processing and communications are constrained by the client’s

requirements and the capacity of the system. An embedded sensor with advanced

processing and communications capabilities supplies high level information, abstracting

from the data acquisition process and objects recognition mechanisms. The implementation

of an embedded sensor/actuator as a Smart Resource permits clients to access sensor

information through distributed network services. Smart resources can offer sensor services

as well as computing, communications and peripheral access by implementing a self-aware

based adaptation mechanism which adapts the execution profile to the context. On the

other hand, information integrity must be ensured when computing processes are

dynamically adapted. Therefore, the processing must be adapted to perform tasks in a

certain lapse of time but always ensuring a minimum process quality. In the same way,

communications must try to reduce the data traffic without excluding relevant information.

The main objective of the paper is to present a dynamic configuration mechanism to adapt

the sensor processing and communication to the client’s requirements in the DCS. This

paper describes an implementation of a smart resource based on a Red, Green, Blue, and

Depth (RGBD) sensor in order to test the dynamic configuration mechanism presented.

OPEN ACCESS

Sensors 2015, 15 18081

Keywords: RGBD sensor; system reconfiguration; quality of service (QoS); quality of

context (QoC)

1. Introduction

In a Distributed Control System (DCS) [1], visual sensors usually offer the information in a raw data

format. It means that Red, Green, and Blue (RGB) frames must be sent to every client, with the

corresponding bandwidth consumption. Additionally, every frame must be processed by each client based

on their own requirements, for example, to recognize a specific form or to detect a particular colour.

In this context, in the case that different clients need to obtain identical outcomes, as well as when

they need to recognize exactly the same form with the same colour, they have to do the same

processing tasks, which implies unnecessary and redundant processing and also unnecessary

bandwidth consumption.

Nowadays, in order to reduce the processing load on the client side, networked visual sensors are

evolving to provide more processed information by moving part of the processing from clients to the

visual sensors. Consequently, bandwidth consumption can be reduced by sending processed

information instead of raw data from the sensor. For example, a visual sensor provides only a message

with the colour of a detected form instead of the full RGB frame. This type of visual sensors is

included in the smart device paradigm [2] which defines a smart device as a sensor and/or an actuator

with capacity of processing.

Using this model, in opposite to raw data clients and visual sensors need to increase the complexity

of communications in order to configure the details of data processing, such as the colour to be

detected by the visual sensor process, and to access visual sensors processed data. Consequently,

clients will need a mechanism to configure the visual sensors depending on their requirements and, in

the same way, the use of interfaces to access processed data will be required.

The introduction of new technologies is increasing the development with this type of visual sensors

in the last years. For example, the Microsoft Kinect [3] or Asus Xtion with similar properties [4],

provide RGB and depth information of frames. These visual sensors are known as RGBD sensors [5].

Possible applications of these RGBD sensors range from industrial applications [6] to consumer

oriented products, which can be easily accessible through web-based services from a personal

computer, smartphone and wearable tools [7], mobile robot platforms [8], unmanned aerial

vehicles [9], perception systems [10], and people management [11] can also take advantage of

distributed RGBD sensors to obtain processed information to satisfy the environment knowledge

requirements of the system.

In certain applications, RGBD sensors can receive numerous petitions from different clients by

requesting different type of information. For example, in robot navigation under uncertain environment

conditions, where the context is changing dynamically, the information requested to detect people to

avoid them or to recognize doors to generate a map could be very different in comparison.

The processing load of the RGBD sensor depends on the number of client requests and their type.

Anyway, the RGBD sensor should ensure some specific service requirements that depend on the

Sensors 2015, 15 18082

internal constraints, as for example Central Processing Unit (CPU) load. These service requirements

can be specified with the quality of context (QoC) [12] and quality of service (QoS) [13] parameters.

A client requests a specific QoS, for example the minimal resolution for the images, and the RGBD

sensor provides this QoS according to its QoC, for example, by adjusting the image resolution in order

to not to exceed a specific CPU load. Therefore, the smart resource should have an internal mechanism

that allows adapt the processing to the constraints according to QoS and QoC.

According to this, the main objective of the paper is to present a dynamic configuration mechanism

to adapt the visual sensor processing and communication to the client requirements in the DCS. To

achieve this objective, the following goals are established:

• Using a communications interface that provides an adequate level of abstraction to access to smart

devices. The aim is that clients can access transparently to smart devices by means of resources

provided by them. This introduces the proposed concept called smart resource, where clients can

access resources regardless of the devices that produce the information and where they are placed.

• To structure the processing of a smart device by means of isolated processes called plugins. Plugins

offer basic functions that can be composed between them to perform more complex functions

depending on the processing required by the clients.

• To propose an internal adaptation mechanism based on plugins to configure smart devices

according to the QoS and QoC.

• To characterize a RGBD sensor into a smart resource, based on the publish/subscribe paradigm [14],

and to test the proposed internal adaptation mechanism by implementing a case of study.

The paper is organized as follows: in Section 2 some related work is introduced. The current

framework is presented in Section 3. Context adaptation mechanisms are detailed in Section 4. The

implementation of a RGBD smart resource is explained in Section 5 by introducing its processing and

recognition capabilities. The influence of adaptation in the recognition quality is evaluated in Section 6.

Finally in Section 7 some conclusions are summarized and future work is introduced.

2. Related Work

The evolution of embedded system capabilities has brought the possibility to perform more complex

tasks and to provide smarter services. Therefore, embedded systems can implement self-aware

mechanisms as well as routines to adapt their context. Quality measures allow systems to check their

performance, detect an undesirable execution context, and warn about system malfunctions.

In order to make the system able to adapt to its/the context, it has to have the proper mechanisms to

detect the need/necessity of being adapted. QoS-based communication systems [15], are one of the

clearest examples. Through the evaluation of some measures like deadlines or timestamps, among

other QoS measures, they offer mechanisms to warn about communication problems such as delays or

data loss. As some examples, in [16] a QoS-based application for the enhancement of manufacturing

communication networks is introduced, while in [17] the implementation of QoS aware mechanisms

for dealing with real-time embedded databases is detailed and the work presented in [18] shows an

application of QoS in mobile robotics systems.

Sensors 2015, 15 18083

Beyond the QoS policies, many other works are designed to achieve a quality measure to evaluate

the performance of a certain process. In [19] the concept of Quality of Context (QoC) is introduced as

a set of measures which checks the precision, probability of correctness, trustworthiness, resolution,

and up-to-dateness of context information. In such way, QoC offers mechanisms for analysing and

evaluating the performance according to the current context and allowing one to design quality-aware

systems just as detailed in [20]. This kind of qualities is usually oriented to measure the quality that

involves only end-point devices.

Once the system has mechanisms to detect an undesirable operation performance, or even a system

malfunction, it can execute an adaptation process to solve these issues suited to the current context.

The QoS detection mechanisms always lead to the implementation of some adaptation routines. One

example is introduced in [21], where a QoS based framework which implements several run time

adaptation mechanisms is presented. Another example is also presented in [22] where a QoS

adaptation procedure is designed to fit to the different constraints of resource availability and input

quality into a decentralized nodes coordinated system. Furthermore, others works have tried to apply

machine intelligence tools in combination with QoS to predict failures and force adaptation before the

quality decreases [23].

In the case of the QoC, several implementations also provide context adaptation mechanisms. In [24]

a detailed research focused on how to adapt services to the current execution context is presented and a

middleware to manage this QoC adaptation is proposed. Adaptation is a well-known topic in

control systems [25]. Thus, these systems can implement QoC adaptation mechanisms to adapt the

control execution to the context in order to enhance the general performance of the system just as is

introduced in [26].

To make the adaptation process evolve based on previous decisions, there are many learning

algorithms that can be applied [27]. The Support Vector Machine (SVM) tool [28] has been

implemented in several works in order to improve the quality of the system by offering adaptive fault

diagnosis mechanisms [29–31] that allow one to select the most proper system context. One example is

presented in [32], where SVM is used to implement a non-linear fuzzy control in order to provide an

acceptable control quality.

According to these works, three main key concepts are introduced: the capability to measure the

system performance through the quality measures management mechanisms just as QoS or QoC, the

need of offering procedures to adapt the system performance to the requirements anytime and, finally,

enhance and optimize this adaptation by implementing adaptation algorithms.

3. Framework

As presented in the introduction, this contribution is framed into a DCS system in which

decentralized devices exchanges information in order to execute control tasks. In this frame, sensors

can operate independently or can be established as part of a more complex system, which requires

certain knowledge of the environment in order to perform an interaction.

Distributed sensor devices are usually designed to execute data processing and classification

mechanisms in order to provide high-level information about their sensing. As a result, both the amount of

exchanged data and the bandwidth are reduced by supplying to the DCS only the relevant information.

Sensors 2015, 15 18084

The overview of the framework of our system is detailed in Figure 1. In a down-top approach three

different layers are established: execution, communication and plan. The execution layer is carried out

by a set of devices with a given computation capabilities which execute different types of tasks:

sensorization, processing and actuation. These devices are established as smart devices because they

can operate independently and offer high level data management. They are structured in three main

components: the Control Kernel Middleware (CKM), the Smart Plugin Topology (SPT) and the Task

Configuring Module (TCM) such as will be described in the next section.

Figure 1. Topology of a distributed control system based on smart devices.

The communication layer is provided by an Application Programming Interface (API) based on a

Publish/Subscribe distributed network that allows accessing to smart devices transparently. Finally, the

client layer is composed by the client processes in order to perform different missions which are

achieved through the execution of tasks. Some of these tasks are executed in the distributed smart

devices and the communications API offers to clients the mechanisms to configure the parameters of

the execution of these tasks and the mechanisms to access and monitor processed data. In this paper, a

smart device based on RGBD camera is implemented to test the described DCS.

3.1. Smart Devices

Smart devices (Figure 2) execute their tasks by using a CKM which provides real-time and data

management support. The current implementation of the CKM is based in the original proposal

described in [33], where is introduced the theoretical background of this control middleware. The

CKM also provides field bus communications in order to manage sensors and actuators.

During the acquisition step, the smart device is set to store sensor data at a proper rate which always

grants to suit the Nyquist theorem [34]. Raw data is interpreted by a process plugin or a composition of

several ones. A plugin is defined as a process function, which extracts information from raw values or

the result of another plugin.

The raw data process is based in the work presented in [35] and occurs in three different parts:

segmentation, blob detection and feature recognition. First of all the segmentation process allows one

to extract same colour and depth regions from the raw image. Next some of these regions are grouped

Sensors 2015, 15 18085

forming image blobs by using the seed region growing (SRG) technique [36]. Finally some shape, size,

density and colour characteristics will be analyzed in order to recognize some environment features.

Figure 2. Smart resource: components and relations.

Plugins have been organized within the SPT [37]. The main objective of the SPT is to improve and

optimize the processing step defining the plugin configuration and composition capabilities [38] as is

detailed in Figure 2. Composition is needed since one plugin output may be useful to another for

obtaining more complex information. Therefore, plugins in the SPT can be combined in order to avoid

code duplicity and inappropriate use of the system resources. That way, the SPT can dynamically

compose a set of plugins to suit the specific requirements of the system.

Different configurations can be specified for parameterizing the process execution. In each case,

plugins must be designed to allow some possible configurations enhancing the flexibility of these

mechanisms. To select the more suitable plugin configuration for each situation, it must be analyzed

the system context by evaluating the Service Requirements (SR), the communication QoS and other

quality measures called Quality of Context (QoC) which are relative to the current state of the device

and the available resources. QoC will be detailed in next section as end-point metadata quality

information. As a result of this evaluation, the execution profile of the smart device is set to perform in

the most suitable configuration. The configuration mechanisms are implemented by means of the Task

Configuration Module (TCM) that will be fully detailed in next section.

3.2. Publish-Subscribe Communications

In the introduction of our framework, the communication has been characterized as a

publish/subscribe paradigm. As any implementation of this topology, information is organized by

topics. That way each process in the network can publish information in a certain topic in order to send

Sensors 2015, 15 18086

the information between all the processes subscribed to that one. In this way, each device is only aware

of the information which concerns its performance. Smart devices are designed to deal with two main

types of topics:

• Configuration topics: These topics are used by the client processes to specify the required task of a

certain smart device or a group of them.

• Data topics: These topics are used by the clients and smart devices to exchange information.

The quality of communications is an important reliability factor which has to be evaluated in order

to ensure proper tasks execution. In this paper QoS policies, such as deadline or lifespan [39], are

implemented in order to measure the performance of the communications.

3.3. Smart Resources

As stated before, smart devices have been introduced to provide high-level data management,

working with well-defined data structures, instead of raw data. In this way, client processes don’t need

to use raw values when dealing with sensors and actuators. By adding the communication layer, any

process can access this data structures in a homogeneous way through the given API. As a result, a

smart device turns into an abstract network resource which offers well defined interaction capabilities

for configuring its tasks and requiring or supplying data structures. These resources are named smart

resources (Figure 2).

A smart resource realizes its operation in a smart device with service-based distributed

communications support. A smart device implements the CKM for supporting the execution of the

tasks, the SPT that organizes tasks in plugins and the TCM that configures dynamically the plugins.

Communications capabilities are established as a publish/subscribe network as introduced in previous

subsections. Following, the description of the TCM will be detailed.

4. Task Configuration Module (TCM) in a Smart Resource

How to detect changes in the state of the systems, how to select which scenario suits it more

accurately, and how to design the most desirable configuration, are the main contributions of this

work. Due to its importance, all these matters will be detailed along this section, where QoS and QoC

mechanisms are defined as the most significant tools for achieving the proposal.

4.1. Quality Policies: Communication QoS and End-Point QoC

DCS usually implements quality of service (QoS) mechanisms to add reliability and fault

tolerance [40] and offer real-time capabilities [41]. Nevertheless, other quality of context (QoC)

measures can be evaluated in order to fix the system function. That way, quality of context is defined as

some end-point metadata quality policies that will also be analyzed to bring new adaptation mechanisms

to the system.

These QoC policies and its meaning could be managed in very different ways depending on the

application and the goal. For this reason smart resource services must be developed in order to support

different quality policies, in both terms QoS and QoC, bounded by their application needs. That way,

Sensors 2015, 15 18087

during the design of a new control system, smart resource services must be parametrized to suit the

requirements of the system. These requirements can be included in one of the following domains:

• Temporal: Related with time values as periods, latency, or delays. Temporal requirements are hard

constraints for reliable control system execution.

• Spatial: Lack of memory, memory inconsistency, and data isolation problems could lead to

system malfunction.

• Performance Reliability awareness: Awareness of incoherent values, out of bound data, or

undesirable combination of system variables, between other, are key evaluators to trigger smart

resource reconfiguration to select a more proper scenario.

4.2. System Profiles

Control systems can operate in many different execution profiles, ranging from idle mode to the

edge of its capacities, executing one or several different tasks. One system, ever with only one well

defined task, can face different requirements with different tolerances along the progression of its

tasks. That way, each possible situation, with its own requirements, define a new system profile.

More detailed, a certain system profile (SP) is characterized by a particular configuration (PgMode)

of the plugins (Pg) defined in the SPT and a set of requirements (Qmode) of the Quality (Q)-policies

which have to be met.

Therefore, the TCM (Figure 3) is composed of a set of possible profiles and its mission is the

dynamic selection of the most appropriate profile depending on the service requirements.

As shown in Equation (1), the TCM is formalized as a set of System Profiles SP, which are

designed to execute P different process plugins, and to adapt Q different quality requirements. That

way, a TCM is defined by a set with P·Q number of possible system profiles: ܶܯܥ = {ܵ ܲ|݆ = 1,… , ܲ| ݇ = 1,… , ܳ} (1)

Consequently in Equation (2), a system profile SP is defined by a certain Plugin PgMode, from the

given set of P plugins, and a certain quality requirement Qmode from the set Q requirements. These

PgModes and Qmodes are respectively defined in the TCM: ܵ ܲ = ൛ܲ݃݁݀ܯ, ݆|݁݀݉ܳ = 1,… , ܲ| ݇ = 1,… , ܳൟ (2)

A CPgxj is the particular configuration of the pluginx according to the PgModej and S is the number

of the execution plugins implemented in the SPT: ܲ݃݁݀ܯ = ൛݃ܲܥ௫|ݔ = 1,… , ܵൟ (3)

Equation (4) introduces a Qmodek as the requirement of the Q-policyz defined by QRzk, where R is

the number of the Q-policies considered in the TCM. That is, QRzk defines the range of values that are

appropriate and acceptable for the Q-policyz: ܳ݉݁݀ = {ܴܳ௭|ݖ = 1,… , ܴ} (4)

The TCM has to evaluate dynamically if present Q-policy values (Q’) are meeting the requirements

(they are within the ranges specified). In a formal description, any quality policy is evaluated along

Sensors 2015, 15 18088

time t, and is presented as a set of qualities values QValue(t) into the domain above described and

referenced in Equation (5):

QValue(t) = ൛ܳᇱ௭(ݐ)|ݖ = 1,… , ܴൟ (5)

Figure 3. TCM description.

4.3. Profile Selection

Once the definition of the quality policies, system profiles, and the description of the TCM have

been detailed, the process for profile selection will be described. The main purpose of the TCM is to

active the most suitable profile of all the possibilities according to the service requirements

(plugin requirements and quality requirements). Therefore, active profile will remain while the

Configuration of the Plugins (CPg) doesn’t change and Quality Requirements (QR) are fulfilled. If one

of these conditions are not satisfied, adaptation mechanisms will change the active profile.

The new active profile is selected by suiting the system execution according to the recent events and

the evaluation of each possible profile. This evaluation is calculated by implementing some techniques

based on active learning. Therefore, Soft Margins [28] are applied to compute the state of each profile

as is introduced in Equation (6): 										ܸܧ_ܵ ܲ(ݐ) = ݓ · ݂௩൫ܳ݉݁݀, ,(ݐ)݁ݑ݈ܸܽܳ ൯ߦ − ℎݐ |݆ = 1,… , ܲ|	݇ = 1,… , ܳ (6)

where ܸܧ_ܵ ܲ(ݐ) is the evaluation of the system profile SPjk at time t, and P·Q is the number of possible

profiles. The evaluation function returns a value is between 0 (not suitability) and 1 (full suitability) and it

is calculated according to ܸ݈ܳܽ(ݐ)݁ݑ (present quality values), ܳ݉݁݀ (quality requirements defined in

the profile jk) and ߦ (penalization factor for the profilejk). The weight value wjk is a fixed measure for the

profilejk that allows to modify the result of this evaluation function. Two different profiles with a same

result for the fev can be differentiated because different weight values. That way, system will lead to the

Sensors 2015, 15 18089

execution of preferred profiles in case of evaluation draw. Finally, th is a common threshold value for all

profiles which allows to bound the global evaluation for all the profiles in the system.
The value of ߦ in this equation reflects a penalization factor which avoids the system to oscillate

between active profiles. This value is updated, ߦ′, by computing the inequation presented in Equation (7)

when the expulsion of an active profile takes part due to a policy failure:

݂௩൫ܳ݉݁݀, ,(ݐ)݁ݑ݈ܸܽܳ ൯ߦ ≥ ቀ1 − ᇱቁ (7)ߦ

where ߦ′ is the updated value for ߦ when the profilejk is substituted. According to this, a good

evaluation from fev will be reflected as a decrement of ߦ′ from its previous value ߦ, while a poor

evaluation result will reflect an increment of this value. As this evaluation is also conditioned by the

penalization value, it prevents the system to oscillate between high and low evaluation results. As will

be shown in the results section, it leads to a more stable execution of the system.
The fev algorithm is detailed using pseudo-code in Algorithm 1, where QRzk and ܳᇱ௭(ݐ) are the

requirement and the present value respectively of the Q-policyz according to the ܳ݉݁݀ of the

profilejk, and R is the number of the Q-policies considered in the TCM.

Algorithm 1. Calculating return value of function fev
1: function fev (Qmodek, ܸ݈ܳܽߦ ,(ݐ)݁ݑ).

2: acc 0

3: for z1 to R do

4: if Q’z(t) = QRzk then

5: acc acc + 1

6: end if

7: end for

8: suit acc/n
9: affectedSuit suit * (1 − ߦ).

10: return affectedSuit.

11: end function

Figure 4. Task configuration selection mechanism implemented based on the service requirements.

Sensors 2015, 15 18090

The graphical representation of this proposal is shown in Figure 4. In this figure the flow of one step

in the profile selection mechanism can be observed. How the quality requirements are conditioning the

switch between profiles is also presented. This adaptation mechanism is integrated to suit the profile

selection into the smart resource TCM implementation.

5. Case of Study: Smart Resource Implementation Based on a RGBD Camera

In this section is introduced a case of study where a smart resource which is designed in order to

extract 3D visual information from the environment is implemented. For this purpose, the smart

resource will integrate a smart device with an Asus Xtion camera as main component (Figure 5). The

Asus Xtion is a RGB-D sensor which is characterized to provide RGB and depth image measurements.

A triple buffer [42] implementation ensures it always has fresh data available without interfering with

the acquisition.

Figure 5. Smart resource implementation based on a RGBD camera.

Two kinds of plugins have been implemented according to the type of the supplied image

(RGB or depth). The combination of these will result in a more accurate knowledge of the sensed

environment. As a result, the smart resource will produce high-level information structures from the

sensor data for being accessible through the communications API by offering distributed services.

Therefore, next process plugins are implemented:

• Basic Colour Element Extraction: These plugins extract the information about the elements in the

image which are bounded in only one (R, G, B) colour spectre.

• RGB Elements Extraction: As a combination of the previous plugins, all R, G, and B elements are

extracted at the same time from the source image.

Sensors 2015, 15 18091

• Depth Elements Extraction: This plugin uses the depth image to extract object located in a same

range of distance from the sensor.

• Colour Depth Elements Extraction: As the most complex plugin, it combines the two previous ones

obtaining the colour elements according to their depth values.

The graphical composition of these plugins is detailed in Figure 6. The information obtained as a

result of a certain plugin execution is published in a specific topic in order to allow clients to access it.

Figure 6. Plugins composition.

These plugins can be configured to detect environment elements. Since the scope of this work is not

to introduce a recognition system, simple object detection mechanisms have been designed. For this

purpose, some basic colour blobs with their depth values are computed, just as is depicted in Figure 7.

The System Plugin Topology (SPT) offers highly parameterizable operation processes through the

plugin configuration and composition. Thus, the RGBD camera could be set for working with some

different image resolution and different colour formats.

In this implementation quality requirements have been set in terms of both QoS and QoC. As main

QoS, the time needed to process the information and publish the result is measured to compare it with

a deadline in order to detect unexpected delays on data supply. The evaluated QoC policies are related

with the resource usage of the smart device, that way the CPU and memory consumption are

measured. To suit the quality requirements each plugin can be configured to perform at different levels

of resolution in order to reduce the resources consumption and the response time. Three different

levels of resolution are implemented: Video Graphics Array (VGA) (640 × 480), Quarter Video

Graphics Array (QVGA) (320 × 240) and Q2VGA (160 × 120).

Sensors 2015, 15 18092

Figure 7. Elements detection.

As has been introduced, a profile is composed by a particular configuration of the plugins of the

SPT and some required quality policies. The set of available system execution profiles to be adopted

by the current smart resource are defined in Tables 1 and 2.

Table 1. PgModes for system profiles.

Pg1 = Red

Detection

Pg2 = Green

Detection

Pg3 = Blue

Detection

Pg4 = Depth

Detection
Pg5 = Composition

Pg6 = Colour

Depth Recognition

PgModej

{null, VGA,

QVGA,

Q2VGA}

{null, VGA,

QVGA, Q2VGA }

{null, VGA,

QVGA,

Q2VGA }

{null, VGA,

QVGA,

Q2VGA}

{null, Pg1 + Pg2 +

Pg3}
{null, Pg4 + Pg5 }

Table 2. Possible Qmodes for system profiles.

 Q1 = CPU [min.,max.] Q2 = Memory Q3 = Deadline

Qmode1 [20%, 40%] 15 MB 50 ms
Qmode2 [40%, 60%] 15 MB 50 ms
Qmode3 [60%, 80%] 15 MB 50 ms

6. Experiments and Results

A set of tests were designed in order to validate the implemented RGBD smart resource (Figure 8).

In these tests, four different clients publish on the configuration topic in order to apply for the

execution of a new type of plugin. Each client applies for a specific plugin in every execution and the

number of plugins and their configurations will change during the tests. Along these executions,

qualities will be monitored, in addition with the active system profile in each time and the penalization

factor for each one of them.

Figure 9 shows the scalability of the system. Both, clients and smart resources may be added to the

distributed system by using the publish/subscribe infrastructure based on topics. In the case of the

experiments presented in this paper, the client scalability is tested in order to validate the configuration

selection mechanism proposed for the smart resource.

Sensors 2015, 15 18093

Figure 8. RGBD smart resource based on XTion and BeagleBoard working.

Figure 9. Scalability of the system.

In the experiment, testbeds consist on one to four clients that are executed sequentially 180 times.

The first client requests for blue objects, the second one requests for red objects, the third client

requests for objects placed in a specific distance range and, finally, the last one requests for green

objects. After that, in the same order, clients request the end of each service requested. As a

consequence of each client request, necessary plugins to serve the request are started in one RGBD

smart resource. The execution of new plugins can produce changes in the quality values and can

trigger an alarm if these values exceed required quality ranges. As a result, the TCM adapts

dynamically the configuration of the plugins by changing the active system profile due to the number

of active clients (Figure 10). The evolution of this execution test is detailed in Figures 11 and 12. And

the consequences of the execution in the QoC (memory and CPU load) are detailed in Figures 13 and 14.

Sensors 2015, 15 18094

Vertical lines in Figure 10 shows in the horizontal axis the moments in which relevant events happen.

Horizontal axis of the Figure 10 corresponds with the horizontal axis of Figures 11–14.

Figure 10. Number of clients along experiments and alarms produced.

In Figure 11 the evaluated qualities and the established limits for each value are shown. As can be

observed, the deadline (Figure 11a) and the CPU (Figure 11b) measurements are the most critical

qualities, due to existence of outline values beyond the specified bound in each case. The memory

usage is permanently below the limit defined (Figure 11c). Memory is depicted as the full usage

accumulated by every plugin in the processor. Whenever a plugin changes its configuration

(for example, as a consequence of an alarm) it leaves the processor and reduces its memory load to

zero, for this reason every vertical line in Figure 11c represents a plugin’ context switch.

(a)

(b)

Figure 11. Cont.

Sensors 2015, 15 18095

(c)

Figure 11. QoS and QoC values along tests performed: deadline (a); CPU load (b); and

memory usage (c).

When quality limits are exceeded, the CKM detects the event and the corresponding alarm is

triggered. As a result, the TCM evaluates the profiles and selects a new active profile decreasing the

resolution of the images (Figure 12a). Table 3 shows the evolution of these changes: active plugins and

PgModes associated to the different active profiles with their corresponding image resolution.

Table 3. Evolution of PgModes

 Client 1 Client 2 Client 3 Client 3 Client 3 Client 4

PgModes

(Trigger Driven)

Pg3 = Blue

Detection

Pg1 = Red

Detection

Pg4 = Depth

Detection

Pg5 =

Composition

Pg6 = Colour Depth

Recognition

Pg2 = Green

Detection

 PgMode1 VGA

PgMode2 VGA VGA

PgMode3 QVGA VGA

PgMode4 QVGA QVGA

PgMode5 QVGA QVGA VGA Pg1 + Pg2 + Pg3 Pg4 + Pg5

PgMode6 QVGA QVGA QVGA Pg1 + Pg2 + Pg3 Pg4 + Pg5

PgMode7 Q2VGA Q2VGA QVGA Pg1 + Pg2 + Pg3 Pg4+ Pg5

PgMode8 Q2VGA Q2VGA QVGA Pg1 + Pg2 + Pg3 Pg4 + Pg5 VGA

PgMode9 Q2VGA Q2VGA Q2VGA Pg1 + Pg2 + Pg3 Pg4+ Pg5 QVGA

PgMode10 Q2VGA Q2VGA Q2VGA Pg1 + Pg2 + Pg3 Pg4 + Pg5 Q2VGA

PgMode11 Q2VGA Q2VGA Pg1 + Pg2 + Pg3 Pg4+ Pg5 Q2VGA

PgMode12 Q2VGA Pg1 + Pg2 + Pg3 Pg4 + Pg5 Q2VGA

PgMode13 QVGA Pg1 + Pg2 + Pg3 Pg4 + Pg5 Q2VGA

PgMode14 QVGA Pg1 + Pg2 + Pg3 Pg4 + Pg5 QVGA

PgMode15 QVGA

PgMode16 VGA

The changes between image resolutions according to the requirements of the system are detailed in

Figure 12a. As can be shown, a certain number of plugins leads to a stable configuration of plugins,

but at the same time the TCM is always evaluating the resources in order to increase again the

resolution. This resource evaluation is conditioned by the evolution of the penalization factor as

depicted in the respective graph (Figure 12b). In Section 4.3 the function of this penalization value has

been theoretically introduced, which in this test proves to suit the dynamics of the system, leading to a

resolution change only when the context meets the requirements.

Sensors 2015, 15 18096

(a) (b)

Figure 12. Evolution of the plugin image resolution (a); and the penalization factor (b).

The results of this test, depicted in Figures 10–12, are numerically analyzed in Table 4 where a

quantitative analysis of the evolution of the system variables according to the number of active clients,

which reflects in fact the number of active plugins, is gathered. As the numbers of clients are

augmented, the activation time of higher resolutions decreases whereas the deadline, CPU and memory

measures are augmented. Once the system resources are employed to the edge of its capabilities, the

number of alarms produced by the system is increased. As the number of alarms increases, the global

penalization of the system augments. A significant increment on the alarms, and consequently the

penalization, can be interpreted as an approach to the maximum system resource usage according to

the specified quality bounds.

Table 4. Quantitative study of the system evolution.

N. Clients Resolution % Active Events Alarms Deadline CPU Memory Penalization

 VGA 0.4637
1 QVGA 0.5631 0 0 0.0142 34.34 1.048 0.24
 Q2VGA 0.0000

 VGA 0.0321
2 QVGA 0.6877 4 0 0.0169 39.11 1.069 0.54
 Q2VGA 0.2800

 VGA 0.0160
3 QVGA 0.1860 4 0 0.0190 43.97 1.089 0.69
 Q2VGA 0.7980

 VGA 0.0220
4 QVGA 0.1090 2 13 0.0221 48.27 1.130 0.76
 Q2VGA 0.8660

In order to analyse the global performance of the system a scatterplot in which the average resolution of

the 180 experiments performed during this test is compared with its correspondent usage of system

resources is depicted in Figure 13. Although the point dispersion is significant, it can be set a lower limit

which can be interpreted as the minimum usage of resources that can be obtained with a specific data

resolution. According to the point dispersion, the deterministic behaviour of the system must be studied. In

order to test the repeatability of its execution, a specific test will be repeated for a previous analysis of its

statistical characteristics.

Sensors 2015, 15 18097

Figure 13. Data resolution vs. used resources.

In Table 5 are analyzed the variance and the standard deviation of the global resolutions and

qualities measured throw the 180 experiments. As the values obtained are very similar, it can be said

that the experiment is repeatable and, consequently, validate the results scientifically.

Table 5. Variance and standard deviation.

 Active Resolution QoS (Deadline) QoC (CPU & Memory)

Variance 0.0078 0.00000025 0.007799
Standard Deviation 0.0709 0.00047322 0.007280

The presented adaptation mechanism has been characterized as a useful tool to align the system

performance to the system context. However, a decrease on the process quality in order to fit the

dynamic requirements could lead to several failures on the development of their tasks. In this case of

study, a down-scale in the image resolution can avoid the smart resource to perceive or recognize an

environment object. For this reason, a set of experiments in which is characterized the influence of this

adaptation in the quality of the information has been designed.

During each experiment, the smart resource will be forced to work with a fixed profile in order to

determine the quality of the recognition in each one. Every profile is configured to use a different

resolution: VGA in Profile 1, QVGA in Profile 2, and Q2VGA in Profile 3. During each experiment

when the perception fails (an environment element is not detected) and the recognition fails (a detected

element is not recognized) will be annotated in order to summarize the obtained error in each profile,

Table 6 shows the total of perception and recognition fails in each profile. This table also adds

information about the false positives, defined in these cases as an environment element that has been

erroneously recognized as an object. Finally, Figure 14 shows the evolution of the accumulated error

along the experiment for each profile. As expected, Profiles 2 and 3 offers much lower reliability than the

Profile 1 but the total error is not significant.

Sensors 2015, 15 18098

Table 6. Table of accumulated errors.

Scenarios Profile 1 Profile 2 Profile 3

Perception Fail % 0.0060 0.0230 0.2740
Recognition Fail % 0.0000 0.1752 0.013

False Positive % 0.0020 0.0000 0.0000
Total Error % 0.0027 0.0661 0.0957

Figure 14. Accumulated errors.

7. Conclusions

In this paper a smart resource which allows to apply for high-level information through a set of

distributed services has been introduced. This allows devices to perform more complex tasks (like

sensor or actuator data adequacy) through the SPT. In the case of a RGBD sensor, it allows us to apply

it for detected objects without requiring any knowledge of computer vision mechanisms.

Services are configured to fit some quality policies in order to not to exceed the resource usage limit

of each service in the smart device (the cyber-physical device, not the smart resource abstraction).

TCM has been tested in order to analyse the dynamic adaptation of the SPT in order to fit the

different services required along time through the management of Q-alarms.

The system is limited by its available resources. A strict demand of quality could lead to a constant

failure to meet the quality policies. Nevertheless the system will be adapted to offer the more adequate

execution profile between all the available profiles. In some cases this quality adaptation reflects a

decrease of the data quality in order to fit the quality policies.

As future work, it would be convenient to continue the study about the effect of this adaptation in

the quality of the provided data by using a partitioned smart resource with mixed criticality services.

Additionally, more experiments with more than one smart resource distributing to several clients can

demonstrate the influence of network features, like bottlenecks or throughput penalisation, in a

distributed system based on smart resources.

Sensors 2015, 15 18099

Acknowledgments

This work has been supported by the Spanish Science and Innovation Ministry MICINN under the

CICYT project M2C2: “Codiseño de sistemas de control con criticidad mixta basado en misiones”

TIN2014-56158-C4-4-P and the Programme for Research and Development PAID of the

Polytechnic University of Valencia: UPV-PAID-FPI-2013. The responsibility for the content remains

with the authors.

Author Contributions

José-Enrique Simó-Ten conceived the sensor system. The dynamic reconfiguration method was

designed by Eduardo Munera, Jose-Luis Poza-Lujan and Juan-Luis Posadas-Yagüe. Eduardo Munera made

the experiments; Juan Fco. Blanes Noguera supervised the work. Eduardo Munera, Jose-Luis Poza-Lujan

and Juan-Luis Posadas-Yagüe wrote the paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Gupta, R.A.; Chow, M.Y. Networked control system: Overview and research trends. IEEE Trans.

Ind. Electron. 2010, 57, 2527–2535.

2. Morales, R.; Badesa, F.J.; García-Aracil, N.; Perez-Vidal, C.; Sabater, J.M. Distributed Smart

Device for Monitoring, Control and Management of Electric Loads in Domotic Environments.

Sensors 2012, 12, 5212–5224.

3. Zhang, Z. Microsoft kinect sensor and its effect. IEEE MultiMed. 2012, 19, 4–10.

4. Gonzalez-Jorge, H.; Riveiro, B.; Vazquez-Fernandez, E.; Martínez-Sánchez, J.; Arias, P.

Metrological Evaluation of Microsoft Kinect and Asus Xtion Sensors. Measurement 2013, 46,

1800–1806.

5. Pordel, M.; Hellström, T. Semi-Automatic Image Labelling Using Depth Information. Computers

2015, 4, 142–154.

6. Zuehlke, D. SmartFactory—Towards a factory-of-things. Annu. Rev. Control 2010, 34, 129–138.

7. Lee, Y.H.; Medioni, G. Wearable RGBD indoor navigation system for the blind. In Computer

Vision-ECCV 2014 Workshops; Springer International Publishing AG: Cham, Switzerland, 2014;

pp. 493–508.

8. Wang, X.; Şekercioğlu, Y.A.; Drummond, T. Vision-Based Cooperative Pose Estimation for

Localization in Multi-Robot Systems Equipped with RGB-D Cameras. Robotics 2014, 4, 1-22.

9. Stowers, J.; Hayes, M.; Bainbridge-Smith, A. Altitude control of a quadrotor helicopter using depth

map from Microsoft Kinect sensor. In Proceedings of the 2011 IEEE International Conference on

Mechatronics (ICM), Istanbul, Turkey, 13–15 April 2011; pp. 358–362.

10. Gil, P.; Kisler, T.; Garcia, G.J.; Jara, C.A.; Corrales, J.A. ToF Camera calibration: An automatic

setting of its integration time and an experimental analysis of its modulation frequency.

Revista Iberoamericana de Automatica e Informatica Industrial 2013, 10, 453–464. (In Spanish)

Sensors 2015, 15 18100

11. Castrillón-Santan, M.; Lorenzo-Navarro, J.; Hernández-Sosa, D. Conteo de personas con un

sensor RGBD comercial. Revista Iberoamericana de Automática e Informática Industrial RIAI

2014, 11, 348–357. (In Spanish)

12. Manzoor, A.; Truong, H.L.; Dustdar, S. On the evaluation of quality of context. In Smart Sensing

and Context; Springer-Verlag: Berlin, Germany, 2008; pp. 140–153.

13. Vogel, A.; Kerherve, B.; von Bochmann, G.; Gecsei, J. Distributed multimedia and QoS: A

survey. IEEE MultiMed. 1995, 2, 10–19.

14. Eugster, P.T.; Felber, P.A.; Guerraoui, R.; Kermarrec, A.M. The many faces of publish/subscribe.

ACM Comput. Surv. (CSUR) 2003, 35, 114–131.

15. Aurrecoechea, C.; Campbell, A.T.; Hauw, L. A survey of QoS architectures. Multimed. Syst.

1998, 6, 138–151.

16. Xu, W.; Zhou, Z.; Pham, D.T.; Liu, Q.; Ji, C.; Meng, W. Quality of service in manufacturing

networks: A service framework and its implementation. Int. J. Adv. Manuf. Technol. 2012, 63,

1227–1237.

17. Kang, W.; Son, S.H.; Stankovic, J.A. Design, implementation, and evaluation of a QoS-aware

real-time embedded database. IEEE Trans. Comput. 2012, 61, 45–59.

18. Poza-Lujan, J.L.; Posadas-Yagüe, J.L.; Simó-Ten, J.E.; Simarro, R.; Benet, G. Distributed Sensor

Architecture for Intelligent Control that Supports Quality of Control and Quality of Service.

Sensors 2015, 15, 4700–4733.

19. Buchholz, T.; Küpper, A.; Schiffers, M. Quality of context: What it is and why we need it? In

Proceedings of the workshop of the HP OpenView University Association, Geneva, Switzerland,

6–9 July 2003.

20. Manzoor, A.; Truong, H.L.; Dustdar, S. Quality of context: Models and applications for context-aware

systems in pervasive environments. Knowl. Eng. Rev. 2014, 29, 154–170.

21. Cardellini, V.; Casalicchio, E.; Grassi, V.; Iannucci, S.; Lo Presti, F.; Mirandola, R. Moses: A

framework for QoS driven runtime adaptation of service-oriented systems. IEEE Trans. Softw. Eng.

2012, 38, 1138–1159.

22. Nogueira, L.; Pinho, L.M.; Coelho, J. A feedback-based decentralised coordination model for

distributed open real-time systems. J. Syst. Softw. 2012, 85, 2145–2159.

23. Del-Hoyo, R.; Martín-del-Brío, B.; Medrano, N.; Fernández-Navajas, J. Computational

intelligence tools for next generation quality of service management. Neurocomputing 2009, 72,

3631–3639.

24. Zheng, D.; Xu, Q.; Ben, K.R. Research of QoC-aware service adaptation in pervasive

environment. In Intelligent Computing Technology; Springer-Verlag: Berlin, Germany, 2012;

pp. 284–292.

25. Åström, K.J.; Wittenmark, B. Adaptive Control; Courier Corporation: North Chelmsford, MA,

USA, 2013.

26. Tian, Y.C.; Jiang, X.; Levy, D.C.; Agrawala, A. Local adjustment and global adaptation of control

periods for QoC management of control systems. IEEE Trans. Control Syst. Technol. 2012, 20,

846–854.

27. Vilalta, R.; Drissi, Y. A perspective view and survey of meta-learning. Artif. Intell. Rev. 2002, 18,

77–95.

Sensors 2015, 15 18101

28. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297.

29. Pérez Hernández, L.; Mora Flórez, J.; Bedoya Cebayos, J. A linear approach to determining an

SVM-based fault locators optimal parameters. Ingeniería e Investigación 2009, 29, 76–81.

30. Yélamos, I.; Escudero, G.; Graells, M.; Puigjaner, L. Performance assessment of a novel fault

diagnosis system based on support vector machines. Comput. Chem. Eng. 2009, 33, 244–255.

31. Zhang, X.; Qiu, D.; Chen, F. Support vector machine with parameter optimization by a novel

hybrid method and its application to fault diagnosis. Neurocomputing 2015, 149, 641–651.

32. Iplikci, S. Support vector machines based neuro-fuzzy control of nonlinear systems.

Neurocomputing 2010, 73, 2097–2107.

33. Albertos, P.; Crespo, A.; Simó, J. Control kernel: A key concept in embedded control systems. In

Proceedings of the 4th IFAC Symposium on Mechatronic Systems, Heidelberg, Germany,

12–14 December 2006.

34. Ferrari, P.; Flammini, A.; Sisinni, E. New architecture for a wireless smart sensor based on a

software-defined radio. IEEE Trans. Instrum. Meas. 2011, 60, 2133–2141.

35. Munera Sánchez, E.; Muñoz Alcobendas, M.; Blanes Noguera, J.F.; Benet Gilabert, G.;

Simó Ten, J.E. A Reliability-Based Particle Filter for Humanoid Robot Self-Localization in RoboCup

Standard Platform League. Sensors 2013, 13, 14954–14983.

36. Adams, R.; Bischof, L. Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16,

641–647.

37. Jimenez-Garcia, J.L.; Baselga-Masia, D.; Jose-Luis, P.L.; Munera, E.; Posadas-Yagüe, J.L.;

José-Enrique, S.T. Smart device definition and application on embedded system: Performance and

optimi-zation on a RGBD sensor. Adv. Distrib. Comput. Artif. Intell. J. 2014, 3, 46–55.

38. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable

Object-Oriented Software; Pearson Education:New York, NY, USA, 1994.

39. Poza-Luján, J.L.; Posadas-Yagüe, J.L.; Simó-Ten, J.E. A Survey on Quality of Service Support on

Middleware-Based Distributed Messaging Systems Used in Multi Agent Systems. In International

Symposium on Distributed Computing and Artificial Intelligence; Springer-Verlag: Berlin,

Germany, 2011; pp. 77–84.

40. Lian, F.L.; Moyne, W.; Tilbury, D. Network design consideration for distributed control systems.

IEEE Trans. Control Syst. Technol. 2002, 10, 297–307.

41. Schantz, R.E.; Loyall, J.P.; Rodrigues, C.; Schmidt, D.C.; Krishnamurthy, Y.; Pyarali, I. Flexible

and adaptive QoS control for distributed real-time and embedded middleware. In Proceedings of

the ACM/IFIP/USENIX 2003 international Conference on Middleware, Rio de Janeiro, Brazil,

16–20 June 2003; pp. 374–393.

42. Tagami, Y.; Watanabe, M.; Yamaguchi, Y. Development Environment of 3D Graphics Systems.

Fujitsu Sci. Tech. J. 2013, 49, 64–70.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

