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Abstract: This paper proposes and assesses an integrated solution to monitor and diagnose 

photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. 

Both DC electrical variables and environmental data are collected at PV module level using 

low-cost and high-energy efficiency node sensors. Data is real-time processed locally and 

compared with expected PV module performances obtained by a PV module model based 

on symmetrized-shifted Gompertz functions (as previously developed and assessed by the 

authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop 

wireless sensor network architecture. Such integration thus provides extensive analysis of 

PV installations, and avoids off-line tests or post-processing processes. In comparison with 

previous approaches, this solution is enhanced with a low-cost system and non-critical 

performance constraints, and it is suitable for extensive deployment in PV power plants. 

Moreover, it is easily implemented in existing PV installations, since no additional wiring is 
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required. The system has been implemented and assessed in a Spanish PV power plant 

connected to the grid. Results and estimations of PV module performances are also included 

in the paper. 

Keywords: monitoring; photovoltaic power systems; solar power generation; wireless 

sensor network 

 

1. Introduction 

During the last decade, governments and public organizations have encouraged the integration of 

renewable energy resources into power systems, in an effort to decrease dependence on traditional fossil 

energy sources. These measures have been combined with pollutant emission reduction agreements.  

In total, 385 GW of new power capacity has been installed in the EU since 2000. Of this new power 

generation, over 55% was renewable and 92% renewable and gas combined. The net growth since  

2000 of gas power (131.7 GW), wind (115.4 GW), and solar PV (photovoltaic) (80 GW) was at the 

expense of fuel oil (down 28.7 GW), coal (down 19 GW), and nuclear (down 9.5 GW) [1]. With the 

development of distributed generation systems, renewable electricity from PV sources became an energy 

resource in great demand [2]. The other renewable technologies (hydro, biomass, waste, CSP, 

geothermal, and ocean energies) have also been increasing their installed capacity over the past 13 years, 

albeit more slowly than wind and solar PV. Solar PV has thus experienced the most growth in recent 

years, close to 60% in Europe [3]. Recent studies estimate a 15% penetration of the PV market in Europe 

by 2030 [4]. However, connecting hundreds and thousands of renewable resources to the utility network 

introduces different dynamics in the system [5], and thus the distributed sources should be properly 

controlled to avoid unstable situations and failures. Actually, as the penetration level is continuously 

growing, controllability of active power and reactive power supplied by PV installations must be ensured 

in future systems [6]. As an attempt to minimize undesirable power oscillations and detect possible 

operational problems, an adequate monitoring system is usually proposed in the specific literature as a 

solution that produces a higher final energy yield than would be possible without monitoring [7]. Various 

data acquisition systems have been developed in recent years in the specific literature. In [8], a 

preliminary low-cost current-voltage (I-V) measuring system is presented, including results 

corresponding to seven crystalline Silicon PV modules. This system uses an array of resistors as load for 

the module, which are switched in and out of the circuit in such a way to enable the module I-V 

characteristics. In [9], I/O modular devices using LabView and transmission to a PC through serial port 

RS-232 are described. Estimations based on inferential statistics using the energy output of inverters can 

be found in [10], where the proposed methodology is assessed using PV installations with 132 modules. 

In [11], Power Line Communication (PLC) was proposed to perform a full monitoring tool. In this work, 

wireless communication was not selected since, according to the authors, the viability of the proposal 

was unclear, and then, its utilization was rejected for economic reasons. A more recent contribution also 

based on PLC can be found in [12], where losses are estimated of between 20% and 30% of the optimum 

plant production (as defined by the standard operating conditions) and the monitoring and control of PV 

systems is proposed as a reasonable solution to minimize production losses during the lifetime of the 
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systems. However, PLC solutions usually present drawbacks as a consequence of DC signal 

compatibility requirements. A commercial data acquisition system consists of a Sunny Boy 1700 inverter, 

Sunny SensorBox and Sunny WebBox, tested to monitor a 1.72 kWp photovoltaic system installed on a 

flat roof [13]. The SensorBox and inverter are connected to the Sunny WebBox via a serial RS485 link 

and a Power Injector. A recent outdoor experimental laboratory for estimating the performance of PV 

plants in operating conditions is presented in [14]. This is a wired solution assessed with different PV 

modules. Nevertheless, the extension of this approach in other PV installations presents some drawbacks 

and maintenance requirements due to the necessity of additional wiring. 

In the past few years, Wireless Sensor Networks (WSNs) have evolved considerably, providing  

low-cost and low-energy solutions with reliable data acquisition and real-time performance, ensuring 

loss-free transmission to the final destination. WSNs are becoming increasingly suitable solutions in 

various fields. Systems based on WSN communications are the subject of important research  

using prototypes and simulation models, including leveraging overhead, efficient spatial use with  

non-over-lapping nodes, and reliable data transport [15]. A wireless connection makes the network 

installation and physical maintenance easier, thereby providing portable solutions for reusable 

monitoring systems. In this framework, PV production plants are currently demanding real time 

monitoring with local and accurate information processing [16]. WSN could thus provide an extensive 

solution that integrates heterogeneous sensors, ranging from meteorological sensors and digital data 

acquisition to complex analogue signal processing. Indeed [17], discusses a preliminary application of 

WSN for monitoring PV installations. A gathering process is proposed that excludes the estimation of 

the PV module performance. A recent WSN approach can be found in [18], where the monitoring of a 

PV system at the panel level is presented with the aim of detecting the causes of efficiency losses. A 

single-diode-based equivalent circuit model, characterized with five parameters, is considered. An 

analytical method is used, including constraints during the minimization process, to estimate the  

five parameters. 

With the aim of providing an integrated system to monitor and diagnosis PV installations at  

module-level, this paper describes and assesses a solution based on WSN low-cost architecture at PV 

module-level. The IEEE 802.15.4 open standard [19] is selected because of its remarkable characteristics 

in terms of reliability, cost-effectiveness, and low-power consumption. A multi-hop WSN architecture 

is proven to be feasible and effective for this application [20]. The main improvements with respect to 

similar contributions are the use of low-cost hardware, minimal power consumption, data transmission 

based on multi-hop communication, as well as the inclusion of a PV module model able to estimate the 

I-V solar module curve by using a non-implicit function with only three-parameters. These parameters 

can be determined for any solar irradiation and temperature values, avoiding minimizing processes and 

convergence problems and reducing considerably computational time costs and hardware requirements. 

Indeed, our proposal is in line with recent contributions for monitoring PV systems, which call for a 

reliable fault detection, an accurate localization of faulty components and an easy installation and 

commissioning [21]. Preliminary results focused on assessing the proposed WSN architecture can be 

found in [22]. 

The rest of the paper is organized as follows: Section 2 gives a brief review of the PV module 

modeling, and formally introduces the proposed function implemented at the sensor node level. Section 3 

presents the global solution, structure and communication characteristics. Hardware components are 
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described in Section 4. Results are discussed in Section 5 and, finally, some concluding remarks are 

found in Section 6. 

2. PV Module Modeling: Symmetrized Shifted Gompertz Functions 

The accuracy of PV plant simulations is strongly dependent on the PV cell modeling [23]. As a 

consequence, a relevant number of contributions have focused on both PV cell and module modeling. 

Traditionally, the PV module equivalent model has been obtained from a set of individual PV cells 

connected in series (assumed to be identical in both direct and reverse bias behavior). Most contributions 

consider the I-V characteristic as a non-linear function, mainly dependent on a set of variables, including 

solar irradiation and temperature (G & T), and using an equivalent electrical circuit [24]. Under these 

assumptions, two different topologies have been mainly proposed in the specific literature: the  

Double-Diode Model (DDM) [23] and Single-Diode Model (SDM) [25,26]. Both approaches are usually 

described by implicit expressions, involving a remarkable number of parameters to be estimated. Various 

iterative processes have been recently proposed with this aim in the specific literature [27,28]. Regarding 

efficiency/power correlations, an extensive analysis of PV installation electric performance with the 

operating temperature can be found in [29]. 

The integration of these previous solutions in practical applications presents important limitations and 

possible convergence problems for correctly estimating I-V curves, especially when hardware limitations 

and computational time cost constraints are required. To overcome these drawbacks, a three-parameter 

PV module model has been recently proposed and assessed by the authors [30]. The suggested  

three-parameter model to characterize an I-V curve from G & T values is based on a non-implicit 

Symmetrized Shifted Gompertz (SSG) function given by the following expression, 
( )

( / ), 0
b VeI k e k e V

−γ−= ⋅ − ≤ ≤ γ  (1)

where k, γ  and b are the three parameters corresponding to the short-circuit current (Isc) and the  

open-circuit voltage (Voc) given by the expressions: 
γ

( / )
be

scI k e k e
− ⋅−= ⋅ −  (2)

γocV =  (3)

The process is illustrated in Figure 1, where steps—(1) and (2) in the figure—can be visualized. 

Specifically, starting from a standard Gompertz curve ݕሺݔሻ = ݇݁ିೌష್·ೣ and following steps: (1) shifting 

the curve so that it hits the x-axis at the value a/b; (2) applying to the result a reflection symmetry,  

with respect to the vertical line x = a/b and thus, obtaining the curve given by Equation (1), where 

/a bγ =  (4)

The estimation of γ, b, and k can be easily performed by using data typically provided by the 

manufacturers: Isc, Voc, and the maximum power point (VMPP, IMPP), which correspond to three points on 

the curve. The adjusted I-V curve is thus a non-implicit function with only three parameters to be fitted 

and then significantly decreases the computational time costs as well as the convergence problems of 

previous nonlinear approaches. The proposed model and the corresponding fitted parameters have been 

implemented in a reduced low-cost hardware solution discussed in Section 3. The estimation of 
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parameters has been implemented using R-language [31]. This non-implicit PV module model gives a 

proper estimation of the PV module performance in real-time, by comparing collected DC data with the 

I-V characteristic estimated by the Gompertz approach. The proposed model has been assessed with  

non-silicon thin-film and c-Si PV modules, showing suitable results under both different technologies. 

Indeed, and only considering as input data both G & T values, it is possible to provide the entire I-V 

curve with neglected computational time cost. From this curve, measured DC values can be compared 

with the computed MPP and the I-V curve, given additional information not only in terms of efficiency 

but also as a measure for the design, installation, and maintenance of the PV systems. Actually, [32] 

affirms that only the experimental measurement of the I-V curve allows us to know with precision the 

electrical parameters of a PV cell. Moreover, [33] reports module performance results after 11 years of 

field exposure including not only MPP variations, but also the decreasing presented by average module 

short-circuit current. 

 

Figure 1. Symmetrized Shifted Gompertz function. Graphical deduction. Shifting the initial 

curve (a) and application of reflection symmetry (b). 

3. The Proposed Wireless Solution: General Overview 

The proposed solution consists of a set of sensor nodes that collect instantaneous DC-voltage and 

DC-current values at the PV module level, as well as temperature and solar radiation parameters. 

According to the implemented SSG function, estimations of expected DC values are also determined by 

these nodes. Both electrical and environmental values are then transmitted from these sensor nodes to a 

sink node by means of a type of hop through an 802.15.4 network. Consequently, a distributed and 

decentralized system is proposed, where each sensor node can be considered as a secondary node,  

the primary nodes being a set of sink nodes operating in complete autonomy. 

The sink nodes can be connected to an external computing system with the aim of extending the 

capacity of storing data or providing additional analysis. The sink node is instrumented to Ethernet,  

USB, and RS-232, offering real-time accessibility, remote connections, and database storage. These 

characteristics provide a remarkable extension of the proposed system, in terms of avoiding the  

local presence in PV power plants as well as off-line checking and disconnections of PV modules.  

The measuring and gathering process is carried out by the sensor nodes with a configurable sample time.  

The configuration of the proposed solution is highly flexible, depending on the number of PV modules, 
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strings, arrays, and the layout of the PV installation. Figure 2 shows an example where each sink node 

is able to gather data from different arrays and send to the other sink nodes. 

 

Figure 2. General scheme of the proposed wireless solution. 

An overview focused on current PV system pricing trends can be found in [34]. According to this 

report, averaged installed prices for PV systems were estimated between 3.3$/WDC and 1.8$/WDC  

in 2013. By considering these estimations as well as common nominal power values for PV modules, 

the proposed wireless sensor solution supposes a low-cost system. In fact, for mass production series 

large enough to achieve economies of scale, sensor nodes cost approximately between 11 and 13$/unit 

by considering orders over 5000 units. This cost can account between 5 and 7 percent of the previous 

$/WDC values. The initial investment is amortized after a short-term period, providing a complete 

monitoring system at the PV module level. In addition, it can also be possible to integrate the wireless 

sensor nodes within the PV solar module during the manufacturing process, bringing the cost of the 

proposed solution even lower. 

Communication between sensor nodes and a sink node is implementing by following a star-topology. 

Communication and exchange of information between sink nodes is implemented by a multi-hop 

strategy to give a suitable solution for long distances. Actually, the applicability of single-hop WSNs is 

limited, since multi-hop WSNs are being deployed even in current industrial scenarios [35]. 

Subsequently, an 802.15.4 network is selected and implemented as a logical tree, in which each sink 

node fulfills message router functions to offer multi-hop communication. Additionally, 802.15.4 networks 

can be spread over the same set of customers using different network identifiers and/or different physical 

channels (at 2.4 GHz, sixteen different channels are available). A message sent by a sink sensor node is 

then routed to its father, and the father node to the corresponding father until achieving the end-sink 

node. The way a sink sensor node identifies the address of its father node is based on a dynamic 

configuration of the network developed in this work and described as follows: each sink node asks for a 
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father node by broadcasting a request message. As several sinks can answer this request, according to a 

function of the radio signal quality and distance (in hops), each sink sensor node selects a father and 

sends a confirmation message. 

A network address is then assigned by the father following the addressing mechanism described  

in [36]. This identification system enables an easy integration of new sink nodes without any additional 

cost. Figure 3 schematically shows how the data is sent from a generic sensor node to the end sink node 

connected to a PC. There are alternatives to the synchronous network design in which nodes agree on 

their transmission periods based on an internal clock. It is possible to use additional hardware that 

enables the node to remain in low-power mode until a radio wake-up tone or beacon is detected. Some 

wake-on-radio devices reuse the radio transmission system to send the wake-on signal. This solution has 

the advantage of lower costs. The reception circuit enables all nodes to awaken a sleeping node. The 

design of a network with nodes equipped with this solution avoids the problem of agreeing synchronous 

sleep times at the expense of increased cost and energy consumption. Our system incorporates this 

asynchronous wake-up system [37] and drains 3 µA. 

 

Figure 3. Multi-hop communication through sensor and sink nodes. 

Relevant information regarding electrical performance of PV modules is provided by the sensor 

network in terms, for example, of predictive maintenance purposes. Electrical and environmental data 

collected by the sensor nodes and received by the end-sink node can be structured as a SQL database 

and remotely accessed from authorized clients by using different communication networks. Indeed,  

a software application has also been developed by the authors to give users friendly and complete  

on-line access to the monitored PV power plants. 

4. Hardware Description 

4.1. Sink Node 

Sink nodes are implemented by means of two high performance microcontrollers, see Figure 4.  

A microcontroller is in charge of collecting data received from the network. This data is processed and 
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can be sent to an external PC. The selected microcontroller is the STR912FAW44X developed by ST 

microelectronics running at 25 MHz, 97 kB of RAM memory, 544 kB of FLASH memory, digital 

input/output ports, serial ports, CAN, USB, and Ethernet [38]. A NXP-Jennic module has been connected 

to the TR912FAW44X to provide wireless interface based on 802.15.4 standard. The latest generations 

of NXP-Jennic modules are ultra-low-power, low-cost wireless microcontroller for wireless sensor 

networking applications based on the IEEE 802.15.4 standard, including JenNet, JenNet-IP, and ZigBee 

PRO applications [39]. These modules have an enhanced 32-bit RISC processor featuring improved 

coding efficiency and up to 32-MIPs performance. In addition, a fully compliant 2.4 GHz IEEE 802.15.4 

transceiver, 128 kB of ROM and 128 kB of RAM are included to support a networking protocol stack 

and on-chip user applications, as well as a rich mix of user peripherals. 

 

Figure 4. Sink node. General overview. 

4.2. Sensor Node 

These sensor nodes are in charge of collecting DC values (voltage and current) from the PV modules 

as well as estimating these electrical variables from the implemented SSG function and the collected  

G & T parameters. The DC voltage monitoring can be performed by means of a voltage divider. This 

solution has been adopted as an initial prototype. Nevertheless, safety issues in PV installations require 

isolated electronic subsystems to make independent signal and power supply [40,41]. Voltage monitoring 

can be thus implemented by using an optocoupler. In our case, a high reliability optocoupler, SFH615 

from VISHAY [42], has been selected to isolate signal and power supply. This optocoupler provides an 

isolation voltage of 5.3 kVRMS [43]. 

The DC current monitoring process is performed by the Allegro ACS712 sensor [44], see Figure 5, 

and this provides a low-cost and accurate solution for AC/DC current measurements in industrial, 

commercial, and communication systems. This sensor is a Hall effect-based linear current Sensors IC, 

with 2.1 kVRMS isolation and a low resistance current conductor [44]. The device consists of a precise, 

low-offset, linear Hall circuit with a copper conduction path located near the surface of the die.  

The current flowing through this copper conduction path generates a magnetic field that the Hall IC 

converts into a proportional voltage. Isolation between the current PV line and the wireless measuring 

node is thus obtained. The series configuration of PV modules at string level allows us to remove current 

sensors corresponding to the same DC current value. It would be then possible to decrease the cost of 

the sensor nodes, taking into account that the Allegro ACS712 sensor costs lower than €1.76 in orders 
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over 5000 units. Nevertheless, a new application of the sensor nodes is currently under patent-pending 

status, which needs the inclusion of the DC current sensor in all nodes. For this reason, the Allegro 

ACS712 sensor has been considered by default in our sensor node prototype-board. 

 

Figure 5. Sensor node. DC-voltage and current measurements. 

Voltage and current values are monitored every minute during the day with transmission frequency 

reduced at night. An additional module has also been integrated to provide advanced features for 

environmental measurement. In our case, a temperature probe sensor (PT1000) [45] with (−10, 80 °C) 

temperature range and a pyranometer in the range of (0, 100 mV) have been included as well. Platinum 

resistance thermometer (PT) is the industry standard method for accurate measurement of temperature 

in a wide temperature range. The pyranometer used in this application is the CMP3 model from  

Kipp & Zonen [46]. It is a thermopile sensor that measures the solar energy received from the total solar 

spectrum (W/m2) and the whole hemisphere, 180° field of view. It is a low-cost radiometer for accurate 

routine measurements. Furthermore, it has a robust 4 mm thick glass dome to protect the thermopile 

from external influences. The small size and sealed construction make this instrument an ideal choice 

for horticulture, monitoring solar energy installations, and industrial applications. This additional 

module can be adapted to batteries or energy harvesting in an IP 66 package. The sensor node performs 

average pre-processing and collecting processes. A circuit based on operational amplifiers provides the 

node with two sensor channels attached to the AD microcontroller converter. Conversion is estimated 

taking into account both maximum solar irradiance (W/m2) and sensor sensitivity. 

A prototype sensor node designed to measure and collect AC current and voltage values has also  

been included in the proposed solution. This module collects and measures AC electrical data to enable 

a deep analysis of current and voltage waveforms using a Fourier series component analysis up to the 

20th-harmonic. Figure 6 shows this complementary module in charge of collecting AC electrical 

variables. Voltage and current variables are measured through a MCP3909 from Microchip [47].  

This solution is an energy-metering integrated circuit designed to support the IEC 62503 international 

standard for metering specifications. It also provides Serial Peripheral Interface (SPI) for connection 

with the NXP-Jennic microcontroller. A voltage transformer (toroidal MCFM32/12 from Multicomp) 

and a current sensor (ACS712 hall-effect current sensor from Allegro Microsystems [44]) are required 

for signal conditioning purposes. AC voltage and current signals are measured every minute via SPI 

from the MPC3909 analogic-to-digital converters during 100 ms of the sampling period: 128 samples 

per cycle, 50 Hz, 20 ms time period. The data is processed using the Fast Fourier Transform (FFT) 

algorithm programmed in this node. 
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Figure 6. Additional sensor node. AC-voltage and current measurements. 

4.3. Energy Harvesting Module 

An additional module has been designed to provide an alternative and autonomous solution as a  

power supply for the developed nodes. Consequently, nodes are independent for the PV module power 

generation and data is collected autonomously from the PV plant. There are commercial solutions 

supplying the developed nodes from solar cells, in accordance with both size and supply constraints.  

As a result, we selected a solar panel rated at 4 V open-circuit and 3.5-peak voltage, 48.5 mA short-circuit 

and 45 mA peak current [48] (namely, a mono-crystalline 54 × 43 mm blue solar cell with 15% efficiency 

and costing $1.6). This low price is very attractive when deploying large wireless sensor networks with 

advanced energy harvesting. The energy-harvesting module has been designed with a duality on its 

energy buffering: super-capacitors and batteries, see Figure 7. In comparison with rechargeable batteries, 

super-capacitors have more charge-discharge cycles (virtually infinite [49]). Moreover, super-capacitors 

do not suffer partial charge-discharge problems, while batteries may present a discontinuous recharge 

process. In contrast, capacitor storage is lower than batteries and not enough to guarantee the active 

mode requirements of microcontrollers (in transmission and reception) in low-solar radiation scenarios. 

A mixed solution has been thus adapted to cover any possible scenario. The inclusion of this  

energy-harvesting module enables the nodes to send information at night to enhance safety. However, 

the node night sleeping time is adjusted as a function of the voltage level of the super-capacitor. Further 

information on this module can be found in [50]. 

 

Figure 7. Energy harvesting circuit block diagram. 
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5. Results 

5.1. Preliminaries 

The proposed solution has been assessed from a 93 kWp PV installation connected to the grid and 

located in south-east Spain. The PV installation has two 40 kW power rate inverters, combined and fed 

to the distribution power system through a 100 kVA transformer. Each inverter is wired to 30 PV module 

arrays, and each array consists of 10 strings of series-connected Si-based modules (PhotowattPW-1650). 

The developed sensor nodes have been connected to a set of PV modules with the aim of collecting both 

DC-voltage and current values, see Figure 8. An additional sensor node has also been used to measure 

and collect environmental variables: solar radiation and temperature. From the implemented SSG 

function, these variables enable the sensor nodes to estimate the I-V curve for the PV modules. This 

supposes a relevant characteristic of our proposal: minimizing computational time cost and hardware 

requirements, and avoiding convergence problems and implicit functions. Table 1 summarizes the 

corresponding estimated SSG model parameters for the implemented PV module, according to values 

provided by manufacturers corresponding to open-circuit voltage, short-circuit current and MPP values 

for a set of G & T parameters [51]. The coefficients of temperature to estimate I-V curves at different 

temperature levels are the following [52], expressed in (%/°C) with respect to the Standard 

Conditions, αሺܫ௦ሻ = 0.034 , βሺ ܸሻ = −0.36 , δሺܲܲܯሻ = −0.43 . Standard Error (SE), Residual 

Standard Error (RSE), and MPP Error have been also included in this table as a measure of the tolerance 

of the estimations. 

Table 1. Estimated Symmetrized Shifted Gompertz (SSG) Model Parameters. 

G (W/m2) T (°C) k SE (k) γ SE (γ) b SE (b) RSE MPP Error (%)

100 25 0.17 0.0024 1.17 0.0009 20.35 1.70 0.0015 −0.73 
200 25 0.34 0.0049 1.19 0.0010 17.09 1.47 0.0031 −0.22 
400 25 0.67 0.0101 1.22 0.0013 14.73 1.36 0.0064 0.13 
500 25 0.84 0.0129 1.23 0.0013 14.11 1.34 0.0082 0.21 
600 25 1.01 0.0157 1.23 0.0014 13.65 1.35 0.0100 0.24 
800 25 1.35 0.0217 1.25 0.0015 13.00 1.38 0.0138 0.25 

1000 25 1.68 0.0281 1.25 0.0016 12.57 1.44 0.0179 0.18 
100 45 0.17 0.0023 1.08 0.0008 20.08 1.53 0.0015 −0.74 
200 45 0.34 0.0047 1.10 0.0010 16.67 1.31 0.0030 −0.19 
400 45 0.68 0.0097 1.13 0.0012 14.26 1.19 0.0062 0.14 
500 45 0.85 0.0123 1.14 0.0013 13.64 1.18 0.0078 0.20 
600 45 1.02 0.0150 1.15 0.0014 13.18 1.17 0.0095 0.22 
800 45 1.36 0.0207 1.16 0.0015 12.53 1.20 0.0132 0.18 

1000 45 1.70 0.0268 1.17 0.0016 12.10 1.24 0.0171 0.08 
100 60 0.17 0.0022 1.01 0.0008 19.89 1.42 0.0014 −0.71 
200 60 0.34 0.0046 1.04 0.0010 16.37 1.20 0.0029 −0.15 
400 60 0.68 0.0094 1.07 0.0012 13.93 1.09 0.0060 0.16 
500 60 0.85 0.0119 1.08 0.0013 13.30 1.07 0.0076 0.19 
600 60 1.02 0.0146 1.09 0.0014 12.84 1.07 0.0092 0.19 
800 60 1.36 0.0201 1.10 0.0015 12.20 1.08 0.0127 0.12 

1000 60 1.70 0.0260 1.11 0.0016 11.77 1.12 0.0165 −0.03 
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Figure 8. Example of application: sensor nodes on PV modules. 

5.2. Wireless Network Capacity Analysis 

This section analyzes communication between sensor nodes and sink nodes. Sensor nodes are 

connected to the PV modules through fixed structures. Nodes can be thus grouped into clusters with a 

central sink, as shown in [17]. In the corresponding field-tests, nodes were deployed in clusters of  

20 panels and one meteorological node. However, the solution presented in [17] uses polling, and a 

periodic data request is sent from the sink to each node. The most adequate solution in the  

efficiency-simplicity ratio has been adapted to our experiments. Most energy consumption is demanded 

by radio interfaces and polling increases, involving both transmission and reception time. Alternatively, 

our sink nodes incorporate an asynchronous wake-up circuit based on RFID [37]. Consequently, a sink 

node is in charge of sleeping and waking when the sensor node begins a transmission. 

Sensor nodes send information by following regular intervals as defined by the sample frequency. 

Asynchronous transmission schedules implemented at the API level are classified into two groups:  

(i) those that do not account for other nodes in the cluster and where programming is developed by 

considering only monitoring requirements; and (ii) those that are aware of the overall cluster size and  

pay-load requirements. Taking into account the second group (ii), different payload sizes were tested to 

determine their effect on frame-losses. Each node sends packages of k-frames with acknowledgment and 

a set maximum of re-transmission attempts (MAXrec). It is a contention-based MAC protocol based on 

hardware Clear Channel Assessment (CCA) with a random back-off timer. MAXrec can be also dependent 

on the node instant-available energy with a 1.1 V threshold, being Ttx_node the time interval taken by the 
node to transmit a package per cycle, Tsys the Cluster Cycle Time (∑ ௧ܶ௫_ௗଵ ) and j a natural number. 

Each node is then set a sleep mode per cycle according to the expression: 

௦ܶ = ൣ ௦ܶ௬௦ − ௧ܶ௫_ௗ൧ + ݆ · ௦ܶ௬௦ (5)

Reliability accounts for the ratio of correctly received and transmitted frames. Figure 9 shows the 

Frame Error Rate (FER) corresponding to five experimental scenarios. The cluster consists of 21 sensor 

nodes with j [0...2] and MAXrec = 2. The horizontal axis shows the average number of bytes per second 

(Bps) transmitted by the 21 sensor nodes (Bps excludes ACK load and retransmissions). From the results, 

FER is not only conditioned by Bps in the cluster, but also by Tsleep heterogeneity. For example, sensor 

nodes in scenario 2 (720 Bps) and scenario 4 (616 Bps) were all configured with j = 1, while sensor 

nodes in scenario 1 (912 Bps), scenario 3 (630 Bps), and scenario 4 (486 Bps) presented a variability of 
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j = [0...2]. Moreover, FER is also conditioned by this range. Nodes were deployed in the PV area 

depending on the variability of distances to the sink node and the PV-module layout. Figure 10 shows 

the FER percentage breakdown per node at 616 Bps. 

 

Figure 9. Frame Error Rate (FER) in the experimental scenarios. 

 

Figure 10. Frame Error Rate (FER) breakdown in 616 Bps (j = 1). 

Power consumption is another relevant parameter useful to characterize the proposed system. 

Measurements were made taking into account the communication effort, which is always an 

unquestionable variable in the final power consumption of sensor networks. This type of analysis is  

thus necessary for cluster size decisions. Although the power supply of the sensor nodes can be obtained 

from the PV-modules, these nodes also include an additional energy harvesting module that is 

independent of PV-module performance. Figure 11 shows the energy consumption in mJ per second 

obtained in scenario 3 (630 Bps). The Pearson product-moment correlation coefficient of this sample 

ρX,Y was 0.986. A value close to 1 implies a linear equation describing the relationship between the 

average of frames transmitted per second including re-transmitted frames and power demanded per 

second. Moreover, a sink node with 314 Bps in our sample consumed 34.63 mJ per second. 
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Figure 11. Energy consumption in 630 Bps (j = [0…2]). 

Capacitor charge and discharge periods were observed in a node with the following parameters:  

36.2 mA in transmission, 19.7 mA in reception, 5 mA in active, and additional sensor power 

consumption in active of 6 mA. Transmission time per frame was set to 570 µs and maximum reception 

time 100 ms with the number of frames per package (k) = 15. Additionally, the node active time was  

40 ms before transmission, and sleep time after reception was 60 s. Figure 12 shows a three-day test. 

During daylight, the super-capacitor charge remained within acceptable values. However, at night there 

was no recharge period, and the super-capacitor charge could only decrement cycle by cycle. Strategies 

to reduce power consumption at night were based on Energy Neutral Operation (ENO), where sleep time 

was adjusted as a function of the available energy that could be applied and recommended for PV 

monitoring [50]. 

 

Figure 12. Energy demanded by the capacitor in terms of voltage level (3-days test). 
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5.3. Collected Data and PV Module Performance Estimations 

Based on the described PV installation, electrical and environmental data was collected by the sensor 

nodes taking a 2-min sample-time. Additionally, DC values were estimated by the proposed SSG model, 

determining the theoretical expected power supplied by the PV modules according to the manufacturer 

data-sheets. Moreover, it was possible to estimate I-V curves and Maximum Power Point (MPP) values 

based on the measured G & T variables. Figures 13 and 14 show examples of two days from the collected 

data, estimations of generated active power, expected I-V curves and MPP values for the collected G & T 

data, as well as the relative differences between collected and estimated power values, ሺ ௌܲௌீ − ܲ௦௨ௗሻ/ ௌܲௌீ (6)

 

Figure 13. Case Study I: collected data (a,b); estimations of DC power (c); and I-V curves 

at the PV module level (d–f). 
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To illustrate the proposed solution, various G&T profiles were selected, including oscillations during 

cloudy days that involved major differences between estimated and collected data, see Figures 13 and 14. 

According to [53], PV power generation is volatile because cloud-cover produces erratic variations in 

solar irradiance and PV power production, also affected by the inverter performance and the MPP 

Tracking algorithm. A comparison between estimated I-V curves with their corresponding MMP values 

and collected MPP data are also included for sustained transients as well, such as at sunrise and sunset. 

Indeed, these transients were observed at 10–21 percent of output over 15 min in previous studies [54]. 

Nevertheless, all estimated values were obtained with minimal hardware requirements and low 

computational time costs, avoiding convergence problems and iterative processes. Averaged differences 

between estimated and collected PV power are below 10%. These differences are higher under the 

presence of significant solar radiation oscillations and at low levels of irradiance (sunrise and sunset), 

when it is difficult for the inverters to find the optimal value for the maximum power point [16]. 

 

Figure 14. Case Study II: collected data (a,b); estimations of DC power (c), and I-V curves 

at the PV module level (d–f). 
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The proposed SSG PV model can be also applied to check the range of electrical power generation, 

according to the expected data-sheet values provided by the manufacturers. Therefore, a comparison 

between expected data and collected measurements gives us a preliminary estimation of each PV module 

performance, avoiding the necessity of removing and analyzing the PV modules in a laboratory 

environment. In fact, it is a non-practical solution when a large amount of PV modules are to be checked. 

This efficiency and performance comparison can be used for other aims, such as preventive maintenance 

analysis, study of efficiency variations and/or parameter modifications along the years. As was discussed 

in Section 2 [33], affirms that it is necessary to include not only MPP variations, but also the decreasing 

presented by average module short-circuit current for studies of PV module performance variations over 

several years. For this reason, the inclusion of the entire estimation of the I-V curve presents relevant 

advantages in comparison with only estimating MPP values, and thus providing extensive information 

to be used in different aspects. 

6. Conclusions 

An innovative solution for monitoring and diagnosing PV solar module performances has been 

described and assessed in this paper. The proposed system is based on a decentralized WSN at the PV 

module-level. Low-cost sensor nodes integrate a simple and accurate PV module modeling based on  

a Shifted Symmetrized Gompertz (SSG) function previously developed and assessed by the authors.  

The proposed solution has been implemented in a Spanish 93 kWp PV power plant. The system involves 

four sink nodes and 21 sensor nodes collecting PV module electrical data as well as solar radiation and 

module temperature. Both DC data and generated power values were estimated by the sensor nodes 

based on the simple and accurate SSG model. The decentralized system was evaluated and showed a 

remarkable performance of over 95% in terms of transmission success per node. In addition, an  

energy-harvesting module was developed for power supply to the nodes, offering autonomous and 

independent characteristics to the nodes, and including low frequency night transmission to optimize the 

energy requirements. Field-tests were carried out for several months without additional wiring, and the 

proposed solution was deemed suitable. 
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