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Abstract: Standard upper-limb motor function impairment assessments, such as the  

Fugl-Meyer Assessment (FMA), are a critical aspect of rehabilitation after neurological 

disorders. These assessments typically take a long time (about 30 min for the FMA) for a 

clinician to perform on a patient, which is a severe burden in a clinical environment. In this 

paper, we propose a framework for automating upper-limb motor assessments that uses  

low-cost sensors to collect movement data. The sensor data is then processed through a 

machine learning algorithm to determine a score for a patient’s upper-limb functionality. To 

demonstrate the feasibility of the proposed approach, we implemented a system based on the 

proposed framework that can automate most of the FMA. Our experiment shows that the 

system provides similar FMA scores to clinician scores, and reduces the time spent 

evaluating each patient by 82%. Moreover, the proposed framework can be used to 

implement customized tests or tests specified in other existing standard assessment methods. 

Keywords: automated upper-limb assessment; Fugl-Meyer Assessment; low-cost sensors; 

machine learning; upper-limb motor impairment 
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1. Introduction 

The prevalence of neurological disorders, such as stroke, cerebral palsy, and multiple sclerosis, has 

been rapidly increasing. For example, strokes affect up to 0.3% of the population every year in many 

countries [1], and is regarded as a typical target for motor recovery efforts because it substantially 

impacts patients’ quality of life. 

Due to the large population of patients and the issue of medical costs, clinicians have a limited amount 

of intervention time that they can spend with each patient. Patient assessment is essential not only to 

quantify the severity of motor impairment, but to perform effective intervention as part of the process of 

recovery. Upper-limb motor impairment assessment is a time consuming process that must be done in 

person. For example, the Fugl-Meyer Assessment (FMA) [2], which is one of the most widely utilized 

clinical instruments for assessment, consists of 33 tests for the upper-limbs, where the clinician asks  

a patient to perform a series of pre-defined movements. It takes at least 30 min for a clinician to  

perform for each patient [2]. The Wolf Motor Function Test (WMFT) [3], Action Research Arm Test  

(ARAT) [4], and the NIH Stroke Scale (NIHSS) [5], and other assessment methods similar to the FMA 

also consist of many tests that are each rated according to the patient’s upper-limb motor functionality. 

Each of these tests also takes too much time to fully perform in clinical setting. 

As a solution to the problem above, upper-limb motor impairment assessments need to be automated. 

Since automated assessments save time for clinicians, it also reduces medical costs by allowing clinicians 

to use their time more efficiently. In addition, this could make upper-limb assessment more frequent, 

resulting in better quality of patient care. 

Several studies have been attempted to implement automated assessment systems. One study focused 

on the feasibility of automating FMA, but it required large and expensive setups, such as robotic arms, 

motion capture system, and EMG sensors [6], which are not suitable for a clinical setting. Another 

approach was to use accelerometers and a regression algorithm for the automated assessment [7]. Despite 

the low-cost setup and feasible assessment results, it could only automate a very small number of FMA 

tests (four out of 33 tests) due to the limited data acquired by the accelerometers [7]. The body-worn 

accelerometer has also been used to quantitatively index upper-limb motor function [8]. Recently, one 

study used a motion capture sensor, the Microsoft Kinect, with Principal Component Analysis (PCA) to 

automate assessment of some upper-limb movements which are part of FMA and ARAT [9], but still 

had much room for improvement for clinical use. The limitations of the Kinect sensor and PCA algorithm 

significantly reduced the number of FMA tests implemented. Moreover, the level of automation was not 

appropriate for a hospital setting, since a lot of the sensor data processing was not done in real-time. 

This paper proposes a system framework that can be used to create a novel automated upper-limb 

assessment procedure as a time/cost saving measure for clinicians. The framework uses multiple  

low-cost sensors to reduce implementation cost and to collect enough sensor data to monitor various 

upper-limb movements. In order to score movements with the collected data (classification), we use 

machine learning algorithms because they work well with multi-sensor data for classification and are 

more extendable than the currently existing systems mentioned in terms of supporting new upper-limb 

movements. The framework also supports guidance materials to help patients perform the pre-defined 

upper-limb movements for the assessment without a clinician present, such as video instructions. This 

guidance is essential for improving the level of automation required for achieving the goal of a fully 
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automated platform in a clinical setting. To demonstrate the feasibility of the proposed framework, we 

implemented a system based on the framework that can automate a large number of FMA tests. Through 

pilot experiments with eight healthy subjects and two stroke patients, we evaluated the accuracy and 

time efficiency of the system. 

2. The Proposed Framework 

The proposed framework is an outline that uses sensor data from low-cost sensors to collect data from 

patient movements. The sensor data is then processed and classified in order to generate a score of the 

patent movement for upper-limb assessment. An illustration of this design is shown in Figure 1. 

Typically, this framework will be used to develop systems deployed in a relatively controlled setting in 

a hospital. The possible scenario is as follows: The patient sits in a chair with sensors (i.e., a motion 

sensor positioned in front of the patient who wears a glove sensor) and a user interface. The user interface 

instructs the patient to perform a test movement (likely by displaying a video as shown in Figure 2). 

While performing the movement, the system collects sensor data and scores it. The use of this system 

would result in more frequent and cost-effective patient assessments. 

The scoring function of the proposed framework can be broken down into four main parts: Sensor 

data collection, sensor data pre-processing, feature extraction from the sensor data, and machine learning 

classification on the extracted features. As the patient performs a test movement, he/she is monitored by 

one or more sensors. After the test movement is finished, the sensor data is retrieved by the main 

program, which performs some pre-processing on the sensor data to make it more manageable for further 

processing. The next stage is to extract features from the data, which must represent meaningful 

information about the test movement (such as joint angles, etc.). Once these features are extracted, they 

can be used as inputs to a machine learning algorithm, which classifies the movement as one of a discrete 

number of classes. The classification is then used to define the score of the test movement. These stages 

are described in further detail in the following subsections. 

 

Figure 1. An illustration of the flow of execution for a system designed by the  

proposed framework. 
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Figure 2. Example frames from an instruction video that is displayed to subjects. They are 

expected to follow along to perform each test movement. 

2.1. Sensors 

The first stage of the framework is to obtain information about patients performing test movements 

through sensors. This involves deciding which sensors to use. Since all conventional upper-limb 

assessments are mainly based on gesture recognition by a clinician, we opted to start with the Microsoft 

Kinect sensor. The Kinect has proven to be one of the most promising sensors for general gesture 

recognition due to its relatively cheap cost and its ability to detect the limb movements of up to  

two people simultaneously with reliable accuracy. Multiple studies have shown that the Kinect can be 

used to distinguish between different human poses successfully [10,11], to monitor gait [12] and to detect 

specific actions, such as falling or performing aggressive actions [13,14]. Moreover, several studies have 

implemented systems that utilized the Kinect for stroke patient rehabilitation [15–18]. The Kinect, 

shown in Figure 3a, can accurately track joint positions of a patient in 3D space, which makes it very 

useful for various upper-limb assessments. It can be used with the Kinect SDK, which provides 

functionality to access skeleton data (joint position data) from the depth sensor, the video feed, and the 

microphone (which includes speech recognition capability). The Kinect offers a convenient method for 

identifying features specified in standard evaluations, such as joint angles. 

One core idea of the proposed framework is to combine Kinect data with sensor data from other 

sensors for better automated upper-limb assessment. The idea comes from the following disadvantages 

with the Kinect: 



Sensors 2015, 15 20101 

 

 

(1) It is unable to detect more subtle movements such as twisting motions (supination and pronation), 

and shakiness, which are essential for upper-limb assessment. 

(2) Its readings can be noisy and inaccurate when there is any level of occlusion. Moreover, the 

readings are problematic for patients bound to a wheelchair. Since the Kinect uses infrared 

readings, it does not have the ability to measure many details that can be observed through a 

video feed. From the Kinect’s perspective, an armrest of the wheelchair can look very similar to 

an arm, so it has difficulty distinguishing a patient’s arm from the armrest. 

(3) It can be inaccurate at tracking hand position, and does not currently support finger tracking. 

Hand function is important for upper-limb motor function. 

 
(a) (b) 

 
(c) (d) 

Figure 3. The main sensors we used to record movement with our system. The Kinect in  

(a) and the inertial measurement unit in (b) can be used for motion capture, the glove in  

(c) can monitor the state of the hand and fingers, and the pressure sensor in (d) can be  

used to measure grip strength. 

In order to overcome the limitations above, we opted to use a Shimmer inertial measurement unit 

(IMU, Shimmer, Dublin, Ireland) as shown in Figure 3b and/or a glove sensor (DG5-VHand glove 3.0, 

DGTech, Bazzano, Italy) as shown in Figure 3c. These sensors have been used for gesture recognition 

with success [19–22]. Moreover, IMUs have been used with the Kinect to track upper-limb movement 

accurately [23,24]. The IMU, which contains 3D accelerometer and 3D gyroscope, can get movement 

information, such as linear acceleration, linear speed (by integrating linear acceleration), angular speed, 

and length of a movement (by checking speed calculated). By strapping the IMU to a patient’s wrists or 

to the back of their hands, we found IMUs useful for detecting supination, pronation, wrist 

circumduction, and shakiness by using the movement information obtained. The glove sensor contains 

flexion sensors sewn along the fingers. The flexion sensors allow the glove to detect how far each finger 

is bent. This information is useful for detecting finger flexion, finger extension, and grasping movements. 

The final sensor that we investigated for use is a pressure sensor (FSR 400 series, Interlink 

Electronics, Westlake Village, CA, USA) shown in Figure 3d, which we used to measure patient grip 
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strength. While the sensors that we outlined in this section can cover a wide variety of movements in 

many clinical instruments for the assessment, more sensors can be added to further extend coverage. 

Each sensor that interfaces with the system is driven by a separate program that provides a layer of 

abstraction. The sensor interfaces contain the routines for collecting data from the sensor and formatting 

it. These interfaces then connect to the main system via a socket. This allows the main system to simply 

send a signal to each sensor interface to start recording or to stop recording and request the sensor data. 

These sensor interfaces follow a simple template that sets up the socket interface with the main system. 

This modularity provides the benefit of making it easy for a designer to add additional sensors. 

2.2. Data-Preprocessing 

As the sensors record the patient’s movements in the previous stage, several factors introduce noise 

into the sensor data. Occlusion, which is when something blocks the view of whatever the camera is 

trying to observe, causes a significant amount of noise in the Kinect, while inadvertent shaking in the 

patient’s arms may cause IMU data to appear noisy. Another issue with the sensor data is the amount of 

variability in patient movements, such as speed of the movement. Hence, pre-processing on the sensor 

data is necessary before we can extract useful information from it. We have implemented pre-processing 

routines that we have found to be commonly needed for Kinect data and IMU data. 

Our primary focus for the Kinect data was to remove the speed of the movement as a factor that may 

affect the scoring. In all clinical instruments for upper-limb assessment, the speed is typically not a 

measure to evaluate patient’s motor function. Since people perform movements at different speeds, we 

increased or decreased the speed of the movement so that movements from different people would appear 

to happen at the same speed. This was accomplished by scanning the set of Kinect skeleton frames and 

calculating the distance that the wrist had traveled between each frame. We used the wrist as the point 

of reference for movement speed because the wrist is the furthest extremity of the upper body that we 

could measure without too much noise; the wrist moved the furthest distance compared to the other 

joints. For adjacent frames where there was not a significant amount of movement, the routine deletes a 

number of the frames. After this step, when the frames are played back, the skeleton frames appear to 

represent a sped-up movement with relatively uniform speed throughout the movement. The next step is 

to set the total number of frames to a constant number (a specified value for each test movement). This 

is done by determining the number of frames that need to be added or removed. Then, frames are either 

removed or repeated at even intervals. 

Other Kinect routines include a routine for representing a limb as a normalized 3D vector and a routine 

for calculating the angle of a joint. These routines are discussed in further detail in Section 2.3. We also 

implemented a routine to analyze a set of skeleton frames and identify the frame in which the wrist is at 

the highest or lowest point. This can be useful for scoring many movements such as shoulder or elbow 

flexion, where we want the system to observe how high the patient can raise their hand while flexing the 

appropriate muscles. 

For the IMU, one of the most frequent routines we used was median filtering. Median filtering [25] 

is a simple approach that smooths the accelerometer and gyroscope readings to enable further pre-processing 

to be performed. After this, we created a routine to identify the range of twisting motions. This routine 

could be used to calculate the range of supination, pronation, and wrist circumduction. 
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Other sensors can reuse many of the pre-processing routines that we have implemented, but they will 

often require additional pre-processing routines to allow for feature extraction. Our gloves and pressure 

sensor used the same median filtering routine as the IMU, but included extra test-specific pre-processing 

such as calculating average sensor values. 

2.3. Feature Extraction 

The pre-processing phase of the proposed framework opens up the ability to more easily extract 

relevant features from the sensor data. Features should represent meaningful information that can be 

used to differentiate between the different classes of data. For instance, if we design a system that 

determines a person’s pose, we may attempt to extract features such as the positions of the arms and legs 

relative to the rest of the body, since this may be enough information to determine one of a few different 

possible poses. This feature data is used as input to the classification algorithm, which decides the final 

movement score based on the feature values. 

Feature extraction routines are unique for each test movement. This is because different movements 

have different requirements for obtaining each possible score. For example, testing for the ability to flex 

the biceps requires us to look at a subject’s elbow joint angle, while testing for the ability to supinate the 

wrist require us to focus on the subject’s wrist. Despite this, most routines for the test movements re-use 

a common set of features. An example of this would be elbow flexion and elbow extension, which both 

look at the elbow joint angle. We have created a set of feature extraction routines that each provide 

information about an upper body feature. To add support for additional tests, an additional feature 

extraction routine must be created for the system to handle that specific case. This can generally be done 

by using a combination of the feature extraction routines that we present in the following paragraphs. 

From Kinect data, the main features that may present interest for automating test cases are limb 

orientations and joint angles. Limb orientations are calculated by representing the two adjacent joints as 

a 3D vector. This vector is normalized to remove the slight amount of variation that may occur from 

noise or differing heights among patients. Joint angles are calculated by using the dot product of the 3D 

vectors of the adjacent limbs, as follows: ߠ = arccosሺ܂܁ ∙ ۷ሻ = arccos[ሺݏଵ݅ଵሻ + ሺݏଶ݅ଶሻ + ሺݏଷ݅ଷሻ] (1)

where ܁ = and ۷ [ଷݏ	ଶݏ	ଵݏ] = [݅ଵ	݅ଶ	݅ଷ] denote the 3D vectors of the superior limb and the inferior limb, 

respectively. The typical features extracted from Kinect data are illustrated in Figure 4. To calculate the 

elbow angle shown in Figure 4, the upper arm SE would be the superior joint S while the forearm EW 

would be the inferior joint I. 

For the IMU, the most common type of movement for which we gathered features were supination 

and pronation. This is because there are multiple tests that require these types of movements in different 

poses. To measure this type of movement, the IMU is attached to the wrist, positioned similarly to a 

wristwatch. As the supination or pronation occurs, the Z accelerometer readings appear as shown in 

Figure 5, mainly due to gravity. The range of supination or pronation was determined by smoothing the 

sensor readings with median filtering and using the difference of the maximum and minimum sensor 

value from the movement. This routine is also useful for detecting the range of wrist circumduction and 

dorsiflexion. Another routine that we implemented was to check the shakiness of a movement by 
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comparing the IMU data with the smoothed (via median filtering) version of itself. Specifically, we 

gathered accelerometer readings of such movements, which appeared to be much less smooth for shaky 

movements than for smoother movements. The overall sum of the differences between these data sets 

results in a higher value for more shaky movements and a lower value for smoother movements. The 

third routine we implemented was to determine the amount of movement that occurred for a test 

movement, measured at the wrist. This is necessary for test movements where there is slight occlusion 

from the Kinect. To do this, the routine gathers gyroscope readings from the movement and establishes 

the resting value, or the value of the readings when there is no movement. The routine then integrates 

over the readings that appear above this line, resulting in a higher value for gyroscope readings with 

more movement. 

 

Figure 4. A depiction of the skeleton data gathered by the Kinect with the features we 

extracted from that data. The limbs between the neck (N), the shoulder (S), the elbow (E), 

and wrist (W) are converted to 3D unit vectors. The elbow angle is calculated based on the 

vectors of the forearm and upper arm. 

(a) (b) 

Figure 5. Z-axis accelerometer readings when subject’s elbow supination/pronation 

movement occur. (a) Supination (b) Pronation 
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The glove and pressure sensors required very basic feature extraction routines. For the glove sensor, 

our routines find the point where the fingers are most flexed or extended (depending on the test being 

performed). The features are simply the sensor values that appear at this point. For the pressure sensor, 

the feature extracted is the maximum value that appears in the list after smoothing. 

In summary, the feature extraction routines that we created are briefly outlined in Table 1. As stated 

previously, the routines that gather extracted features for each test movement combine data from the 

feature extraction routines outlined in this section. The features from these feature extraction routines 

are added to a list that is then used as the input to the machine learning algorithm. For example, if we 

wanted to measure a joint angle and two limb orientations for a particular frame as the feature set for a 

test movement, it would have seven dimensions: One joint angle and two sets of 3-dimensional vectors 

representing each limb orientation. It is worth noting that all pre-processing and feature extraction 

routines mentioned in this paper have been fully automated and designed to run in real-time. The run 

time for the entire process of pre-processing sensor data, extracting features, and classification took 

between 0.7 and 1.5 s. 

Table 1. An outline of the feature extraction routines implemented to analyze upper limb movement. 

Feature Dimensions Feature Values 

Limb orientation 3 X,Y,Z unit vector indicating the direction the limb is pointing 

Joint Angle 1 Angle of the joint in radians 

Supination and Pronation 1 Difference between max and min values of the Z accelerometer 

Movement smoothness 1 
Difference between movement accelerometer readings and the 

smoothed readings 

Amount of movement 1 Integral of gyroscope readings for the movement 

Grip strength 1 Maximum sensor value after smoothing 

Finger Flexion and Extension 5 Maximum sensor values for each flexion sensor after smoothing 

2.4. Data Classification 

The features extracted from the sensor data can be used as input into a classification algorithm. One 

of the most popular machine learning algorithms used for gesture recognition is the Support Vector 

Machine (SVM) [26], which is a statistical machine learning algorithm that can be used to classify linear 

data. SVM also supports nonlinear data classification by using a kernel function to map nonlinear data 

into a higher dimensional feature space, which can make it possible to perform linear separation. 

Another popular machine learning algorithm for this type of application is the artificial neural 

network, or a specific type called a Backpropagation Neural Network (BNN) [27]. They consist of a 

network of interconnected neurons that are divided into three layers: The input layer, hidden layer, and 

output layer. There is a weighted connection between each node and every node on an adjacent layer. 

To obtain the result of a classification, feature data is placed into the input layer and “fed forward” to 

get an output from the output layer. The primary challenge of using artificial neural networks is to adjust 

the weights and biases through training to produce meaningful output for any input. A common approach 

to do this is Backpropagation, an iterative algorithm that uses the gradient descent algorithm on the 

neural network’s error function to adjust the weights and biases. 
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We opted to investigate machine learning algorithms because despite the training and testing process, 

the algorithms can be reused for multiple tests without going through heavy re-implementation. The 

SVM and BNN machine learning algorithms have been demonstrated to work with similar sensor data 

in many previous works [11]. We chose to demonstrate these two algorithms to see if there was a 

significant difference in accuracy with classifiers that used different approaches (statistical classification 

vs. neural network). The only test-specific changes to make are the features to investigate, which affects 

the number of input and hidden layer nodes in the BNNs. This is an advantage over approaches that may 

require a different algorithm to be created for every single test movement. For example, the authors in [9] 

implemented a different approach to the automation of stroke assessment by using PCA to construct 

joint angle profiles. Machine learning provides a much more generalized approach that broadens the 

features from sensor data that can be incorporated into an assessment and extended without having a 

significant impact on complexity. Another advantage of using such classification algorithms is that the 

standard evaluations we are aiming to automate apply scores from a discrete set of possible values (such 

as 0, 1, and 2 for the FMA). Each of these possible values can easily translate to a class label of any 

classification algorithm. 

3. Feasibility Evaluation 

3.1. FMA Implementation 

To demonstrate the feasibility of using the proposed framework to create a working automated 

assessment system, we implemented a system that focuses on automating the FMA. The FMA consists 

of 33 upper-limb motor tests, where the clinician asks a patient to perform a movement. As the patient 

performs each movement the clinician scores the movement according to the following guidelines: 

• 0: the patient cannot perform the movement at all; 

• 1: the patient can perform the movement partially; 

• 2: the patient can perform the movement faultlessly. 

As the patient performs each test movement, the scores are added up to give an overall score that 

represent the patient’s level of limb motor function impairment. 

Based on the proposed framework, the system we developed works with the Kinect, the glove sensor 

(which includes an IMU), and a pressure sensor. The Kinect records data at 30 Hz and connects to a 

computer via USB. It is positioned approximately 1.5 m in front of the subject. The glove sensor which 

was worn by the subject’s hand collects data through USB at 100 Hz. The pressure sensor that was placed 

on a table within reach of the subject measures the subject’s grip strength by using Arduino board at  

30 Hz. Our implementation of the automated FMA, as displayed in Figure 6, follows the standard 

outlined in [28]. Based on the user interface (Figure 6), the user selects which test movement to perform, 

and is presented with video instructions for performing them. Recording is then started by a voice 

command and stops when the application automatically detects that the user has finished moving.  

The sensor data is then classified through SVM to obtain a final score, which is displayed by the  

application (Figure 6). 

Our system can automate 24 out of the 33 (about 73%) upper-limb tests of the FMA, as summarized 

in Table 2. The tests that we did not support include movements that could not be measured with the 
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sensors outlined in this paper, or were tests that require reflex activity, because those tests require some 

form of actuation. The feature extraction routines for these tests are all a combination of one or more of 

the routines mentioned in Section 2.3. Due to the different requirements for each test to be measured, 

each test requires a different SVM with its own training instances. The training and testing data was not 

scaled because we found that in our case, this had no impact on accuracy. Each of these SVMs performed 

best with a linear kernel. In general, when determining the number of SVM training instances, we found 

that the system presented the highest accuracy when we had five training instances for each possible 

score for each test. Note that the accuracy is defined as percentage of test movements that were classified 

accurately. When we used more than five training instances, the accuracy slightly decreased, which is 

likely a result of overfitting [29]. Overfitting is when an SVM is unable to accurately distinguish between 

test instances due to noise. This can happen if the model is complex and contains a lot of features, as is 

the case in our implementation. Figure 7 illustrates the effect of the number of training examples on the 

overall accuracy of our system. 

 

Figure 6. The primary user interface for our system, which shows a graphical representation 

of the Kinect’s sensor data.  

Table 2. The FMA tests supported by our implementation of an automated assessment system. 

Category Movement 

Shoulder 

Abduction 
Ext. Rotation 

Abduction 0–90° 
Flexion 0–90° 

Flexion 90–180° 

Elbow 

Flexion 
Extension 

Pro/Supination at 0° 
Pro/Supination at 90° 

Forearm 
Supination 
Pronation 
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Table 2. Cont. 

Category Movement 

Hand 

Finger mass flexion 

Finger mass Extension 
Grasp a 
Grasp b 
Grasp c 
Grasp d 
Grasp e 

Wrist 
Flex/Extension with elbow at 90° 
Flex/Extension with elbow at 0° 

Circumduction 

Coordination/Speed
Tremor 
Speed 

 

Figure 7. The accuracy of our classifiers given the number of training examples. 

3.2. Protocol 

In order to evaluate the basic accuracy of our implementation, an experiment with healthy subjects 

were conducted. Eight healthy volunteers (seven men, one woman) ranging in age from 24 to 30 years 

participated in the experiment. They were seated in front of the Kinect in a chair without armrests while 

wearing the glove sensor. We asked them to perform each test movement three times: once where they 

didn’t perform the movement at all, once where they performed the movement partially, and once where 

they performed the movement faultlessly. This was to simulate different levels of motor function  

(score 0, 1, and 2 of FMA) for performing the test movements. 

To test accuracy, we ran this data through our classifier using training data generated by one healthy 

volunteer. For this test, we used five training examples for each class of each test (15 training examples 

per test). Since we used a publicly available SVM library, LIBSVM [30], the SVM classifiers were 

trained with default settings from LIBSVM, with the exception of using a linear kernel function instead 

of the default polynomial kernel function. We then ran tests with the same kernel function where we 
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diversified the training data with v-fold cross validation [31]. This was done by using data from one 

volunteer as a testing instance while using the data from the rest of the volunteers as training instances. 

This was repeated for each volunteer. We ran the same tests with our BNN classifiers using both v-fold 

cross validation and accuracy testing with five training instances. 

To further evaluate the feasibility of our implementation, we conducted a comparison experiment 

with actual stroke patients. Two post stroke patients (two men, 45 and 62 years old) who do not have 

cognitive impairment (mini-mental state examination > 24) participated in the experiment. They gave 

signed informed consent approved by the DGIST IRB prior to the experiment. After installing/attaching 

sensors, the patients were asked to perform the FMA by using the developed system; for each test of 

FMA, video instructions were provided in advance, and they did their best to follow the instructions. 

The system recorded the patients’ data in the presence of a well-experienced clinician (occupational 

therapist) who also scored the test movements herself. Using data from healthy subjects as training data 

for the classifier (obtained from the experiment with healthy subjects above), the system rated each 

movement of the FMA test. To evaluate accuracy, the scores from the automated assessment system 

were compared with the scores obtained by the clinician. After finishing all supported automated FMA 

tests (25 tests summarized in Table 2), the remainder (eight tests) were performed by the clinician 

without the system, and the time duration spent for the remainder was measured to evaluate how much 

time the system would save for the clinician. 

4. Results 

In the previously mentioned experiment, we tested two machine learning algorithms on the data from 

healthy volunteers: SVM and BNN. The LIBSVM for the SVM classification uses the “one-vs-all” 

approach for multi-label classification [30]. For BNN classification, we implemented a simple 3-layer 

neural network. As with SVM, we set up a separate BNN for each test movement. The number of input 

nodes was equal to the number of features and all networks had three output nodes. The scores were 

determined by which output node had the highest value. The number of hidden nodes was generally set 

to a number about halfway between the number of input nodes and output nodes. 

The experimental results with the SVM and BNN classifiers, which are represented as the percentage 

of test movements that were classified accurately, are summarized in Table 3. The accuracy in all cases 

reaches at least 75%. The results show that the proposed framework can feasibly be used to perform an 

automated assessment. It is noteworthy that the BNN classifier has better overall classification accuracy 

(about 93.1%) than the SVM classifier (about 86.1%). However, the difference between two is not 

statistically significant (p > 0.05). 

Of two classifiers used above, we opted to use the SVM classifier for the latter experiment with stroke 

patients because of its ease of implementation and extendibility given the open source implementations 

of LIBSVM. The comparison results between the automated and the in-person assessments are 

summarized in Table 4. Compared with the results from the healthy subjects, the accuracy of the 

automated assessment slightly deteriorates (about 24%) with both patients. To further evaluate the 

clinical effect of degraded accuracy, we compared the final scores of the patient to the scores assigned 

by the clinician, which can be seen in Table 5. Despite the lower accuracy in each FMA test, the total 

scores of FMA obtained by the two assessments are quite similar (over 90% agreement). 



Sensors 2015, 15 20110 

 

 

After the supported automated assessment, the clinician conducted the assessment for the eight 

unsupported FMA tests, and it took 5 min on average. This result shows that the proposed framework 

would reduce the amount of time it takes to perform a patient assessment by about 82%. 

Table 3. Result of scoring (classification) from healthy volunteers after they performed each test. 

Subject 
SVM BNN 

Accuracy V-Fold Accuracy Accuracy V-Fold Accuracy 

1 93.65% 90.48% 95.24% 96.83% 
2 75.76% 86.36% 87.88% 93.94% 
3 84.85% 89.39% 93.06% 95.83% 
4 78.79% 84.85% 81.82% 86.36% 
5 89.23% 90.77% 83.10% 88.73% 
6 87.88% 87.88% 93.10% 93.10% 
7 95.65% 89.39% 96.00% 93.33% 
8 84.13% 96.83% 90.48% 96.83% 

Table 4. Results of scoring (classification) from stroke patients as compared to scores 

assigned by a clinician. 

Person SVM Accuracy 

P1 54.55% 
P2 68.18% 

Table 5. A comparison of the FMA scores assigned by our implemented system and the 

score assigned by the clinician. 

Person SVM Score Clinician Score Score Accuracy 

P1 29 30 96.67% 
P2 30 33 90.91% 

5. Discussion 

The feasibility of the proposed framework was evaluated by implementing a system to automate 

FMA. The automated FMA was quite accurate with healthy subjects, but less accurate with post stroke 

patients. This is mainly because the training data used by the classifier in the system was collected from 

healthy subjects’ movements, not movements from stroke patients. The most promising method of 

increasing classification accuracy would be to collect movement data from stroke patients to use as 

training data. Another factor that impacted the final accuracy was that the clinician’s scores were used 

as ground truth. Since the FMA has been proven to have high inter-rater reliability [28,32], we only 

recruited one occupational therapist who is well-experienced in performing the FMA. However, more 

clinicians may allow for more rigorous accuracy analysis. 

The proposed framework was designed to be used to create systems that will be deployed in relatively 

controlled settings in hospitals. Patients can schedule appointments to perform automated assessments 

with these systems. This would free up a lot of time for clinicians, since they would no longer have to 

perform the assessments themselves. The only step that would require the presence of a clinician would 
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be to put the glove sensor onto the patient’s hand, which sometimes presents some difficulty due to lack 

of motor control in most patients’ hands. In our experience, this typically takes a negligible one or  

two minutes. 

The sensors that we have investigated for the proposed framework are relatively cheap, which opens 

up the possibility for the framework to be deployed in-home environments [12,13]. Note that reliable 

person identification performance [33] would be required for the home environments with multiple 

people. This in-home assessment can further save time for clinicians as well as making things more 

convenient for patients. It also enables more frequent assessment that will allow clinicians to closely 

monitor patients remotely. 

In the FMA case, we automated 25 out of the 33 upper-limb tests based on the proposed framework. 

The eight unsupported tests can be classified into two groups: external actuation group (biceps/triceps 

muscle reflex, normal reflex activity, and wrist stability at elbow 0°/90°) and fine motion group (shoulder 

retraction/elevation, dysmetria). The former group requires some kind of external actuation that cannot 

be provided by a sensor-based framework. A robotic device may be the solution, but it would 

significantly increase the cost and potentially reduce the time effectiveness of the automated assessment. 

The latter group is only feasible by adding several additional high-performance (potentially high-cost) 

sensors for measuring fine motions, and the use of such sensors also results in additional setup time. To 

maximize the cost/time-effectiveness with large coverage, we decided to cover 25 tests of FMA through 

the framework. 

The design of the proposed framework also opens up the possibility for automating tests from other 

standard evaluation methods, such as the ARAT, WMFT, and NIHSS. Adding a new automated test to 

an existing system is a matter of creating a single feature extraction routine and generating training data. 

In addition to the type of automated tests, the framework allows for the customization to choose a 

machine learning classification algorithm. Our tests indicate statistically insignificant differences in 

accuracy with SVM and BNN, but other algorithms may also be applied and tested. This customizability 

allows the developer to create custom test sequences to monitor the conditions of their patients. 

This paper is limited in that it used a small population of post stroke patients, thus training data from 

healthy volunteers was used to implement the automated FMA. Since this study was designed to show 

the feasibility of the proposed framework for the automated upper-limb assessment, we have started to 

collect training data from more stroke patients with a clinical partner. This planned study is meant to 

compare the in-person FMA and the automated FMA with a broader range of participants, including 

patients with more variable levels of upper limb impairment. Additional future plans include providing 

multi-modal instructions for subjects with cognitive impairment and considering safety issues to extend 

the proposed idea to an in-home assessment. 

6. Conclusions 

This paper proposed a novel framework for automating the assessment of upper-limb motor 

impairment. The main contribution of this work is to provide a framework that can be used to create a 

series of tests that can evaluate the upper-limb function of a patient without clinician supervision. Using 

this framework, we implemented a system that automates 73% of the upper limb portion of the FMA. 

The system implemented with our approach has an acceptable accuracy and can be used to save 
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approximately 25 min per patient for clinicians. This framework allows stroke patients to be evaluated 

more frequently at lower cost. 
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