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Abstract

Background & Aims—Nonalcoholic fatty liver disease (NAFLD) is a common consequence of 

human and rodent obesity. Disruptions in lipid metabolism lead to accumulation of triglycerides 

and fatty acids, which can promote inflammation and fibrosis and lead to nonalcoholic 

steatohepatitis (NASH). Circulating levels of fibroblast growth factor (FGF)21 increase in patients 

with NAFLD or NASH, so we assessed the role of FGF21 in the progression of murine fatty liver 

disease, independent of obesity, caused by methionine and choline deficiency.

Methods—C57BL/6 wild-type and FGF21-knockout (FGF21-KO) mice were placed on 

methionine- and choline-deficient (MCD), high-fat, or control diets for 8–16 weeks. Mice were 
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weighed; serum and liver tissues were collected and analyzed for histology, levels of 

malondialdehyde and liver enzymes, gene expression, and lipid content.

Results—The MCD diet increased hepatic levels of FGF21 mRNA more than 50-fold and serum 

levels 16-fold, compared with the control diet. FGF21-KO mice had more severe steatosis, 

fibrosis, inflammation, and peroxidative damage than wild-type C57BL/6 mice. FGF21-KO mice 

had reduced hepatic fatty acid activation and β oxidation, resulting in increased levels of free fatty 

acid. FGF21-KO mice given continuous subcutaneous infusions of FGF21 for 4 weeks while on 

MCD diets had reduced steatosis and peroxidative damage, compared with mice not receiving 

FGF21. The expression of genes that regulate inflammation and fibrosis were reduced in FGF21-

KO mice given FGF21, similar to those of wild-type mice.

Conclusions—FGF21 regulates fatty acid activation and oxidation in livers of mice. In the 

absence of FGF21, accumulation of inactivated fatty acids results in lipotoxic damage and 

increased steatosis.
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Background & Aims

In humans nonalcoholic fatty liver disease (NAFLD), characterized by excess hepatic 

accumulation of triglycerides, is a common complication of obesity and is linked to insulin 

resistance and the metabolic syndrome. Diagnosis of NAFLD requires exclusion of other 

causes of liver pathology, including alcohol abuse, viral infections and biliary or 

autoimmune disease. 10–20% of individuals with NAFLD progress to nonalcoholic 

steatohepatitis (NASH) which is characterized by hepatocyte lipoapoptosis, inflammation 

and fibrosis. While fatty liver has a relatively benign prognosis1, NASH poses a high risk 

for further progression to cirrhosis and hepatocellular carcinoma. As a result of the 

increasing prevalence of obesity, NAFLD is now the most common cause of chronic liver 

disease in developed as well as developing countries. In the USA NAFLD affects 30% of 

the obese population and 53% of obese children2, 3. Additionally, risk increases with weight 

and prevalence increases to 90% in morbidly obese populations4, 5. Thus, understanding the 

molecular mechanisms underlying the progression from hepatic steatosis to frank 

steatohepatitis is of critical importance for clinical prognostication and for pharmacological 

treatment.

In humans, circulating levels of the metabolic regulator, fibroblast growth factor 21 (FGF21) 

are increased in individuals with both NAFLD and NASH6–9, suggesting that FGF21 may 

play a role in the pathogenesis of fatty liver disease. FGF21 has multiple metabolic roles, 

and in rodents is known to enhance hepatic fatty acid oxidation during fasting or 

consumption of a ketogenic diets10, 11. Furthermore, mice lacking FGF21 (FGF21-KO) 

show an atypical metabolic response to a ketogenic diet, including impaired fatty acid 

oxidation, and weight gain rather than the expected weight loss12. Increased expression of 

hepatic FGF21 and high circulating levels are seen with genetic and diet induced rodent 

obesity13.
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Mice rendered obese by consuming a high fat diet develop a mild phenotype of 

inflammation and steatosis which is relatively late onset and is also exacerbated in mice 

lacking FGF21. Thus supporting accumulating data suggest that FGF21 plays a protective 

role in steatohepatitis. Understanding the molecular mechanisms of this process is 

complicated by the fact that studies thus far focused on NAFLD in the context of obesity, 

which is associated with resistance to insulin, leptin and FGF21 itself. Additionally, 

pharmacologic doses of FGF21 induce rapid weight loss making it difficult to identify 

primary effects of FGF21 on liver metabolism as opposed to secondary effects related to 

resolution of NAFLD as a consequence of weight loss. To define the distinct role of FGF21 

on the liver, independent of adiposity, we used a lean model of fatty liver disease induced by 

consumption of a methionine- and choline-deficient (MCD) diet. Unlike the mild phenotype 

observed with diet induced obesity, this model recapitulates many of the pathologic 

processes observed in fatty liver disease including hepatocyte lipoapoptosis, progression to 

NASH, development of severe inflammation, hepatocyte ballooning, and fibrosis. However, 

this diet does not cause weight gain or insulin resistance so that the contributions of FGF21 

can be isolated independent of adiposity.

Wild-type mice consuming the MCD diet showed elevations in hepatic FGF21 mRNA 

expression and circulating FGF21 levels. Furthermore, in FGF21-KO mice hepatic steatosis 

and fibrosis were exacerbated, consistent with a protective role for FGF21 in the 

pathogenesis of liver disease independent of obesity. Importantly, when hepatic lipid content 

was analyzed, livers of mice lacking FGF21 showed elevated free fatty acid levels. 

Strikingly, there was a concomitant and profound reduction in all species of long chain fatty 

acyl-CoAs, suggesting that FGF21 regulates the activation of free fatty acids, a process 

necessary for long chain fatty acid oxidation. Consistent with this finding, FGF21-KO mice 

exhibited significantly decreased hepatic acyl CoA synthetase activity and long chain fatty 

acid β-oxidation. Treatment with exogenous FGF21 ameliorated MCD-induced 

steatohepatitis and increased acyl CoA synthetase activity and β-oxidation. Additionally, 

treatment of FGF21 to WT mice with established NASH reversed many of the associated 

complications including hepatic steatosis and inflammation. Taken together, these results 

demonstrate a novel and critical protective role for FGF21 that limits the progression of 

steatosis to steatohepatitis and associated lipotoxic damage. This results from the action of 

FGF21 to increase long chain fatty acid activation, β-oxidation, and fatty acid disposal and 

thus, limit hepatic fatty acid accumulation.

Methods

Mouse maintenance and experiments

All procedures were approved by the Beth Israel Deaconess Medical Center Institutional 

Animal Care and Use Committee. Mice were housed in groups of two to four mice at 24°C 

under a 12-hour light-dark cycle (0600–1800 h) with ad libitum access to food and water. 

Mice were fed either a methionine-choline deficient (MCD) diet (Harlan Teklad TD.90262), 

the matched control diet (Harlan Teklad TD.94149), or a high fat diet (Research Diets, 

D12451) for either four or eight or 16 weeks. Mice were euthanized with vaporized 

isoflurane, exsanguinated via cardiac puncture, serum was collected and frozen immediately. 
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Dissected tissues were weighed and flash frozen in liquid nitrogen. Specific methodic details 

are contained within the supplemental information.

Statistics

Data are presented as mean ± SEM. Data sets were analyzed for statistical significance on 

Microsoft Excel using unpaired two-tailed t tests. Statistical significance was assumed at P < 

0.05.

Results

Hepatic FGF21 expression is increased during MCD induced steatohepatitis

FGF21-KO mice fed a high fat diet for 16 weeks showed evidence of exacerbated fibrosis 

and inflammation (Sup. Figure 1), however, the phenotype was mild in both the WT and 

FGF21-KO mice. As we were interested in the role of FGF21 in attenuating the more severe 

pathologies associated with NASH such as lipotoxycity and inflammation we fed mice an 

MCD diet (Figure 1). Consumption of the MCD diet led to the development of fatty liver 

independent of obesity and was associated with a >50 fold increase in hepatic FGF21 

mRNA expression (Figure 1a) and a >15 fold increase in serum FGF21 levels (Figure 1b). 

These changes were sustained through 8 weeks on the MCD diet (data not shown). FGF21 is 

also expressed in white adipose tissue14 and pancreas15 however there was no change in 

FGF21 expression in adipose tissue, while expression in the pancreas decreased (Figure 1a) 

indicating that the increase in serum levels is a consequence of hepatic expression.

FGF21 deficiency exacerbates hepatic steatosis, inflammation, fibrosis, and lipid 
peroxidative damage caused by the MCD diet

After 8 weeks of MCD diet both WT and mice lacking FGF21 (FGF21-KO) demonstrated 

similar rates of weight loss16 (Figure 1c). FGF21-KO mice had heavier livers (0.92g ± 0.063 

vs. 1.6g ± 0.14, P=0.0008) and, increased liver to body weight ratios as compared to WT 

mice (Figure 1d). The differences in liver weight appear to be secondary to increased hepatic 

triglyceride levels in FGF21-KO mice (Figure 2a). Serum ALT levels were also higher in 

the FGF21-KO mice (Table 1), indicating increased hepatocyte damage. While there was a 

small increase in serum cholesterol in FGF21-KO mice, there were no significant 

differences in circulating triglycerides or non-esterified fatty acid concentrations (Table 1).

We used histological analysis to compare the progression of steatohepatitis in WT and 

FGF21-KO mice. When scored for degree of steatosis, inflammation, and hepatocyte 

ballooning according to criteria set forth by a well-validated grading system17, FGF21-KO 

mice were found to have increased hepatic steatosis and ballooning, with a significantly 

higher NAFLD Activity Score (Figure 1e and f). Notably, FGF21-KO mice had pronounced 

perisinusoidal fibrosis (Figure 1e), a pattern characteristic of fibrosis with a metabolic 

etiology such as NASH18.

To analyze the progression of steatohepatitis in mice lacking FGF21 we measured 

malondialdehyde levels, a product of lipid oxidation, and found a substantial increase in the 

livers of FGF21-KO mice (Figure 2b) confirming enhanced oxidative stress in FGF21KO 
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mice3. FGF21-KO mice also exhibited more hepatic fibrosis as assessed by hepatic collagen 

content (Figure 2c). FGF21-KO mice did not show impaired expression of genes involved in 

antioxidant pathways, including Nrf2, superoxide dismutase, catalase, or enzymes in the 

glutathione pathway (data not shown); nor were there differences in glutathione levels 

between WT and FGF21-KO mice (data not shown). Expression of genes involved in 

extracellular matrix deposition and remodeling in fibrosis were increased FGF21-KO mice, 

however only Tgfβ1 was significant (Figure 2d). Strikingly, there was a substantial induction 

of genes mediating inflammation (IL1β, MCP1, and MIP1a) in the FGF21-KO livers, 

including the macrophage marker Cd68, (Figure 2e) suggesting enhanced inflammation and 

innate immune cell infiltration. Taken together, these results demonstrate that FGF21 

deficiency leads to increased hepatic steatosis and exacerbated oxidative damage, 

inflammation and fibrosis and thus enhanced progression to NASH.

Fgf21 alters hepatic long chain acyl CoA content

We next sought to identify biochemical pathways targeted by FGF21 that might affect the 

course of steatohepatitis. Excess free fatty acids have lipotoxic effects which may contribute 

to progression from simple steatosis to steatohepatitis19. As the initial step in hepatic long 

chain fatty acid metabolism is activation of fatty acids to long chain acyl CoAs, we profiled 

the long chain acyl CoA content in the livers of FGF21-KO mice on the MCD diet. As 

FGF21-KO mice have increased hepatic triglyceride content, we anticipated an 

accumulation of long chain acyl CoAs. Surprisingly, there was a profound reduction in the 

levels of all species of long chain acyl CoAs examined (Figure 3a), with a >50% reduction 

in total long chain acyl CoA content (Figure 3b). These data suggest a global defect in the 

activation of all species of long chain fatty acids to their respective acyl CoA in mice 

lacking FGF21 on the MCD diet. As a consequence, FGF21-KO mice have significantly 

elevated hepatic free fatty acids (Figure 3c), consistent with an abrogated conversion to acyl 

CoAs for subsequent utilization in downstream metabolic pathways.

Fgf21 deficiency leads to reduced ACSL activity and mitochondrial β-oxidation

Long chain fatty acids are converted to acyl CoAs by a family of five acyl CoA synthetases 

(ACSLs) as well as several fatty acid transport proteins (FATPs), many of which are 

expressed in the liver20, 21. We hypothesized that differences in the expression of ACSLs or 

FATPs could account for the reduction in long chain acyl CoA content in the livers of 

FGF21-KO mice. Indeed, substantial decreases in the mRNA expression of ACSL1, ACSL5, 

FATP1, FATP2 and FATP5 were observed in the livers of FGF21-KO mice on the MCD 

diet (Figure 4a). This was accompanied by a 25% reduction in total ACSL activity (Figure 

4b).

A consequence of decreased levels of long chain acyl CoAs is reduced mitochondrial β-

oxidation. Livers from the FGF21-KO mice demonstrated a 40% reduction in [1-14C] 

palmitic acid oxidation to CO2 (Figure 4d). We also found significant decreases in mRNA 

expression of several genes regulating β-oxidation, including, Pgc-1α, Pparα and lCAD 

(Figure 4c) that may contribute to decreased oxidation. However, given the relatively small 

differences in oxidative gene expression between WT and FGF21-KO mice, this 

considerable reduction in palmitate β-oxidation may be more attributable to the decreased 
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levels of reactive substrates as less activated long chain acyl CoAs are available in the 

hepatocyte.

Exogenous administration of Fgf21 attenuates the development of steatohepatitis

FGF21-KO mice were treated with continuous subcutaneous infusion of either saline or 

human recombinant FGF21 for 4 weeks while on the MCD diet, and were compared to WT 

mice on the MCD diet for the same period of time. FGF21 serum levels achieved with 

treatment were 34.6 ± 8.1 ng/mL compared to endogenously up-regulated serum levels in 

WT mice consuming the MCD diet of 7.8 ± 2.1 ng/mL (Figure 1b). There were no 

significant differences in weight between the three cohorts after 4 weeks (Figure 5a). 

However, a number of beneficial effects of FGF21 administration were noted. FGF21 

treated KO mice exhibited lower liver weights and liver to body weight ratio (Figure 5c) and 

substantially reduced serum ALT levels compared to both WT and KO counterparts (Table 

1). There was a small but significant decrease in circulating free fatty acid levels with no 

change in serum triglyceride or cholesterol concentrations (Table 1). Notably, FGF21 

significantly attenuated the development of hepatic steatosis in the FGF21-KO mice, leading 

to hepatic triglyceride levels comparable to WT animals (Figure 5d). Histologic analysis 

revealed profoundly reduced macrovesicular steatosis (Figure 5b). In addition, FGF21 

treatment decreased peroxidative damage, reflected by malondialdehyde levels (Figure 5e) 

and was associated with normalization of all pro-inflammatory and pro-fibrotic genes to 

levels seen in WT mice (Figure 6e and 6f). Consistent with reduced inflammation and 

fibrosis there were fewer inflammatory infiltrates and reduced Sirius Red staining (Figure 

5b). Collagen levels were reduced but did not reach significance (Sup. Figure 2a), however, 

significant improvements were observed with all components of the histological scoring 

(Sup. Figure 2b). Additionally, FGF21 treatment to wild type mice with established NASH 

led to a significant improvement in hepatic steatosis and inflammation (Figure 5a–d). This 

was also associated with increased acyl CoA synthatase expression and reduced fibrotic and 

inflammatory gene expression (Sup. Figure 6).

Fgf21 treatment increases hepatic acyl CoA synthetase activity and fatty acid β-oxidation

Livers from the FGF21-treated KO mice had a 20% increase in total ACS activity compared 

to saline-treated KO mice (Figure 6a). FGF21 treatment was associated with increased 

expression of ACSL1, and FATP5 compared to saline treated KO mice (figure 6c). FGF21-

treated mice demonstrated a robust 71% increase in CO2 production from [1-14C] palmitic 

acid compared to the saline-treated FGF21-KO mice (Figure 6b), although the level of β-

oxidation in the FGF21-treated mice was lower than that seen WT cohort. Surprisingly, 

there were few significant changes in the expression levels of genes mediating 

mitochondrial β-oxidation (Figure 6C).

Conclusions

FGF21 is a novel metabolic regulator that has potent effects on glucose and lipid 

homeostasis. Administration of FGF21 reduces circulating triglycerides, NEFAs, and 

glucose and leads to weight loss in obese animals. This occurs through enhanced insulin 

sensitivity and increased adipose tissue energy expenditure22 caused, in part, by increased 
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white adipose tissue thermogenesis23. In humans, an FGF21 analog was found to improve 

serum lipid profiles and reduce body mass24. In addition, FGF21 is essential for appropriate 

fatty acid oxidation in mice during prolonged fasting25 or while consuming a ketogenic 

diet12.

While FGF21 has multiple effects on a wide range of tissues, the liver is an important source 

of systemic FGF21 as well as a key site of action. In humans, FGF21 serum levels correlate 

with obesity and importantly appear to reflect the degree of fatty infiltration in the liver, 

suggesting that levels could serve as a marker for NAFLD6, 26. In diet induced obese mice, 

FGF21 treatment leads to resolution of obesity-associated NAFLD, suggesting that FGF21 

could serve as a therapeutic agent for this disease27. However, interpreting the effects of 

FGF21 on fatty liver is complicated; FGF21 treatment potently induces weight loss which in 

turn leads to resolution of fatty liver. This makes it difficult to isolate a direct effect on 

hepatic metabolism from indirect effects related to weight loss27–30. By using the MCD diet 

to induce NAFLD and NASH in the context of leanness we can isolate the effects of FGF21 

independent of weight loss. Consumption of an MCD diet led to substantial increases in 

hepatic mRNA expression and serum levels of FGF2131. In the absence of changes in 

expression in other FGF21 expressing tissues, including adipose tissue and pancreas, 

strongly suggests that the increased serum levels are derived from the liver.

Here we show that FGF21 plays an important role in the pathogenic elements of NASH 

independent of body weight. In mice consuming an MCD diet, lack of FGF21 was 

associated with significantly worsened lipid peroxidative damage, apoptosis, inflammation, 

fibrosis, and thus the progression to severe NASH. Importantly, treatment of FGF21-KO 

mice with FGF21 attenuated or eliminated the adverse effects of the MCD diet. This 

included reduced hepatic triglycerides normalized expression of pro-inflammatory and pro-

fibrotic genes to levels seen in WT animals. Impressively, FGF21 administration actually 

reduced serum ALT and hepatic lipid peroxidative damage to below WT levels. These novel 

findings demonstrate that FGF21 treatment improves hepatic steatosis and most importantly 

inflammation and fibrosis independent of adiposity suggesting a direct beneficial effect on 

hepatic metabolism as well as a plausible therapeutic role.

The mechanism by which excess hepatic fat leads to tissue damage is multifactorial and not 

completely understood. Triglycerides have been considered potentially causal, however 

more recent work indicates that pathology stems from increased levels of non-esterified fatty 

acids. For example deletion of diacylglycerol-acyltransferase 2, which esterifies fatty acids, 

leads to decreased triglyceride accumulation, but also results in increased FFA content and 

is associated with substantially worse fibrosis19.

Fatty acids are metabolized through activation to long chain acyl CoAs, which then serve as 

substrates for anabolic and catabolic downstream pathways21. We profiled the hepatic long 

chain acyl CoA content in our model. FGF21-KO mice demonstrated a marked decrease 

(>50%) in total hepatic long chain acyl CoA content and a profound reduction in all species 

of long chain acyl CoAs examined. These differences were only observed in mice 

challenged with the MCD diet, as livers from FGF21-KO mice on a control diet showed no 

significant differences in hepatic lipid parameters when compared to WT mice (data not 
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shown). Thus FGF21 becomes physiologically important in states requiring increased 

hepatic free fatty acid metabolism and removal.

These data define a novel and potentially very important metabolic role of FGF21 in the 

activation of long chain fatty acids to acyl CoAs. Long chain fatty acids are converted to 

acyl CoAs by a family of five acyl-CoA synthetases (ACSL) and six fatty acid transport 

proteins (FATP) possessing acyl-CoA synthetase activity20. Consistent with impaired fatty 

acid activation, FGF21-KO livers demonstrate reduced expression of Acsl1, Acsl5, Fatp1, 

Fatp2, and Fatp5, while treatment with FGF21 induces Acsl1 and Fatp5. In addition, mice 

lacking FGF21 have decreased total hepatic acyl CoA synthetase activity while FGF21 

treatment augments acyl CoA synthetase activity. These data indicate that FGF21 serves to 

activate fatty acids at least in part by up regulating expression of the ACSLs. This pathway 

appears independent of dietary status as FGF21 is able to induce acyl CoA synthetase gene 

expression and enhance fatty acid oxidation in lean WT chow fed mice (Sup. Figure 3a+b).

Consistent with a role for FGF21 in fatty acid oxidation, FGF21-KO mice on the MCD diet 

demonstrate significantly decreased β-oxidation of palmitic acid to CO2. This is 

accompanied by reduced expression of genes involved in mitochondrial oxidation, including 

PGC-1α, a transcriptional coactivator involved in numerous mitochondrial pathways that is 

up regulated by FGF2132. Treatment of mice on MCD diet with FGF21 restores PPARα and 

PGC-1α levels and increases fatty acid oxidation. Taken together, our data demonstrate that 

FGF21 promotes hepatocyte fatty acid oxidation by activating two key processes: 1) FGF21 

up regulates ACSL/FATP expression and increases acyl CoA synthetase activity in the 

cytosol to activate fatty acids to acyl CoAs more efficiently, and 2) FGF21 enhances 

mitochondrial β-oxidation of fatty acids.

Our data extend the previously described physiologic actions of FGF21 to include induction 

of long chain fatty acid activation and mitochondrial β-oxidation, promoting fatty acid 

disposal and reducing the potential for fatty acid-induced lipotoxicity. These results add 

further support to the emerging view that non triglyceride lipid species, especially hepatic 

free fatty acids, play a pivotal role in the development of NAFLD and NASH19, 33, 34, and 

further implicate FGF21 as a key regulator of fatty acid metabolism in the liver. Fatty acids 

have been shown to induce hepatic TNFα expression35 and cause hepatocyte apoptosis36. In 

addition, impairments in mitochondrial fatty acid oxidation have been linked to the 

development of NASH37, as reactive oxygen species generated by peroxisomal β- and 

microsomal ω-oxidation of accumulated fatty acids can lead to lipid peroxidation, DNA and 

protein damage, inflammation and fibrosis38. By potentiating the activation of long chain 

fatty acids to acyl CoAs and partitioning them towards mitochondrial β-oxidation, FGF21 

limits the accumulation of free fatty acids. This leads to attenuated hepatic steatosis and 

diminishes the lipotoxic effects that can lead hepatocyte lipoapoptosis, inflammation and 

fibrosis. Notably, the latter appears to be a primary effect of FGF21 independent of diet, as 

we observe the same result in the healthy liver of WT chow fed mice.

The mechanism by which FGF21 targets hepatic metabolism is subject to debate. We have 

found that FGF21 can activate hepatic signaling in vivo13 and has been found to enhance 

oxidative gene expression in HepG2 cells treated with resveratrol39. Recent studies found 
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adiponectin important to the insulin sensitizing effects of pharmacologic doses of FGF21 

suggesting adiponectin may be an intermediate in the hepatic actions of FGF2140, 41. 

However, both studies are mainly concerned with the pharmacologic action of FGF21 to 

improve carbohydrate metabolism and not its physiologic function to regulate oxidative 

metabolism in the liver. Furthermore, the action to enhance FFA activation is likely direct as 

it has been shown that FGF21 reduces hepatic FFA levels in mice lacking adipose FGF21 

signaling42.

Overall, our data suggest that up-regulation of FGF21 in NAFLD and NASH is a 

physiologic adaptation to hepatic stress that increases hepatic fatty acid activation, oxidation 

and disposal, but depending on the metabolic milieu, may be an insufficient compensatory 

response. Mice overexpressing FGF21 appear to be somewhat protected from the 

development of lipotoxic damage on the MCD diet (Sup. Figure 4 and 5). Furthermore, 

exogenous administration of FGF21 to WT mice with established NASH significantly 

improved liver function and abrogated the progression of steatohepatitis, and future studies 

will determine whether increasing systemic FGF21 to supra-physiologic levels confers this 

beneficial effect in patients. Taken together, our work provides major insights into the 

pathophysiology of NAFLD and NASH, the mechanism for FGF21 action in these 

disorders, and raises the exciting possibility that FGF21 or other agents mimicking its action 

may be effective and viable therapies for the treatment of both hepatic steatosis and 

steatohepatitis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. FGF21 is up regulated in a mouse model of steatohepatitis a condition which is severely 
exacerbated in Fgf21-deficient mice
(a) Fgf21 mRNA expression is markedly increased in livers of WT mice on the MCD diet 

for 2 weeks, decreased in the pancreas, and unchanged in white adipose tissue. (b) Fgf21 

serum levels are elevated in WT mice on the MCD diet for 2 weeks. (c) When consuming an 

MCD diet for the duration of 8 weeks mice lacking FGF21 (FGF21-KO) remain heavier 

than WT littermates after 8 weeks on the MCD diet. (d) FGF21-KO mice have increased 

liver to body weight ratio. Histological analysis of steatohepatitis in FGF21KO mice. (e) 

FGF21-KO mice have increased lipid accumulation compared to WT mice (panels a–d, 

stained by H&E, at 10x and 20x magnification), and increased perisinusoidal, perivenular, 

and periportal fibrosis as assessed by Sirius Red (SR) staining (panels e–h, at 20x and 40x 

magnification). (f) Histopathology scores assigned to the FGF21-KO livers showed higher 

scores for fatty change (FAT), hepatocyte ballooning (BALLOON), total NAFLD Activity 

Score (TOTAL), and fibrosis. Data are expressed as mean ± SEM, N = 6 per group. (*, P < 

0.05; **, P < 0.01).
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Figure 2. FGF21-KO mice consuming an MCD diet display evidence of progressive 
steatohepatitis
(a) Hepatic triglyceride content (mg triglyceride/gram of liver) is increased in the FGF21-

KO mice compared to WT on the MCD diet. (b) The lipid peroxidation product 

malondialdehyde is increased in the FGF21-KO mice on the MCD diet. (c) Collagen levels 

were higher in the liver of FGF21-KO mice (d) Hepatic mRNA expression of the pro-

fibrotic genes are elevated in FGF21-KO mice fed MCD. (e) FGF21-KO mice have higher 

mRNA levels of the pro-inflammatory genes Cd68, Il1β, Mcp1, and Mip1a compared to WT 

mice. Data are expressed as mean ± SEM, with N = 6 mice per group. (*, P < 0.05; **, P < 

0.01; *** P< 0.001).
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Figure 3. Hepatic long chain acyl CoA and free fatty acid content
(a) Livers from FGF21-KO mice on MCD for 8 weeks showed reduced levels of all the 

species of long chain acyl CoAs measured. (b) Reduced total LCCoA in FGF21-KO. (c) 

Compared to WT mice, FGF21KO mice have higher hepatic levels of free fatty acids. Data 

are expressed as mean ± SEM, with N = 6 per group. (*, P < 0.05; **, P < 0.01; *** P< 

0.001).
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Figure 4. Mice deficient in FGF21 have decreased hepatic acyl CoA synthetase activity and 
reduced β-oxidation
(a) FGF21-KO mice on MCD for 8 weeks have decreased hepatic mRNA expression of 

Acsl1, Acsl5, Fatp1, Fatp2, and Fatp5 compared to WT. (b) FGF21-KO mice have 

decreased total hepatic acyl CoA synthetase activity, using [1-14C] palmitic acid as the 

substrate. (c) Reduced hepatic mRNA expression of the fatty acid oxidation genes Cpt1a, 

Pgc1α, and Pparα in the FGF21-KO mice. (d) Liver mitochondrial β-oxidation of [1-14C] 

palmitic acid is reduced in FGF21KO mice. Data are expressed as mean ± SEM, with N = 5 

per group. (*, P < 0.05; **, P < 0.01)
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Figure 5. Exogenous administration of FGF21 improves hepatic steatosis in FGF21-KO mice and 
in wild type mice with established NASH
(a) WT, saline-treated FGF21-KO, and FGF21-treated FGF21-KO mice (FGF21 rx) showed 

no significant differences in body weight after 4 weeks on the MCD diet nor when treated to 

WT mice. (b) Representative liver sections showing that the severe hepatic steatosis in the 

saline-treated FGF21-KO mice is significantly improved with FGF21 treatment, as assessed 

by hematoxylin and eosin staining (10x and 20x magnification). Sirius red staining 

demonstrates improvement in perisinusoidal fibrosis in the FGF21-treated mice. A 

significant improvement is also observed in WT treated mice. (c) While the KO mice had 

heavier livers and a higher liver to body weight ratio than WT mice, FGF21-treated mice 

showed a significant decrease in liver to body weight ratio. This was also seen in WT treated 

mice. (d) Hepatic triglycerides are reduced to WT levels in FGF21-treated KO mice and are 

further reduced in treated WT animals. (e) Hepatic malondialdehyde levels are decreased to 

near that of WT levels in FGF21-treated mice. (f) Dramatic reductions in ALT are observed 

in mice treated with FGF21 for 10 days. Data are shown as mean ± SEM, N = 5 per group. 

((WT v FGF21KO; *, P < 0.05; **, P < 0.01; *** P< 0.001) (FGF21KO v FGF21rx; #, 

P<0.05)).
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Figure 6. Treatment with FGF21 increases hepatic acyl CoA synthetase and fatty acid β-
oxidation
(a) FGF21 treatment increases total hepatic acyl CoA synthetase activity to WT levels, with 

[1-14C] palmitic acid as the substrate. (b) Hepatic β-oxidation of [1-14C] palmitic acid to 

CO2 is increased by FGF21 treatment. (c) Chronic FGF21 treatment increases mRNA 

expression of ACSL1, FATP1 and FATP5 compared to saline treated FGF21KO mice on the 

MCD diet for 4 weeks. (d) mRNA expression of fatty acid oxidation genes in WT, KO, and 

FGF21-treated mice on the MCD diet for 4 weeks. (e) Expression of pro-fibrotic genes is 

reduced to WT levels in FGF21-treated mice. Of note, Timp mRNA expression in the 

FGF21-treated mice was lower than the level in WT mice. (f) FGF21-treated mice had 

decreased mRNA expression of pro-inflammatory genes to WT levels. Data is expressed as 

mean ± SEM, with N = 5 mice per group. ((WT v FGF21KO; *, P < 0.05; **, P < 0.01; *** 

P< 0.001) (FGF21KO v FGF21rx; #, P<0.05; ##, P<0.01; P<0.001)).
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