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SUMMARY

This paper proposes a new estimation procedure for the survival time distribution with left-truncated and
right-censored data, where the distribution of the truncation time is known up to a finite-dimensional
parameter vector. The paper expands on the Vardis multiplicative censoring model (Vardi, 1989. Multi-
plicative censoring, renewal processes, deconvolution and decreasing density: non-parametric estimation.
Biometrika 76, 751–761), establishes the connection between the likelihood under a generalized multi-
plicative censoring model and that for left-truncated and right-censored survival time data, and derives an
Expectation–Maximization algorithm for model estimation. A formal test for checking the truncation time
distribution is constructed based on the semiparametric likelihood ratio test statistic. In particular, testing
the stationarity assumption that the underlying truncation time is uniformly distributed is performed by
embedding the null uniform truncation time distribution in a smooth alternative (Neyman, 1937. Smooth
test for goodness of fit. Skandinavisk Aktuarietidskrift 20, 150–199). Asymptotic properties of the pro-
posed estimator are established. Simulations are performed to evaluate the finite-sample performance of
the proposed methods. The methods and theories are illustrated by analyzing the Canadian Study of Health
and Aging and the Channing House data, where the stationarity assumption with respect to disease inci-
dence holds for the former but not the latter.
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1. INTRODUCTION

Incident and prevalent cohort study designs are two primary approaches for collecting survival data in
observational studies. When it is not feasible to conduct an incident cohort study because of limited
resources or other constraints, a prevalent cohort study is a good alternative. Under a prevalent cohort
study design, only individuals who have the disease of interest but have not yet experienced the failure
event are enrolled, and the observed survival times are subject to left truncation in addition to the usual
right censoring because those who have experienced the failure event before the recruitment time are not
observable, and those who are recruited may not experience the failure event before the end of the study
(Zelen and Feinleib, 1969; Lagakos and others, 1988). As a result, the observed survival times are a biased
sample of the survival times that occur in the target population, as the sampling scheme favors subjects
with slower disease progression. Statistical methods that fail to account for left truncation usually lead to
substantial overestimation of the survival time.

Under the stationarity assumption that the incidence of disease onset is constant over time, the trunca-
tion time variable follows a uniform distribution, and, as shown in Vardi (1989), the likelihood for survival
data that arise in a prevalent cohort study is proportional to the likelihood for data that are subject to
multiplicative censoring. Hence, the Expectation–Maximization (EM) algorithm developed for the mul-
tiplicative censoring models, which has been shown to be fully efficient in Vardi and Zhang (1992) and
Asgharian and others (2002), can be readily applied to analyze left-truncated and right-censored survival
data when the stable disease condition holds. The stationarity assumption, however, can be easily violated
in prevalent cohort studies. For example, in the event of an infectious disease outbreak, the number of
people infected usually grows exponentially rather than linearly over time. Hence, the truncation time is
unlikely to be uniformly distributed. The existing methods for non-parametric estimation of left-truncated
and right-censored data have been based on the conditional likelihood, conditioning on the observed trunca-
tion time (Lynden-Bell, 1971; Wang, 1991; Tsai and others, 1987) so that information about the truncation
time distribution is not required in the estimation procedure. Although knowing the censoring distribution
does not provide additional information for estimating the survival time distribution using censored data,
as pointed out in Wang (1991), the efficiency of the estimator can be improved substantially for truncated
data if the truncation time distribution can be parameterized or fully specified. When the distribution of
the truncation time is completely specified, Mandel (2007) generalized Vardi’s EM algorithm to obtain the
non-parametric maximum likelihood estimator for the survival time distribution. When the distribution
of the truncation time variable is known up to a parameter, Shen (2007, 2009) applied the pseudo-profile
likelihood procedure (Severini and Wong, 1992) to replace the nuisance parameters; that is, the distribution
function of the survival times in the marginal likelihood of the truncation times with a consistent estimator
that depends on the parameter of interest. As illustrated later, the resulting estimator is not the maximum
likelihood estimator, and hence is not fully efficient. Moreover, the convergence of the iteration algorithm
lacks rigorous justifications.

This paper is organized as follows. In Section 2, we study a generalized multiplicative censoring model
and develop an EM algorithm to obtain the maximum likelihood estimator for the expanded model. In
Section 3.1, we investigate a semiparametric truncation model where the distribution of truncation variable
is parameterized up to an unknown parameter. We show in Section 3.2 that, with proper reparameteriza-
tion, the semiparametric maximum likelihood estimator for the failure time distribution and the truncation
time distribution can be easily obtained by employing the EM algorithm developed under a generalized
multiplicative censoring model. Asymptotic properties of the proposed estimator are established. To assess
whether the stationarity assumption of a constant incidence rate holds for the occurrence of the initiating
event, in Section 3.3 we propose a semiparametric likelihood ratio test by embedding the null truncation
time distribution in a smooth alternative (Neyman, 1937). In Section 4, simulation studies show that the
proposed semiparametric maximum likelihood estimator and the semiparametric likelihood ratio test work
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well. We also apply the proposed methodology to two data sets: one from the Canadian Study of Health
and Aging and the other is the Channing House data. We show that the stationarity assumption holds for
the former but not the latter. A discussion concludes in Section 5.

2. THE GENERALIZED MULTIPLICATIVE CENSORING MODEL

In this section, we propose a generalized multiplicative censoring model. Consider non-negative ran-
dom variable X with density function g(t). Let U be a uniform[0, 1] random variable independent of
X . Let h(t, θ) be a density function, where θ belongs to a compact set � in R

p. Define the random
variable Z = H−1{U · H(X, θ), θ} with H(t, θ) = ∫ t

0 h(u, θ) du and H−1(t, θ) = min{u : H(u, θ) � t}.
Here Z is referred to as subject to the generalized multiplicative censoring. Assume that g and h have
support on [0, τ ]. In the special case where H is the distribution function of the uniform [0, τ ] ran-
dom variable, we have Z = U X , hence the model reduces to the multiplicative censoring model consid-
ered by Vardi (1989). Moreover, given X = x , Z has a conditional density function h(z, θ)/H(x, θ) for
z � x � τ , hence the marginal density function of Z can be shown to be

∫
u�z{h(z, θ)/H(u, θ)} dG(u),

where G(t) = ∫ t
0 g(u) du.

Define Y = �X + (1 − �)Z , where � is a binary indicator independent of (X, U ). Thus Y = X if
� = 1, and Y = H−1{U · H(X, θ), θ} if � = 0. Let (y1, δ1), . . . , (yn, δn) be n independently realizations
of (Y,�). The full likelihood function under the generalized multiplicative censoring model is propor-
tional to

LMC (G, θ) =
n∏

i=1

g(yi )
δi

{∫
u�yi

H(u, θ)−1 dG(u)

}1−δi

h(yi , θ)1−δi . (2.1)

Intuitively, one can estimate G and θ by applying the profile likelihood method.
First, for a fixed θ , we derive the EM algorithm to obtain the non-parametric maximum likelihood esti-

mator for G. Let {t1, . . . , tL} be the ordered and distinct values of {y1, . . . , yn}. Define ξ j = ∑n
i=1 δi I (yi =

t j ) and η j = ∑n
i=1(1 − δi )I (yi = t j ). Thus ξ j is the number of complete observations at t j and η j is the

number of multiplicatively censored observations at t j . Applying a similar argument as in Vardi (1989)
and Mandel (2007), we can show that, for a fixed θ , the problem of maximizing (2.1) is equivalent to
maximizing

L∏
j=1

p
ξ j

j

⎧⎨⎩
L∑

k= j

H(tk, θ)−1 pk

⎫⎬⎭
η j

,

subject to the constraints p j � 0, j = 1, . . . , L , and
∑L

j=1 p j = 1, where p j is the jump size of G at t j .

Note that the log-likelihood for the complete data (x1, . . . , xn) is given by
∑L

j=1

∑n
i=1 I (xi = t j ) log p j .

It follows from the result that the conditional density function of X given Z = z is

H(x, θ)−1g(x)∫
u�z H(u, θ)−1 dG(u)

;

given the current estimated probabilities pold = {pold
j , j = 1, . . . , L} and the observed value Zi = zi , the

conditional expectation is given by

νl = E{I (xi = tl) | zi , pold} = H(tl, θ)−1 pold
l

⎧⎨⎩∑
tk�zi

H(tk, θ)−1 pold
k

⎫⎬⎭
−1

.
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Replacing the missing indicator variable by its conditional expectation in the complete likelihood and
maximizing the likelihood function yields the updated estimates

pnew
l = 1

n

{
ξl +

n∑
i=1

(1 − δi )E{I (xi = tl) | zi , pold}
}

= 1

n

⎡⎢⎣ξl + H(tl , θ)−1 pold
l

l∑
k=1

ηk

⎧⎨⎩
L∑

j=k

H(t j , θ)−1 pold
j

⎫⎬⎭
−1

⎤⎥⎦ (2.2)

for l = 1, . . . , L .
Let {ĝθ (t1), . . . , ĝθ (tL)} be the probabilities that the EM algorithm converges to. Thus, for fixed θ , the

maximum likelihood estimator for G under the proposed generalized multiplicative censoring model is
given by Ĝθ (t) = ∑L

l=1 ĝθ (tl)I (tl � t). Then, by the profile likelihood approach, the parameter θ can be
estimated by maximizing the full likelihood LMC (Ĝθ , θ) under generalized multiplicative censoring.

3. APPLICATION TO LEFT-TRUNCATED AND RIGHT-CENSORED DATA

3.1 Model setup

Next, we consider the estimation problem for data under cross-sectional sampling with follow-up. Let T 0

be the time from disease incidence to the failure event of interest in a target population. Let f (t), F(t), and
S(t) denote the density function, the cumulative density function, and the survival function of T 0. Let A0

be the time from disease incidence to the (potential) study recruitment time, where the density function of
A0 lies in a parametric family {h(·, θ), θ ∈ �}. In a cross-sectional study, the prevalent population consists
of individuals with the disease who have not experienced the failure event at the recruitment time; that is,
individuals whose time to failure satisfies T 0 � A0. Let (T, A) be the observed random variables in the
prevalent population; then (T, A) has the same distribution function as (T 0, A0) conditional on T 0 � A0.
The joint density function of (T, A) evaluated at (t, a) is

h(a, θ) f (t)

μ(θ , F)
I (t � a),

where μ(θ , F) = ∫ ∞
0 H(t, θ) dF(t), with H(t, θ) = ∫ t

0 h(u, θ) du.
In practice, the observation of survival time can be terminated before an individual experiences an event.

We assume that the residual life time T − A is subject to random censoring by an independent variable C .
Let Y = min(T, A + C) be the observed survival time, and � = I (T � A + C) be the indicator of the
failure event. Let the observed data {(yi , ai , δi ), i = 1, . . . , n} be independent and identically distributed
copies of (Y, A,�). Our goal is to estimate the survival time distribution as well as the truncation time
distribution by maximizing the full likelihood function

L(θ , F) =
n∏

i=1

{
h(ai , θ) f (yi )

μ(θ , F)

}δi
{

h(ai , θ)S(yi )

μ(θ , F)

}1−δi

, (3.1)

which involves both the parametric component θ and the non-parametric component F(·). In the absence
of censoring, the semiparametric maximum likelihood estimator is given in Wang (1989). Her method,
however, cannot be applied in the presence of censoring.
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3.2 The semiparametric maximum likelihood estimator

We now derive the semiparametric maximum likelihood estimator (θ̂ , F̂) that maximizes the full likeli-
hood (3.1) for left-truncated and right-censored data. Define the functions g(t) = H(t, θ) f (t)/μ(θ, F)

and G(t) = ∫ t
0 g(u) du. Thus, g is a well-defined probability density function. The full likelihood (3.1)

can be reparameterized as

L(θ , G) =L1(G) ×
n∏

i=1

{h(ai , θ)H(yi , θ)−δi }, (3.2)

where L1(G) = ∏n
i=1 g(yi )

δi {∫u�yi
H(u, θ)−1 dG(u)}1−δi . Thus, for fixed θ , L1 is proportional to the full

likelihood function LMC in (2.1) under the generalized multiplicative censoring model. Moreover, the
second term on the right-hand side in (3.2) does not involve F . Thus, holding θ fixed, the full likelihood is
maximized by the maximizer of L1. Let ĝθ (tl) be the estimated jump size at time tl for fixed θ obtained by
applying the EM algorithm (2.2), where {t1, . . . , tL} are the ordered and distinct values of {y1, . . . , yn}. Let
Ĝθ (t) be the corresponding estimate of the cumulative distribution function. Replacing G(t) with Ĝθ (t)
in L, we have the profile likelihood of θ

LP(θ) =
n∏

i=1

ĝθ (yi )
δi

{∫
u�yi

H(u, θ)−1 dĜθ (u)

}1−δi

×
n∏

i=1

{h(ai , θ)H(yi , θ)−δi }.

Let θ̂ be the maximizer of the profile likelihood LP(θ); then the maximum likelihood estimator F̂ of
F is given by

F̂n(t) =
L∑

l=1

H(tl , θ̂)−1ĝ
θ̂
(tl)∑L

k=1 H(tk, θ̂)−1ĝ
θ̂
(tk)

I (tl � t).

Note that F̂n assigns positive probability mass at possibly all censored and uncensored event times
{t1, . . . , tL} (Vardi, 1989; Qin and others, 2011) and the likelihood function is strictly concave in p j , j =
1, . . . , L . Arguing as in Vardi (1989), we can show that, given the unique supporting points {t1, . . . , tL},
the maximizer of (2.1) is unique for each given θ , and that the EM algorithm (2.2) converges to the unique
maximizer since the set of the probability measure is convex.

Another possible attempt to estimate θ and F is to apply the iteration algorithm considered in Shen
(2007, 2009). For any fixed θ∗, the author applied the same EM algorithm described in Section 2 to obtain
an estimator, denoted by ĝθ∗(t), for g(t). Then the estimator

F̂θ∗(t) =
L∑

l=1

H(tl, θ
∗)−1ĝθ∗(tl)∑L

k=1 H(tk, θ
∗)−1ĝθ∗(tk)

I (tl � t)

can be shown to be consistent for the true F when θ∗ is the true parameter value. Replacing S(t) with
S∗(t) = 1 − F̂θ∗(t), the author proposed to maximize the marginal likelihood of A

LM(θ) =
n∏

i=1

h(ai , θ)S∗(ai )∫ ∞
0 h(u, θ)S∗(u) du
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with respect to θ to obtain an updated estimate of θ . The algorithm then iterates until convergence. Note
that, in the absence of censoring, we have

F̂θ (t) =
∑L

l=1 H(tl, θ)−1 I (tl � t)∑L
k=1 H(tk, θ)−1

.

Thus, the estimator proposed by the author is equivalent to maximizing the marginal likelihood of the
truncation times with S(t) replaced with 1 − F̂θ (t), that is, maximizing

LM(θ) =
n∏

i=1

{
h(ai , θ) × n−1

L∑
l=1

H(tl, θ)−1 I (tl > ai )

}
.

On the other hand, the maximum likelihood estimator proposed in our paper is obtained by maximizing
the full likelihood with F(t) replaced with F̂θ (t), that is,

L(θ , F̂θ ) =
n∏

i=1

h(ai , θ)

H(yi , θ)
.

It is obvious that the estimator considered in Shen (2007, 2009) is not the maximum likelihood estimator,
hence it is not expected to be fully efficient.

For the remainder of this paper, we assume that the support of A0 + C contains that of T 0, so that F is
estimable on the entire support of [0, τ ]. This assumption is reasonable in many applications, for example,
the disease incidence in a population could have occurred in the distant past. If the maximum support
of A0 + C , say, τ1, is smaller than the maximum support of T 0, τ , then the proposed method estimates
the conditional distribution function of T 0 | T 0 � τ1, that is, F(t)/F(τ1). In contrast, if the lower limit of
the support for A0 + C , say, τ2, is > 0, then the proposed method estimates the conditional distribution
function of T 0 | T 0 � τ2, that is, {F(t) − F(τ2)}/{1 − F(τ2)}.

To establish the large-sample properties of the maximum likelihood estimator, we impose the following
conditions:

(A1) The true parameters (θ0, F0) belong to the space � × F , where � is a known compact
set in R

p, and F = {F : [0, τ ] → [0, 1], F is a non-decreasing function and 
(t) = − log{1 −
F(t)} satisfying
(0) = 0,
(τ) < ∞}. Assume that the true cumulative hazard function 
0(t) =
− log{1 − F0(t)} has a derivative λ0(t) that is differentiable and satisfies 0 < inf t∈[0,τ ] λ0(t) �
supt∈[0,τ ] λ0(t) < ∞.

(A2) The density function h(t, θ) of the truncation time is positive on [0, τ ] and is differentiable with
respect to θ . Moreover, both h(t, θ) and its partial derivative h(1)(t, θ) = ∂h(t, θ)/∂θ are bounded
on [0, τ ].

(A3) The censoring time for the residual life time is not degenerate at 0, that is, pr(C > 0) > 0. The
distribution function of C is absolutely continuous.

(A4) The information matrix −∂2 E{L(θ , F̂θ )}/∂θ ′∂θ evaluated at the true value θ0 is positive definite.

Denote by (θ0, F0) the true parameter values and by (θ̂n, F̂n) the maximum likelihood estimator that
maximizes L(θ , F). The large-sample properties of (θ̂n, F̂n) are summarized in Theorem 3.1, with proofs
given in the supplementary material available at Biostatistics online.

THEOREM 3.1 Under regularity conditions (A1)–(A4), the maximum likelihood estimators (θ̂n, F̂n) are
consistent for the product of the Euclidean topology and the topology of uniform convergence on [0, τ ],
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that is,

| θ̂n − θ0 | + sup
t∈[0,τ ]

| F̂n(t) − F0(t) |→ 0

almost surely as n → ∞. Moreover, n1/2(θ̂n − θ0, F̂n − F0) converges weakly to a tight mean zero Gaus-
sian process −φ′

0{U̇−1
0 (W)} as n → ∞, where definitions of φ′

0, U̇ , and W are given in the supplementary
material available at Biostatistics online.

The strong consistency is proved by using the classical Kullback–Leibler information approach
(Murphy, 1994; Parner, 1998). The asymptotic normality can be established by applying the general
Z-estimator convergence theorem (van der Vaart and Wellner, 1996, Theorem 3.3.1). Although the
variance–covariance matrix of (θ̂n, F̂n) can be obtained by the empirical plug-in version of the asymp-
totic variance given in Theorem 3.1, it is computationally complicated. As an alternative, we may use the
bootstrap resampling method to estimate the variance of the maximum likelihood estimators. By the weak
convergence stated in Theorem 3.1 and arguing as in van der Vaart and Wellner (1996, Chapter 3.6), the
bootstrap method is expected to produce valid estimates of the variance of (θ̂n, F̂n).

3.3 Test for stationarity of the incidence rate

In addition to the survival time distribution, the truncation time distribution may be of independent interest.
In particular, researchers may want to know whether there is a temporal change in the disease incidence.
If the incidence rate increases over time, the underlying truncation time random variable is likely to be
right skewed. In contrast, if the incidence of disease is constant over time, the underlying truncation time
is uniformly distributed.

To test the null hypothesis H0 : θ = θ0, we consider the semiparametric likelihood ratio test statistic

R = −2 log

{
L(θ0, F̂0)

L(θ̂n, F̂n)

}
,

where F̂0 maximizes the likelihood function L(θ0, F) under the null. It follows from Theorem 3.1 and
an extension of the general semiparametric likelihood ratio statistic theorem in Murphy and van der Vaart
(1997) that R has a χ2

p distribution as n → ∞, where p is the dimension of the vector parameter θ . This
result can be used not only in hypothesis testing but also to construct approximate confidence sets for θ .

Next, we propose formal statistical tests for checking the stationarity assumption of the uniform trunca-
tion time distribution. Testing the stationarity assumption on disease incidence is an important yet under-
studied problem. To the best of our knowledge, only a few publications, including Asgharian and others
(2006), Mandel and Betensky (2007), and Addona and Wolfson (2006), have focused on this problem. All
three papers provided graphical examinations and formal tests of the stationarity condition based on the
equality in the distribution of the observed truncation time A and that of the residual survival time T − A.
In what follows, we propose a formal test based on the semiparametric likelihood ratio test statistic.

Following the spirit of Neyman’s smooth tests of goodness of fit, we propose to embed the uniform
density function to a parametric family of density functions that differ smoothly from the uniform density
function. Neyman (1937) constructed a smooth alternative of order K to the null density function h0(t)
given by

h(t, θ) = c(θ) exp

{
K∑

k=1

θkek(t)

}
h0(t),
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where {ek(t), k = 1, . . . , K } is a set of orthonormal functions which satisfies∫ τ

0
ek(t)el(t)h0(t) dt = δkl for k, l = 0, 1, 2, . . . , K ,

with e0(t) = 1 for t ∈ [0, τ ], δkl = 1 if k = l and = 0 if k �= l, θ = (θ1, . . . , θK ), and c(θ) is a normalizing
constant. When h0 is the uniform density function, the orthonormal functions can be chosen to be the
Legendre polynomials. In this way, an order K alternative is a polynomial of order K , while the null
hypothesis is equivalent to a polynomial of degree 0. In other words, the smooth alternatives are given by

h(t, θ) = c(θ) exp

{
K∑

k=1

θk tk

}
, 0 � t � τ, (3.3)

with c(θ) = [
∫ τ

0 exp{∑K
k=1 θk tk} dt]−1. Thus, testing for the uniform distribution is equivalent to testing

θ = 0 against θ �= 0 in (3.3).
To test whether the underlying truncation distribution is uniform, we consider the semiparametric like-

lihood ratio test

R = −2 log

{
L(0, F̂ V

n )

L(θ̂n, F̂n)

}
,

where (θ̂n, F̂n) is the semiparametric maximum likelihood estimator that maximizes L(θ , F) under Model
(3.3), and F̂ V

n is Vardi’s non-parametric maximum likelihood estimator under the null. It was recommended
by Neyman (1937) and further investigated in Rayner and Rayner (2001) that a polynomial of degree 4 usu-
ally suffices to test for uniformity. In our experience, the smooth alternative with K = 3 yields good power
and is more numerically stable than tests with higher-order polynomials when applied to left-truncated and
right-censored data. In the remainder of this paper, we set K = 3 for the smooth alternative model (3.3).

4. SIMULATIONS AND DATA ANALYSIS

4.1 Monte Carlo simulations

To evaluate the finite-sample performance of the proposed methods, we conducted a series of Monte
Carlo simulations. The first set of simulations compared the performance of the proposed semipara-
metric maximum likelihood estimator to existing methods. We generated survival time T 0 from a trun-
cated Weibull random variable with shape and scale parameters of (0.7, 1). The underlying truncation
time A0 was independently generated from a truncated exponential distribution with survival function
exp(−t)/{1 − exp(−τ)}. To form a prevalent cohort, realizations of (A0, T 0) were generated repeatedly
until there were n = 200 subjects satisfying the sampling constraint A0 � T 0. The censoring time C for
the residual survival time T − A in the prevalent cohort was generated from a uniform distribution on the
interval [0, τc], where τc was chosen so that the overall censoring rate was approximately 0%, 25%, and
50%. We fit each generated data set by the proposed profile likelihood method, using the optim function
with the option “Nelder-Mead" in R.

Five different methods were applied to estimate the failure time distribution: (I) the truncation product-
limit estimator; (II) Vardi’s non-parametric maximum likelihood estimator under uniform truncation time
distribution (Vardi, 1989); (III) the estimator obtained by the iteration algorithm considered in Shen (2007,
2009) with the assumption of a Weibull truncation time distribution; (IV) the proposed estimator with the
assumption of a Weibull truncation time distribution; and (V) the proposed estimator with the assump-
tion that the truncation time has a smooth alternative density (3.3) with K = 3. Table 1 summarizes the
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Table 1. Simulation results for various estimators for the failure time distribution.

Product-limit NPMLE Shen’s method Weibull Smooth alternative

pr(� = 1) F(t) Bias SE Bias SE RE Bias SE RE Bias SE RE Bias SE RE

1 0.2 −1 14 5 13 1.10 −3 11 1.54 −2 12 1.48 −2 11 1.63
0.4 −1 11 11 10 1.42 −3 10 1.33 −1 10 1.38 −2 9 1.53
0.6 0 8 14 5 2.32 −2 7 1.24 −1 7 1.33 −1 7 1.45
0.8 0 4 11 2 5.10 −1 4 1.21 −1 4 1.27 −1 4 1.35

0.75 0.2 −1 14 4 13 1.10 −3 11 1.52 −2 12 1.46 −2 11 1.63
0.4 −1 12 11 10 1.42 −3 10 1.33 −1 10 1.36 −2 9 1.52
0.6 0 8 14 5 2.27 −2 7 1.23 −1 7 1.31 −1 7 1.43
0.8 0 4 11 2 5.25 −1 4 1.19 0 4 1.24 −1 4 1.32

0.5 0.2 −1 14 4 13 1.13 −3 11 1.53 −2 12 1.47 −2 11 1.57
0.4 −1 12 10 10 1.42 −3 10 1.34 −2 10 1.37 −2 10 1.46
0.6 0 8 13 6 2.21 −2 7 1.24 −1 7 1.31 −1 7 1.37
0.7 0 5 11 2 5.18 −1 4 1.18 0 4 1.21 0 4 1.25

Product-limit, the truncation product-limit estimator; NPMLE, Vardi’s non-parametric maximum likelihood estimator; Shen’s
method; Weibull, the proposed estimator with Weibull truncation time distribution; Smooth Alternative, the proposed estimator
with smooth alternative truncation time distribution; Bias, the empirical bias (×102); SE, the empirical standard deviation (×102);
RE, the empirical variance of the truncation product-limit estimator divided by that of an estimator.

Monte Carlo bias, standard deviation, and relative efficiency for each estimator at t = 0.12, 0.38, 0.88,

and 1.97 based on 1000 replications. The true cumulative distribution functions at the selected time points
are 0.2, 0.4, 0.6, and 0.8, respectively. As expected, Vardi’s estimator is biased, because the underlying
truncation time is not uniformly distributed. Methods III, IV, and V outperform the truncation product-
limit estimator by Method II in terms of Monte Carlo standard deviation. The proposed method with the
assumption of a smooth alternative density (Method V) works very well and is most efficient when estimat-
ing the failure time distribution. Methods III and IV, which employ the Weibull density, also yield small
biases. Interestingly, compared with Method IV, the estimator of the failure time distribution obtained
using Method III can be slightly more efficient at early time points, but is equally efficient at later time
points. For the parameters in the truncation distribution, Methods IV and V show clear superiority than
Method III. Specifically, the biases in the estimated shape and scale parameters of the Weibull density by
Method V are (0.011, 0.008), (0.010, 0.011), and (0.005, 0.032) with standard deviations (0.071, 0.136),
(0.071, 0.142), and (0.072, 0.158), respectively, when the proportion of uncensored subjects is 100%,
75%, and 50%. When using Method III, the corresponding biases under three scenarios are respec-
tively (−0.027, 0.035), (−0.027, 0.043), and (−0.034, 0.084) with standard deviations (0.090, 0.156),
(0.091, 0.198), and (0.093, 0.238), which are larger than those by the proposed method (Method V).

The second set of simulations evaluated the power of the proposed semiparametric likelihood ratio test
under various scenarios. We simulated survival time T 0 from a truncated exponential distribution with den-
sity function exp(−t)/{1 − exp(−10)} for t ∈ (0, 10] and T 0/10 from a beta distribution with parameters
0.5 and 5. The underlying truncation times were generated so that A0/10 followed the uniform distribution
on [0, 1] and a beta distribution with shape parameters 0.75 and 1. The censoring times were generated
from uniform distributions so that the proportions of uncensored subjects were 100%, 75%, 50%. For
each set of simulations, we considered different sample sizes n = 100, 200. The significance level of the
semiparametric likelihood ratio test was set at 0.05. Table S.1 in the supplementary material available at
Biostatistics online summarizes the estimated size and power of the proposed semiparametric likelihood
ratio test for testing H0 : θ1 = θ2 = θ3 = 0 in the smooth alternative density (3.3).
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For comparison, we also applied the paired logrank test proposed by Mandel and Betensky (2007) that
compares the truncation time distribution and the residual survival time distribution, and reported the size
and power of the test in Table S.1 in the supplementary material available at Biostatistics online. When
the underlying truncation time is uniformly distributed, the estimated sizes of both tests are close to the
predetermined significance level (0.05). As expected, when the truncation time distribution is not uniform,
the power to reject the null hypothesis increases with the sample size but decreases with the proportion of
censored subjects. The proposed test is more powerful than the paired logrank test when the proportion of
censored subjects is low, and is as efficient as its competitor when the censoring proportion is high.

4.2 Analysis of Canadian study of health and aging

In this section, we report the results of data analysis for a cohort of prevalent cases in one of the largest
epidemiologic studies of dementia, the Canadian Study of Health and Aging. From February 1991 to May
1992, an extensive survey was carried out and a total of 1132 persons aged 65 and older with dementia
were identified in this first phase of the study. For each study subject, a diagnosis of possible Alzheimer’s
disease, probable Alzheimer’s disease, or vascular dementia was assigned, and the date of dementia onset
was determined by interviewing care-givers. Information on mortality was collected between January 1996
and May 1997.

We considered a subset of the study data by excluding those with missing date of onset or classification
of dementia subtype. Moreover, as in Wolfson and others (2001), those with observed survival time of 20
or more years were excluded because these subjects are considered unlikely to have Alzheimer’s disease
or vascular dementia. As a result, a total of 807 dementia patients were included in our analysis. Among
them, 388 had a diagnosis of probable Alzheimer’s disease, 249 had possible Alzheimer’s disease, and
170 had vascular dementia. In the second phase of the study a total of 627 deaths were recorded, among
which 302 subjects has a diagnosis of probable Alzheimer’s, 189 possible Alzheimer’s, and 136 vascular
dementia.

We first applied the proposed semiparametric likelihood ratio test to check the stationarity assumption
that the incidence of dementia is constant over time within each subgroup. The p-values were 0.14, 0.17,
and 0.28 for possible Alzheimer’s, probable Alzheimer’s and vascular dementia, respectively. Figure 1
shows the estimated cumulative distribution functions using the truncation product-limit estimator, Vardi’s
non-parametric maximum likelihood estimator, and the proposed estimator with the assumption that the
truncation time has a smooth alternative density (3.3) with K = 3. In general, the three estimated survival
curves are reasonably close to each other. Interestingly, the distribution function obtained by the proposed
method is closer to the product-limit estimator than Vardi’s non-parametric maximum likelihood estima-
tor. In fact, as shown in Figure 5 of Asgharian and others (2002) and Figure 4 of Asgharian and others
(2006), the truncation times appear to have a cyclic effect according to year. Figure 1 also shows the rela-
tive efficiency of the other two estimators compared with the truncation product-limit estimator at selected
time points using these three estimators. To estimate the standard errors of the estimated survival proba-
bilities, we adopted a non-parametric bootstrap method by sampling 807 subjects with replacement from
the data set. The resampling procedure was repeated 2000 times, and the standard error was estimated
by the standard deviation of the 2000 survival probability estimates at each time point. As expected, the
proposed estimator is more efficient than the truncation product-limit estimator, but is less efficient than
the non-parametric maximum likelihood estimator under uniform truncation time distribution.

4.3 Analysis of nursing home data

We next illustrate our methods by analyzing the well-known Channing House data (Hyde, 1977), which
recorded age at entry and age at death for 462 residents of Channing House, a retirement center in Palo
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Fig. 1. Upper panel: Estimated distribution functions using the truncation product-limit estimator (solid line), Vardi’s
non-parametric maximum likelihood estimator (dotted line), and the proposed estimator (dashed line) for different
diagnosis subtypes. Lower panel: relative efficiency compared with the truncation product-limit estimator for Vardi’s
non-parametric maximum likelihood estimator (dotted line) and the proposed estimator (dashed line).

Alto, California, from its opening in 1964 to the data collection date July 1, 1975. The survival time is
left-truncated by the age at entry and right-censored by end of study or loss to follow-up. As in Wang
(1991), we considered a subset of 438 residents (94 male and 344 female) who survived longer than 866
months. The proposed semiparametric likelihood ratio test rejected the assumption that the entry age was
uniformly distributed for both male and female residents (both with a p-value < 0.001). The upper pan-
els of Figure 2 show the estimated distribution functions of the survival time for males and for females
using the truncation product-limit estimator, Vardi’s non-parametric likelihood estimator and the proposed
semiparametric estimator with smooth alternative truncation distribution. Moreover, the lower panels of
Figure 2 show the estimated distribution functions of the truncation time for different gender groups using
the non-parametric estimator proposed in Wang (1991) and the smooth alternative density with K = 3.
Compared with males, the truncation time distribution for females further departs from the uniform dis-
tribution. The comparison of relative efficiency based on the bootstrap standard error estimates (data not
shown), however, suggested that the product-limit estimator is preferred in this case, as the smooth alter-
native is as or less efficient than the truncation product-limit estimator.
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Fig. 2. Estimates of F(t) and H(t) for Channing House data using Wang’s non-parametric estimator (solid line), Vardi’s
non-parametric maximum likelihood estimator (dotted line), and the proposed estimator with the smooth alternative
(dashed line).

5. REMARK

The purpose of this paper is 2-fold: first, to generalize Vardi’s multiplicative censoring model with a unified
EM algorithm for model estimation, and second, to establish the connection between the likelihood for data
subject to the generalized multiplicative censoring (LMC ) and that for left-truncated and right-censored
data (L), so that the EM algorithm developed for LMC can be applied to obtain the maximum profile
likelihood estimator for L. Although the asymptotic properties of the maximum likelihood estimator for
LMC are not discussed in this paper, they can be established by applying a similar argument as that for the
maximum profile likelihood estimator for L.

Left-truncated data can be viewed as selection-biased samples with sampling weights being propor-
tional to the distribution functions of the truncation times. Many authors, including Vardi (1985) and
Gill and others (1988), considered non-parametric estimation for selection bias models with known, non-
negative weight functions, and Gilbert and others (1999) generalized Vardi’s model to allow for the weight-
ing functions to depend on an unknown parameter. However, these methods usually cannot be applied
directly to the problem considered in this paper because the left-truncated survival times are further sub-
ject to right censoring. It is of interest to generalize the methods for selection bias models to deal with
censoring. Future research is warranted.

6. SOFTWARE

Software in the form of R code, together with a sample input data set and complete documentation is
available on request from the corresponding author.
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SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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