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SUMMARY

We study the estimation of a Gaussian graphical model whose dependent structures are partially identi-
fied. In a Gaussian graphical model, an off-diagonal zero entry in the concentration matrix (the inverse
covariance matrix) implies the conditional independence of two corresponding variables, given all other
variables. A number of methods have been proposed to estimate a sparse large-scale Gaussian graphical
model or, equivalently, a sparse large-scale concentration matrix. In practice, the graph structure to be esti-
mated is often partially identified by other sources or a pre-screening. In this paper, we propose a simple
modification of existing methods to take into account this information in the estimation. We show that the
partially identified dependent structure reduces the error in estimating the dependent structure. We apply
the proposed method to estimating the gene regulatory network from lung cancer data, where protein–
protein interactions are partially identified from the human protein reference database. The application
shows that proposed method identified many important cancer genes as hub genes in the constructed lung
cancer network. In addition, we validated the prognostic importance of a newly identified cancer gene,
PTPN13, in four independent lung cancer datasets. The results indicate that the proposed method could
facilitate studying underlying lung cancer mechanisms and identifying reliable biomarkers for lung cancer
prognosis.

Keywords: Concentration matrix; Gaussian graphical models; Gene regulatory network; Lung cancer; Partially iden-
tified graph; Protein–protein interaction.

1. INTRODUCTION

In recent years, statistical approaches have been developed to construct gene regulatory networks (GRNs)
from mRNA expression data. A GRN describes the interactions among genes and how the genes work
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together to form modules of cell functions under specific contexts, such as disease status. It provides a
systematic understanding of the molecular mechanisms underlying the biological processes (Friedman,
2004). In GRNs, highly connected genes are called hub genes. Because the hub genes are in key posi-
tions, their activities may affect many genes in the network and hence play an important role in biological
processes. Recently, analysis of hub genes has shown to be a promising approach in identifying key dis-
ease driver genes (Akavia and others, 2010) and important biomarkers for predicting disease progression
(Taylor and others, 2009; Tang and others, 2013). Currently, most of the existing computational methods
use purely data-driven approaches to construct gene regulatory networks from gene expression data. These
approaches do not rely on any prior knowledge about the network and are widely suited to many applica-
tions. However, for gene regulatory networks, information about many known connections (edges) between
genes has been accumulated over decades of biological research, such as protein–protein interactions or
transcriptional factor-binding sites. Using these known edges, we can turn a network construction problem
into a statistical completion of a partially identified graph problem, which could lead to much better power
in identifying the unknown edges. In this paper, we propose a statistical completion of a partially identified
graph (SCPG) method, which is a modification of existing methods to incorporate the information about
known edges. We show that the information on known edges reduces the error in identifying the unknown
edges and improves the accuracy of the constructed networks.

Consider a p-dimensional random vector from a multivariate Gaussian distribution with mean 0
and covariance matrix �, or the concentration matrix � ≡ �−1 = (σ i j )1�i, j�p. In the Gaussian graphi-
cal model, the dependent structure among p variables X1, X2, . . . , X p can be expressed using a graph
G = (V, E), where a vertex set V = {i | i = 1, 2, . . . , p} represents p variables and an edge set E =
{(i, j) | σ i j �= 0} represents pairs of random variables that are dependent on each other, given all other
variables. In other words, that σ i j , the (i, j)th element of �, is equal to 0 implies that Xi and X j are
conditionally independent given all other variables Xk , k �= i, j .

Covariance selection, first introduced by Dempster (1972), is a class of problems that estimate depen-
dent structures among multivariate Gaussian variables by detecting non-zero elements of the concen-
tration matrix �. Recently, researchers revisited the problem and studied the estimation of large-scale
concentration matrices from a small number of observations. The �1-regularization on a concentra-
tion matrix or a partial correlation matrix is popularly used to obtain a sparse estimate of the depen-
dent structure. Yuan and Lin (2007) propose the �1-regularized maximum likelihood estimator (MLE)
of the concentration matrix and an algorithm to solve it using the determinant maximization problem
(MAXDET), which has computational complexity of order O(p6) and becomes slower as p increases.
Friedman and others (2007) propose a block coordinate descent procedure to solve the �1-regularized
MLE, namely the graphical lasso. Meinshausen and Bühlmann (2006) formulate the covariance selec-
tion problem as a set of lasso regression problems and solve each of the lasso regression problems inde-
pendently. Peng and others (2009) propose the sparse partial correlation estimation (SPACE) method,
which solves the set of lasso regression problems jointly under the symmetry of the concentration matrix
σ i j = σ j i . However, this symmetry is not guaranteed by Meinshausen and Bühlmann (2006). Recently,
Cai and others (2011) propose the constrained �1-minimization for inverse matrix estimation (CLIME)
that directly minimizes the �1-norm of the concentration matrix with a relaxed constraint for the condition
�� = I .

In this paper, we consider a simple modification of existing methods that incorporates “partially iden-
tified” dependent structures. The dependent structure to be estimated is often partially identified in prac-
tice. We also denote partially identified structures as “pre-identified” to emphasize that these structures
are previously known. For example, GRNs and protein–protein interaction (PPI) networks are available
in the public databases that were constructed for many previous laboratory experiments. In comparison,
the pre-screening procedures recently proposed by many authors identify pairs of variables that are condi-
tionally independent (Bair and others, 2006; Wasserman and Roeder, 2009). The existing methods do not
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take into account these partially identified structures. They frequently estimate a known dependence as
independence, or vice versa, due to a lack of data information from small samples.

The modification is done by simply redefining the existing �1-regularization. To be specific, σ i j and
σ j i are not penalized in the objective function or its constraints if Xi and X j are pre-identified as condi-
tionally dependent. The modification can be applied to the �1-regularized MLE, the �1-minimization and
the regression-based methods. However, in this paper, we restrict our discussion to the modification of the
regression-based method, i.e., the SPACE method.

The paper is organized as follows. In Section 2, we briefly introduce the SPACE method and propose
the SCPG method as a modification to incorporate pre-identified dependent structures. In Section 3, we
analytically show that the SCPG method reduces the asymptotic probability of mistakenly identifying an
independent pair of variables as dependent. In Section 4, we numerically investigate the gains in accuracy
by estimating the network from assuming the pre-identified graph structure. In Section 5, we apply the
SCPG method to estimating the gene regulatory network from lung cancer data. We conclude the paper in
Section 6.

2. MODIFICATION FOR PARTIALLY IDENTIFIED GRAPH

Suppose X random vector with mean 0 and positive definite covariance matrix �. The partial correlation
between Xi and X j , denoted by ρi j , is the conditional correlation of Xi and X j given X−[i, j] = {Xk | k �=
i, j, 1 � k � p}. This partial correlation is closely related to the concentration matrix � = (σ i j )1�i, j�p.
It is known that ρi j = −σ i j/

√
σ i iσ j j . Also, for every i = 1, 2, . . . , p,

Xi =
∑
j �=i

βi j X j + εi , (2.1)

where βi j = −σ i j/σ i i = ρi j
√

σ j j/σ i i , and εi is uncorrelated with X−[i] = {X j | j �= i, 1 � j � p} and has
mean 0 and variance 1/σ i i .

The identity (2.1) introduces a regression-based method to estimate � or �. Let
Xk = (Xk

1, Xk
2, . . . , Xk

p)
T be the kth observation of the random vector X for k = 1, 2, . . . , n.

Meinshausen and Bühlmann (2006) propose the neighborhood selection method to solve a set of
lasso regression problems with respect to βi j s;that is, for i = 1, 2, . . . , p,

min
βi j , j �=i

1

2

n∑
k=1

⎛
⎝Xk

i −
∑
j �=i

βi j Xk
j

⎞
⎠

2

+ λ
∑
j �=i

|βi j |. (2.2)

Later, Peng and others (2009) propose the SPACE method, which minimizes the weighted sum of p squared
loss functions in (2.2) with a penalty term on the �1-norm of the partial correlation ρi j s:

min
ρi j ,1�i< j�p

1

2

p∑
i=1

⎧⎪⎨
⎪⎩wi

n∑
k=1

⎛
⎝Xk

i −
∑
j �=i

ρi j
√

σ j j/σ i i Xk
j

⎞
⎠

2
⎫⎪⎬
⎪⎭ + λ

∑
1�i< j�p

|ρi j |,

subject to ρi j = ρ j i , 1 � i < j � p,

(2.3)

where σ i i is the i th diagonal element of the concentration matrix and wi is a nonnegative weight for the
i th squared loss function.

The SPACE method has several advantages over the neighborhood selection method by
Meinshausen and Bühlmann (2006) in estimating the concentration matrix and the graph structure. First,



Statistical completion of a partially identified graph 673

the SPACE method estimates the partial correlations and the diagonal elements of the concentration
matrix. Thus, the estimation of the concentration matrix can easily be calculated by the relationship
σ i j = −ρi j

√
σ i iσ j j in the SPACE method, while the neighborhood selection method only obtains infor-

mation about whether or not each off-diagonal element of the concentration matrix is zero. Second, the
estimated edges from the SPACE method are symmetrical in the sense that ρ̂i j = ρ̂ j i ; thus, if ρ̂i j = 0 (or
ρ̂i j �= 0), then ρ̂ j i = 0 (or ρ̂ j i �= 0). Conversely, the neighborhood selection method separately solves p
problems in (2.2) and may obtain the contradictory edges (i.e., β̂i j �= 0 and β̂ j i = 0). Finally, the SPACE
method outperforms the neighborhood selection method in estimating graph structure and finding hubs in
practice. This comparison study is reported in Peng and others (2009).

We now introduce the SCPG method as a modification of the SPACE method to take into account the
pre-identified graph structure. The same modification can be applied to the �1-regularized MLEs and the
�1-minimization, but those examples are omitted here. We consider the concentration matrix � and its
induced graph G = (V, E). Let K be a set of pre-identified edges in E . In this paper, we propose to solve

min
ρi j ,1�i< j�p

1

2

p∑
i=1

⎧⎪⎨
⎪⎩wi

n∑
k=1

⎛
⎝Xk

i −
∑
j �=i

ρi j

√
σ j j

σ i i
X j

k

⎞
⎠

2
⎫⎪⎬
⎪⎭ + λ

∑
1�i< j�p,(i, j)/∈K

|ρi j |,

subject to ρi j = ρ j i , 1 � i < j � p.

(2.4)

The modification in (2.4) only removes the penalties on the partial correlations corresponding to the
pre-identified edges from (2.3). Thus, we can directly apply the active shooting algorithm, proposed by
Peng and others (2009), to solve the modified problem. To be specific, we first rewrite the main problem
(2.4) using matrix notation. The problem (2.4) without symmetry constraints becomes

min
ρi j ,1�i< j�p

1

2

n∑
k=1

p∑
i=1

⎛
⎝vi i Xk

i −
∑
j<i

ρ j ivi j Xk
j −

∑
j>i

ρi jvi j Xk
j

⎞
⎠

2

+ λ
∑

1�i< j�p,(i, j)/∈K
|ρi j |,

where vi j =
√

wiσ j j/σ i i for 1 � i, j � p.
Let G0 denote a set of pairs such that ρi j = 0 (i.e., (i, j) ∈ G0 ⇔ (i, j) /∈ E) and G1 denote a set of edges

such that (i, j) ∈ E and (i, j) /∈K (i.e., G1 ≡ E \ K). Let α = (α1, . . . , α|G1|)
T be a |G1|-dimensional vector

of ρi j s for (i, j) ∈ G1; let γ = (γ1, . . . , γ|G0|)
T be a |G0|-dimensional vector of ρi j s for (i, j) ∈ G0; and let

η = (η1, . . . , η|K|)T be a |K|-dimensional vector of ρi j s for (i, j) ∈K. For k = 1, 2, . . . , n, let

Yk =

⎛
⎜⎝

Y k
1
...

Y k
p

⎞
⎟⎠ =

⎛
⎜⎝

v11 Xk
1

...

vpp Xk
p

⎞
⎟⎠ and Y =

⎛
⎜⎝

Y1

...

Yn

⎞
⎟⎠ .

We define a covariate matrix Ak of α, for Yk , as a matrix with a size of p × |G1| and, if αl = ρi j , its lth
column vector ak,l = (ak,l

1 , . . . , ak,l
p )T is defined as

ak,l
m =

⎧⎪⎪⎨
⎪⎪⎩

vi j Xk
j if m = i

v j i Xk
i if m = j

0 otherwise

, (2.5)

where vi j =
√

wiσ j j/σ i i for 1 � i, j � p.
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The covariate matrices Bk and Ck with sizes of p × |G0| and p × |K|, respectively, are defined similarly
for coefficient vectors γ and η. The whole group of covariate matrices A, B, and C are then defined as

A =

⎛
⎜⎝

A1

...

An

⎞
⎟⎠ , B =

⎛
⎜⎝

B1

...

Bn

⎞
⎟⎠ and C =

⎛
⎜⎝

C1

...

Cn

⎞
⎟⎠ .

The first part of the objective function in (2.3) is read as the least square error of the linear model

Y = Aα + Bγ + Cη + E ≡ X̃ρ + E, (2.6)

where ρ = (ρ12, ρ13, . . . , ρ(p−1)p)T is a (p(p − 1)/2)-dimensional vector, X̃ = (X̃
1,2

, X̃
1,3

, . . . , X̃
(p−1),p

)

is a design matrix with a size of np × (p(p − 1)/2), E is from the (np)-dimensional multivariate normal
distribution with mean 0 and covariance matrix (In ⊗ Dp), where Dp = diag(1/σ 11, . . . , 1/σ pp) and an
operator ⊗ denotes the Kronecker product. Thus, we can represent the problem (2.4) as

min
ρi j ,1�i< j�p

1

2
‖Y − X̃ρ‖2

2 + λ
∑

1�i< j�p,(i, j)/∈K
|ρi j |.

Note that we set weights wi s to one in this paper since we do not assume any strengths for nodes. We can
only assume that we have partial information about true edges. If there is information about strength or
importance for specific nodes, that information can be incorporated by changing the weights.

Now we briefly describe the proposed algorithm, which depends largely on the algorithm in
Peng and others (2009). We first set initial values σ̂ i i = 1 for i = 1, 2, . . . , p. The proposed algorithm
alternately updates the estimates ρ̂i j s and σ̂ i i s by the following steps:

• Step 1: For a given σ̂ i i for i = 1, 2, . . . , p,

ρ̂ = argminρ

1

2
‖Y − X̃ρ‖2

2 + λ
∑

1�i< j�p,(i, j)/∈K
|ρi j |,

where X̃ is defined by (2.5) and (2.6) with σ i i = σ̂ i i for i = 1, 2, . . . , p.

• Step 2: Based on the identity (2.1), for a given ρ̂ and σ̂ i i,(old) for i = 1, 2, . . . , p,

σ̂ i i = n ·

⎛
⎜⎝ n∑

k=1

⎛
⎝Xk

i −
∑
j �=i

ρ̂i j

√
σ̂ j j,(old)

σ̂ i i,(old)
X j

k

⎞
⎠

2
⎞
⎟⎠

−1

,

where σ̂ i i,(old) is the estimate of σ i i from the previous iteration.

• Step 3: Repeat Steps 1 and 2 until the convergence occurs.

In Step 1, we apply the modified active shooting algorithm to incorporate the pre-identified edges K.
Details on the active shooting algorithm we propose are given in Appendix A of Supplementary material
available at Biostatistics online.
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3. ASYMPTOTIC ERROR PROBABILITIES

In this section, we analytically find the changes in asymptotic error probability by using the information
on pre-identified edges. As shown in Section 2, our main problem can be rewritten as the estimation of the
sparse linear model (lasso regression), and we are able to compute the asymptotic true negative/positive
probabilities of the model both with and without the information on dependent pairs of variables. The
computation shows that the pre-identified dependent information asymptotically increases the true nega-
tive probability (the probability of identifying independent pairs as independent) while the true positive
probability (the probability of identifying dependent pairs as dependent) of both methods converge to 1.
Thus, the SCPG method reduces the error probability asymptotically. Our analysis of this section relies
heavily on the results of Knight and Fu (2000) and Anderson (1955), which are reviewed in Appendix B
of Supplementary material available at Biostatistics online.

For the asymptotic true negative probability, we consider the simplified model

Y = X̃ρ + E ≡ Bγ + Cη + E, (3.1)

where γ = 0 and η �= 0. Under this model, we compare the true negative probabilities of the SCPG and
SPACE methods.

THEOREM 3.1 Suppose we have knowledge about η �= 0. Let ρ̂ = (γ̂ T , η̂T )T and ρ̂K = (γ̂ T
K, η̂T

K)T be the
solutions of the SPACE and SCPG methods, respectively. Then, the asymptotic true negative probabilities
P(γ̂ = 0) and P(γ̂K = 0) satisfy the inequality

P(γ̂ = 0) � P(γ̂K = 0).

Proof. See Appendix C.1 of Supplementary material available at Biostatistics online. �

We next compare the asymptotic true positive probabilities of the SCPG and SPACE methods. Here,
we consider the simplified model

Y = Xρ + E ≡ Aα + Cη + E,

where both α �= 0 and η �= 0. Suppose we have knowledge on η �= 0. Let ρ̂ = (α̂T , η̂T )T and ρ̂K = (α̂T
K, η̂T

K)T

be the solutions of the SPACE and SCPG methods, respectively. This section shows the following theorem:

THEOREM 3.2 The asymptotic true positive probabilities of both the SPACE and SCPG models (which
are P(α̂ �= 0) and P(α̂K �= 0), respectively) converge to one as n → ∞.

Proof. See Appendix C.2 of Supplementary material available at Biostatistics online. �

In comparing the asymptotic error probabilities between the SPACE and SCPG models, we show that the
SCPG model asymptotically improves the true negative probability with the same performance as the true
positive probability. Note that there is a difference between the asymptotic biases for α̂ and α̂K. However,
a direct comparison of these asymptotic biases is difficult since the difference varies with the signs and
structures of partial correlations in the model.

4. NUMERICAL STUDY

In the previous section, we showed that the SCPG method improves the asymptotic true negative probabil-
ity and has the same performance for the asymptotic true positive probability in estimating graph structure
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(a)

(c) (d)

(b)

Fig. 1. Graphs of four networks used in simulation. Black nodes (•) denote nodes whose degrees are >9. (a) (N1)
AR(1), (b) (N2) AR(2), (c) (N3) hub network, and (d) (N4) scale-free.

for a given λ0. This is mainly due to the bias reduction by using the prior information about partially
identified edges. In practice, however, we generally encounter datasets with finite samples and choose a
tuning parameter that minimizes an information criterion, such as the Bayesian information criterion (BIC)
(Schwarz, 1978). Thus, we additionally investigate the performance of the SCPG method with finite sam-
ples for several graph structures and also compare the SCPG method with the SPACE method to confirm
the improvements of the SCPG method in estimating a graph structure.

We first consider the Gaussian graphical model accompanied by the following AR(1), AR(2), hub and
scale-free networks in simulation. The AR(1) and the AR(2) networks are from the time series model and
the hub and scale-free networks reflect real biological networks. These four networks are illustrated in
Figure 1. The details of the four networks, including how they are generated, are given in Appendix D of
Supplementary material available at Biostatistics online.

We consider moderate-sized networks with 500 nodes and sample sizes of 100, 250, and 500. To apply
the SCPG method, we define two pre-identified edge sets K0.1 and K0.3 by randomly selecting 10 and
30% of the true edges, respectively. These two pre-identified edge sets are also used to find the effects
of the amount of information on estimating a graph structure. In each network, we generate 50 datasets
from a Gaussian distribution with mean 0 and covariance matrix � defined with the (i, j)th element σi j =
(�−1)i j/

√
(�−1)i i (�−1) j j . Note that, for the hub and scale-free networks, we make the network have five

exclusive sub-networks, each of which has 100 nodes; the nodes in one sub-network are not connected to
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those in other sub-networks. This procedure is applied in Peng and others (2009) to describe the module-
based networks frequently observed in real networks.

Let ρ = (ρi j )1�i< j�p and ρ̂λ = (ρ̂
i j
λ )1�i< j�p be a (p(p − 1)/2)-dimensional vector of the true partial

correlations and the estimates of partial correlations at λ, respectively. To investigate the theoretical prop-
erties of the SCPG method with finite samples, we introduce the true positive rate (TPR) and the true
negative rate (TNR) defined as follows:

TPR(ρ̂λ, ρ) ≡ TP(ρ̂λ, ρ)

P(ρ)
and TNR(ρ̂λ, ρ) ≡ TN((ρ̂λ, ρ)

N(ρ)
,

where TP(ρ̂λ, ρ) = ∑
i< j I (ρi j �= 0)I (ρ̂

i j
λ �= 0), P(ρ) = ∑

i< j I (ρi j �= 0), TN(ρ̂λ, ρ) = ∑
i< j I (ρi j =

0)I (ρ̂
i j
λ = 0), N(ρ) = ∑

i< j I (ρi j = 0), and I (·) denotes an indicator function. We additionally define the
false discovery rate (FDR) as

FDR(ρ̂λ, ρ) ≡ FP(ρ̂λ, ρ)

P(ρ̂)
= FP(ρ̂λ, ρ)

TP(ρ̂λ, ρ) + FP(ρ̂λ, ρ)
,

where FP(ρ̂λ, ρ) = ∑
i< j I (ρi j = 0)I (ρ̂

i j
λ �= 0) and P(ρ̂) = ∑

i< j I (ρ̂
i j
λ �= 0). Note that the FDR is not

defined if
∑

i< j I (ρ̂
i j
λ �= 0) = 0. In this case, we consider the FDR value to be 0 to summarize results

with all datasets.
Figure 2 plots the average of TPRs, TNRs, and FDRs for various λs in the aforementioned four networks

and shows several interesting features containing the result that are related to the theoretical properties in
the previous section. Compared with SPACE, the SCPG method improves TPRs in all networks considered
except the AR(1) network for a given λ.

In view of TNRs, however, the SCPG method improves on the SPACE method for any given λs in
all networks we consider and also increases TNRs as the amount of pre-identified information increases.
This result shows that the theoretical result for the true negative probability described in the previous
section still holds with finite samples. Moreover, the SCPG method decreases FDRs for any given λs in
all networks compared with the SPACE method. Interestingly, the SCPG method decreases FDRs while
the TPRs decrease as the amount of pre-identified information increases in the AR(1) network.

The tuning parameter λ in both the SCPG and SPACE methods plays an important role in estimating
the network, where a large (or a small) value of λ results in a sparse (or a dense) estimate of the network
with low false positives (or low false negatives). Several information criteria, such as the Akaike informa-
tion criterion and Bayesian information criterion (BIC), are heuristically used for the network model of
these papers (Danaher and others, 2014; Yuan and Lin, 2007; Peng and others, 2009). They are originally
designed for the linear regression model and some of them are theoretically shown to select the correct
model (Wang and others, 2009; Fan and Tang, 2013). However, these are limited to the linear regression
model, and there is no optimal rule for choosing λ in the network model. In this paper, we adopt the gen-
eralized information criterion (GIC) proposed by Fan and Tang (2013), which is shown to outperform the
BIC in identifying the correct model in the linear regression. The “GIC-type” criterion used in this paper
is defined like the “BIC type” criterion in Peng and others (2009) as

GIC(λ) =
p∑

k=1

n log

⎛
⎜⎝ n∑

i=1

⎛
⎝Xi

k −
∑
j �=k

ρ
jk
λ

√
σ

j j
λ

σ kk
λ

Xi
j

⎞
⎠

2
⎞
⎟⎠ + log(log n) log(p − 1)

p∑
k=1

df k(ρ̂),

where df k(ρ̂) = |{ j | ρ̂ jk
λ �= 0, j �= k}| and |A| is a cardinality of a set A. For each dataset, we evaluate the

GIC(λ) on a grid of (20, λmax) and choose a tuning parameter λ∗ such that λ∗ = argminλ∈(20,λmax)GIC(λ),
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Fig. 2. The averages of TPR, TNR, and FDR for (N1)–(N4) networks in Figure 1 with p = 500 and n = 100. “None”,
“C-10%”, and “C-30%” denote the SPACE method (solid), the SCPG method with 10% (dashed) and 30% (dot-
ted) partially identified edges, respectively. (a) (N1) TPR(ρ̂λ, ρ), (b) (N1) TNR(ρ̂λ, ρ), (c) (N1) FDR(ρ̂λ, ρ), (d)
(N2) TPR(ρ̂λ, ρ), (e) (N2) TNR(ρ̂λ, ρ), (f) (N2) FDR(ρ̂λ, ρ), (g) (N3) TPR(ρ̂λ, ρ), (h) (N3) TNR(ρ̂λ, ρ), (i) (N3)
FDR(ρ̂λ, ρ), (j) (N4) TPR(ρ̂λ, ρ), (k) (N4) TNR(ρ̂λ, ρ), and (l) (N4) FDR(ρ̂λ, ρ).
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where λmax = infλ{λ | ρ̂i j
λ = 0 for 1 � i < j � p}. In addition, the selected models of the SPACE and SCPG

methods by the GIC are evaluated by the TPR, TNR, FDR, the mis-specification rate (MISR), and the
Matthews correlation coefficient (MCC). The first three measures have been defined already. Here, we
introduce the MISR and MCC, defined as

MISR(ρ̂, ρ) = FN + FP

p(p − 1)/2
and MCC(ρ̂, ρ) = TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where TP = ∑
i< j I (ρi j �= 0)I (ρ̂

i j
λ �= 0), FP = ∑

i< j I (ρi j = 0)I (ρ̂
i j
λ �= 0), TN = ∑

i< j I (ρi j =
0)I (ρ̂

i j
λ = 0), and FN = ∑

i< j I (ρi j �= 0)I (ρ̂
i j
λ = 0). Here, the MISR corresponds to the total error

rate of a classifier and the MCC, with a value between −1 and 1, measures the accuracy of a classifier,
where +1, 0, and −1, respectively, denote a perfect classification, a random classification, and a total
discordance of classification.

Tables 1 and 2 report the average of these five measures over 50 datasets, which reveals some interesting
features of the proposed SCPG method. First, compared with the SPACE method, the TNRs and the MCCs
of the SCPG method increase as the amount of pre-identified information increases, for all the cases we
consider. Second, the SCPG method has smaller error rates than the SPACE method in terms of the FDRs
and the MISRs. Finally, the TPRs of the SCPG method are approximately equal to or higher than those
of the SPACE method (without pre-identified information) in all the cases we consider except the AR(1)
model. In summary, these features indicate that the SCPG method’s performance is superior to the SPACE
method in all aspects.

Before we end this section, we implement three additional numerical studies. First, we compare the
performances of the SCPG and naive methods in estimating the structure of the network. Here, the naive
method implies the direct addition of pre-identified edges to the estimated network by the SPACE. The
results show that the SCPG method outperforms the naive method in all cases considered. The details of
this comparison are detailed in Appendix H of Supplementary material available at Biostatistics online
and the results are summarized in Table H.1 of Supplementary material available at Biostatistics online. It
indicates that incorporating information of pre-identified edges help the estimation of network structure. In
the second study, we investigate how the SCPG method is sensitive to the misspecification rates (the ratio
of false positives in the pre-identified edges). Both details of the second study and results are reported in
Appendix I of of Supplementary material available at Biostatistics online. The results show that the SCPG
method still works better than the SPACE method in terms of error rates unless the misspecification rate
is low (not >15% in the study). However, we recommend readers choose the pre-identified edges in a
conservative way. Finally, to understand how the SCPG performs in a large-scale network, we repeat the
same numerical study as above for the hub and scale-free networks with 1000 nodes; these two networks are
the most common assumptions for a large-scale network. The results are similar to what we had in Table 2.
They are reported in Table J.1 in Appendix J of of Supplementary material available at Biostatistics online.

5. APPLICATIONS WITH LUNG CANCER ADENOCARCINOMA

Two recent studies have shown that the hub genes in lung cancer gene regulatory networks may be potential
robust biomarkers for lung cancer progression. To study whether our proposed method could discover
novel gene biomarkers for cancer progression, we applied the proposed method to construct a network
based on a microarray dataset from the Lung Cancer Consortium dataset (Shedden and others, 2008).
This dataset measures the gene levels in 442 lung cancer adenocarcinoma patients. We identified 794
genes whose expression levels are significantly associated with patients’ survival time, after adjusting for
clinical variables based on a univariate Cox regression (See Appendix E of of Supplementary material



680 D. YU AND OTHERS

Table 1. The averages of |Ê |, TPR, TNR, FDR, MISR, and MCC for AR(1) and AR(2) networks over 50
datasets

Network n Info. |Ê | TPR TNR FDR MISR MCC

AR(1) (|E | = 499) 100 None 627.64 99.97 99.9 20.45 0.1 89.12
(2.55) (0.01) (0) (0.32) (0) (0.18)

10% 613.7 99.92 99.91 18.7 0.09 90.08
(2.22) (0.02) (0) (0.29) (0) (0.16)

30% 584.38 99.82 99.93 14.68 0.07 92.24
(2.51) (0.03) (0) (0.36) (0) (0.19)

250 None 609.58 100 99.91 18.09 0.09 90.46
(2.24) (0) (0) (0.3) (0) (0.17)

10% 596.62 100 99.92 16.3 0.08 91.44
(2.4) (0) (0) (0.33) (0) (0.18)

30% 570.74 100 99.94 12.52 0.06 93.5
(1.87) (0) (0) (0.28) (0) (0.15)

500 None 600.84 100 99.92 16.9 0.08 91.12
(2.18) (0) (0) (0.3) (0) (0.17)

10% 584.68 100 99.93 14.61 0.07 92.37
(1.83) (0) (0) (0.26) (0) (0.14)

30% 566.2 100 99.95 11.83 0.05 93.87
(1.62) (0) (0) (0.25) (0) (0.13)

AR(2) (|E | = 997) 100 None 1431.8 75.21 99.45 47.59 0.74 62.4
(14.03) (0.63) (0.01) (0.14) (0) (0.24)

10% 1509.6 87.28 99.48 42.29 0.61 70.68
(10.81) (0.37) (0.01) (0.2) (0) (0.11)

30% 1403.8 94.87 99.63 32.56 0.41 79.8
(7.23) (0.19) (0) (0.25) (0) (0.12)

250 None 1873.38 100 99.29 46.75 0.7 72.71
(6.57) (0) (0.01) (0.19) (0.01) (0.13)

10% 1724.14 100 99.41 42.14 0.58 75.84
(6.22) (0) (0.01) (0.21) (0) (0.14)

30% 1455.84 100 99.63 31.49 0.37 82.61
(4) (0) (0) (0.19) (0) (0.11)

500 None 1801.44 100 99.35 44.61 0.64 74.17
(7.39) (0) (0.01) (0.23) (0.01) (0.15)

10% 1665.48 100 99.46 40.09 0.54 77.18
(6.52) (0) (0.01) (0.23) (0.01) (0.15)

30% 1418.54 100 99.66 29.69 0.34 83.7
(3.67) (0) (0) (0.18) (0) (0.11)

|Ê | denotes the number of estimated edges. All values except for |Ê | are multiplied by 100. The numbers in parentheses denote the
standard errors of measures.

available at Biostatistics online). In addition, we used a list of PPIs from the human protein reference
database (HPRD), which provided 39 240 pairs of PPIs for 9617 genes. Only 222 pairs of PPIs for 211
genes were matched to 794 genes in the lung cancer dataset. We used these 222 pairs as the pre-identified
information.
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Table 2. The averages of |Ê |, TPR, TNR, FDR, MISR, and MCC for hub and scale-free networks over 50
datasets

Network n Info. |Ê | TPR TNR FDR MISR MCC

Hub (|E | = 569) 100 None 318 48.94 99.97 12.15 0.26 65.38
(4.5) (0.5) (0) (0.49) (0) (0.26)

10% 343.1 53.79 99.97 10.56 0.24 69.2
(4.17) (0.44) (0) (0.44) (0) (0.21)

30% 363.4 60.18 99.98 5.61 0.2 75.24
(3.69) (0.42) (0) (0.35) (0) (0.18)

250 None 586.38 87.05 99.93 15.43 0.13 85.71
(3.34) (0.18) (0) (0.37) (0) (0.17)

10% 574.96 87.45 99.94 13.39 0.12 86.96
(2.74) (0.18) (0) (0.31) (0) (0.14)

30% 564.5 88.56 99.95 10.68 0.1 88.88
(2.54) (0.17) (0) (0.29) (0) (0.13)

500 None 654.32 97.01 99.92 15.57 0.1 90.44
(2.78) (0.09) (0) (0.33) (0) (0.17)

10% 644.34 96.99 99.93 14.31 0.09 91.12
(2.29) (0.08) (0) (0.28) (0) (0.14)

30% 619.42 96.92 99.95 10.92 0.07 92.88
(2.21) (0.08) (0) (0.29) (0) (0.15)

Scale-free (|E | = 495) 100 None 396.6 66.73 99.95 16.58 0.19 74.49
(3.02) (0.26) (0) (0.42) (0) (0.18)

10% 399.04 69.17 99.95 14.04 0.17 77
(3.11) (0.24) (0) (0.45) (0) (0.16)

30% 402.3 73.28 99.97 9.72 0.14 81.25
(2.74) (0.24) (0) (0.38) (0) (0.15)

250 None 526.1 89.28 99.93 15.87 0.11 86.59
(3.3) (0.18) (0) (0.42) (0) (0.2)

10% 518.12 89.57 99.94 14.31 0.1 87.54
(3.12) (0.17) (0) (0.41) (0) (0.19)

30% 500.22 90.47 99.96 10.37 0.08 89.99
(2.9) (0.18) (0) (0.39) (0) (0.17)

500 None 561.52 96.79 99.93 14.61 0.08 90.86
(2.26) (0.09) (0) (0.34) (0) (0.19)

10% 551.34 96.63 99.94 13.18 0.07 91.55
(2.2) (0.09) (0) (0.34) (0) (0.19)

30% 536.6 97.14 99.96 10.33 0.06 93.29
(2.09) (0.07) (0) (0.33) (0) (0.17)

|Ê | denotes the number of estimated edges. All values except for |Ê | are multiplied by 100. The numbers in parentheses denote the
standard errors of measures.

In this study, we compared performances in constructing the gene regulatory network using (i) the
SPACE method and (ii) the proposed SCPG method, with λ determined by the GIC. An overview of the
networks constructed using the SPACE method and the proposed method is shown in Figure 3. The SPACE
method estimated 297 edges for 135 genes of 794 genes (659 genes had no connection). The SCPG method
estimated 455 edges for 299 genes (495 genes had no connection). To identify hub genes in the estimated
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(a) (b)

Fig. 3. Estimated graph structures for the SPACE and SCPG methods. The nodes with numbers denote the detected
hub genes reported in Table 3. (a) SPACE and (b) SCPG with PPI networks.

graph, we applied a procedure similar to that described in Peng and others (2009). From the estimated
graph structures, we first selected genes whose degrees lie over 0.95 quantiles of degree distribution.
Then, we calculated the ranks of degrees of selected genes for various λ values. We selected potential
hub genes such that the averages of the ranks of degrees were �20, and the standard deviations were �2.
Following this procedure, we identified 17 hub genes from the SPACE method and 20 hub genes from the
proposed method by incorporating the PPI network information. The identified hub genes are summarized
in Table 3. There were 11 genes (highlighted in bold in Table 3) identified by both approaches, among
which there were several key lung cancer genes, NKX2-1, HOP, and SFTPB (Further information is given
in Appendix F of Supplementary material available at Biostatistics online). In comparing the two methods,
we noted that the SCPG method identified nine genes that were missed by the SPACE method, including
CTNNB1, CSNK2A1, ESR1, NEDD9, FYN, BRCA1, PTPN13, PIK3R1, and SLC34A2. Seven of these
nine genes (identified only by SCPG) had been reported to play important roles in lung cancer, while two
(UBE2C and TYMS) of six genes identified only by SPACE method are, based on our literature search,
associated with lung cancer. (Further details are given in Appendix G of Supplementary material available
at Biostatistics online.)

In addition, the SCPG method identified the PTPN13 gene, which had not been previously reported as
a lung cancer related gene. To further study this gene, we have downloaded the mRNA expression together
with the clinical annotation from four public lung cancer datasets, including (1) Tomida and others (2009)
(n = 117), (2) Bhattacharjee and others (2001) (n = 203), (3) Raponi and others (2006) (n = 129), and
(4) Jones and others (2004) (n = 80). These four datasets were selected because they were published in
high-profile journals, contained relatively large sample sizes (at least 80 samples), and were measured
from different microarray platforms. Interestingly, the under-expression of the PTPN13 gene is consis-
tently associated with the poor prognosis of lung cancer patients in the four independent datasets, which
were measured using different platforms (see Fig. G.1 of Supplementary material available at Biostatistics
online). The results show that the mRNA expression of the PTPN13 gene is a novel and robust prognostic
biomarker of potential clinical importance.
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Table 3. List of potential hub genes that identified by the SPACE and SCPG methods

SPACE SCPG

No. Gene symbol Degree CR No. Gene symbol Degree CR

1 PRC1 39 1 GPR116 18
2 RRM2 18 2 NKX2-1 18 •
3 CYP2B7P1 17 3 RRM2 18
4 GPR116 17 4 CTNNB1 17 •
5 SFTPB 17 • 5 CYP2B7P1 17
6 NKX2-1 16 • 6 CSNK2A1 16 •
7 TFF1 16 7 TFF1 15
8 HOP 15 • 8 C1orf116 14
9 C1orf116 14 9 HOP 14 •

10 FMO5 14 10 SFTPB 14 •
11 CD302 12 11 ESR1 13 •
12 HSD17B6 12 12 FMO5 12
13 HOXD1 9 13 CD302 11
14 TMPRSS2 9 14 NEDD9 11 •
15 TPX2 9 15 FYN 10 •
16 UBE2C 8 • 16 PTPN13 10
17 TYMS 7 • 17 BRCA1 9 •

18 HSD17B6 9
19 PIK3R1 9 •
20 SLC34A2 9

Bold font highlights the genes identified by both methods. “CR” denotes cancer-related genes identified by previous
studies.

6. CONCLUSION

Recently, reconstructions of GRNs based on genome-wide mRNA expression data have been widely used
to study biological mechanisms and identify novel biomarkers. Learning the gene network structures from
gene expression data is a challenge because of the extremely large number of possible network edges and
the small number of sample sizes in gene expression data to infer the true edges. However, for GRN, there
are many previously identified edges (i.e., gene regulations) from pathway information, protein–protein
interaction databases, and transcriptional factor binding databases. So instead of learning the structure of
GRN from scratch, we can incorporate the known edges to mitigate the daunting task of network recon-
struction. In this study, we proposed the SCPG method, a simple but effective modification of the SPACE
method, to incorporate partially identified edges in estimating graph structure with a Gaussian graphical
model. The SCPG method asymptotically increases the true negative probability and obtains the same
performance in terms of the true positive probability compared with the SPACE method. Moreover, we
numerically show that the SCPG method not only increases the true negative rate but also reduces the false
discovery rate. The SCPG method was applied here to estimate the gene regulatory network of lung cancer
data with pre-identified edges from the HPRD database, and it identified more cancer-related hub genes
than the SPACE method. More importantly, the SCPG method identified a novel prognostic biomarker, the
PTPN13 gene. We validated the prognostic performance of PTPN13 gene expression using four indepen-
dent lung cancer mRNA expression datasets across different experimental platforms. The results indicate
that the proposed SCPG method performs well in reconstructing a gene regulatory network and could be
used to identify novel biomarkers for predicting disease outcomes.
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In this study, we demonstrated that inferring gene network structures can be improved by incorporating
information about previously identified edges from other resources. However, we need to be cautious
because gene regulation could vary among different tissues or biological conditions, while most informa-
tion available about previously identified edges (gene–gene interactions) is not condition specific. As a
result, some edges reported in existing databases may not really be edges in the specific conditions under
study, which may lead to false-positive edges. A reasonable way to avoid this is to select only the reported
edges with high expression correlations for the corresponding gene pairs in the expression data to be used
for constructing the network (Ahn and others, 2011). This step helps to identify the gene-gene interactions
that are appropriate for the specific conditions under study. In addition, we used GIC to select the tuning
parameter, which produced satisfactory results in the real data application. However, it is possible that there
exist other examples where the GIC performs poorly. It is also possible that there are other methods for
selecting the tuning parameter that could be superior to the GIC. In summary, methodology for objectively
selecting tuning parameters is an interesting area for future research.
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