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SUMMARY

Motivated by data recording the effects of an exercise intervention on subjects’ physical activity over time,
we develop a model to assess the effects of a treatment when the data are functional with 3 levels (subjects,
weeks and days in our application) and possibly incomplete. We develop a model with 3-level mean struc-
ture effects, all stratified by treatment and subject random effects, including a general subject effect and
nested effects for the 3 levels. The mean and random structures are specified as smooth curves measured
at various time points. The association structure of the 3-level data is induced through the random curves,
which are summarized using a few important principal components. We use penalized splines to model
the mean curves and the principal component curves, and cast the proposed model into a mixed effects
model framework for model fitting, prediction and inference. We develop an algorithm to fit the model
iteratively with the Expectation/Conditional Maximization Either (ECME) version of the EM algorithm
and eigenvalue decompositions. Selection of the number of principal components and handling incomplete
data issues are incorporated into the algorithm. The performance of the Wald-type hypothesis test is also
discussed. The method is applied to the physical activity data and evaluated empirically by a simulation
study.
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1. INTRODUCTION

Motivated by data from an exercise intervention trial, we consider the problem of evaluating the effects
of the intervention in the presence of 3-level functional data, with possibly missing, or unbalanced, obser-
vations. The data are from Kozey-Keadle and others (2014) and consist of estimates of relative energy
expenditure (metabolic units, or METs) on 63 inactive individuals every 5 min. We consider data from
5 days a week (Monday through Friday) for 5 separate weeks (study weeks 0, 3, 6, 9 and 12). Figure 1
displays data from one subject as an example. The treatment assignment was made after the baseline week
and consisted of assignment to either a control arm or an exercise intervention where subjects completed
a standardized aerobic exercise program. The data come from electronic monitors worn by each subject,
and incomplete data occur; a subject’s record may be missing for some time points, days or weeks.

Our goal is to evaluate the effects of the intervention by comparing the change in relative energy expen-
diture in weeks 3, 6, 9 and 12 to that of the baseline across the treatment groups. Additionally, we are
interested in the patterns of physical activity for individuals at different time scales (within days, across
days of week and across weeks) and how these patterns vary across the treatment groups. As a result, our
goal is to model the responses influenced by 2 factors, days within weeks, while also addressing the fact
that these are nested within a third factor, subject.

The data are functional, and we approach this problem using a combination of linear mixed models,
penalized B-spline smoothing, and principal component-based dimension reduction. The paper’s primary
contribution is in its application. Combined with functional data analysis methods, emerging physical
activity monitor technology provides a surprising amount of insight into personal behaviors, and these
detailed data give a new way to test for the effects of a physical activity intervention. In addition, the
3-level model in our motivating example, presents computational challenges. Current studies have mainly
focused on 2-level models. For example, Di and others (2009), Zipunnikov and others (2011) and Serban
and Jiang (2012) discuss 2-level multilevel functional analysis approaches with subunit data nested within
each unit. Methodology for the analysis of 3-level functional data is limited, and developing a general
methodology for 3-level functional data is necessary.

Although the extension from a 2-level to a 3-level model may seem straightforward, our saturated 3-level
model involves much more complicated structures, ones that present non-trivial modeling and compu-
tational challenges. To be specific, the fixed effects in the 3-level model involve functional curves on
different weeks and days: importantly, we allow the possibility of interactions between them and stratify
by treatment. In addition, besides the random effects for the subject level, our model includes random
curves for the week, the day of the week and interactions between days and weeks. We thus propose a
general model with mean structures for week-specific, day-specific and week × day interaction effects
stratified by treatment, and random effects structures for subject-specific, week-specific, day-specific and
week × day interaction variation.

Since we employ a 3-level structure of random curves, dimensionality problems arise that can affect
computation and model explanation. The problem can be handled via the dimension reduction approach
discussed by Zhou and others (2008); see also Zhou and others (2010), which uses a few important prin-
cipal components to summarize random curves. A typical issue for using dimension reduction techniques
is to determine the number of principal components and estimate the principal component vectors. Zhou
and others (2008) use a model-based approach, which estimates the parameters with an EM algorithm.
For improved computational efficiency, we propose a new algorithm that includes features of a likelihood
approach and eigen-decomposition.
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Fig. 1. An example of the estimates of METs for a subject in the exercise group.

Current functional data frameworks focus on complete data (Zhou and others, 2010). Missing or
incomplete data are common in applications though, and estimation methods developed for complete data
scenarios may fail in that case. Assuming our model specification is correct, we only require that the data
be missing at random (Little and Rubin, 2002), and we develop a modified estimation algorithm to accom-
modate the incomplete data. In particular, for each person, complete data have identical dimensions of
design matrices in both fixed and random effects. All individuals also have the same covariance structures.
However, missing data may not have such features. Thus, our algorithm is updated to adjust the differences
in design matrices and variance structures between subjects.

Since our model involves a treatment and week-specific, day-specific and week × day interaction effects
for the fixed effects mean structure, techniques to test whether these fixed effect mean components are
necessary. We study the performance of the Wald test under our model settings. We show that care must
be taken when the parameter estimates are obtained from the penalized likelihood. The statistics from the
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penalized likelihood method lead to systematically anti-conservative p-values, but we use simulation to
demonstrate that a Wald statistic based on an unpenalized likelihood can have an acceptable test level.

The paper is organized as follows. Section 2 describes the model, and Section 3 describes our algorithm
for model fitting. Section 4 gives an updated algorithm for incomplete data, Section 5 discusses hypothesis
testing issues, and simulation studies are in Section 6. We analyze data from the physical activity inter-
vention trial in Section 7. Concluding remarks are given in Section 8. R programs are available from the
first author.

2. MODEL SETUP

2.1 The mixed effects model

In this section, we establish notation for our data, specify the functional data model’s fixed and random
effects, and describe the covariance structure that the model induces. Let Y (g)

i jk (t) be the outcome observa-
tion at time t for subject i (i = 1, . . . , n) in week j ( j = 1, . . . , J ) on day k (k = 1, . . . , K ) in treatment
group g (g = 1, . . . ,G). Our model is

Y (g)
i jk (t)=μ(g)·· (t)+ μ

(g)
j · (t)+ μ

(g)
·k (t)+ μ

(g)
jk (t)+ ξ i (t)+ ηi j (t)+ ζ ik(t)+ γ i jk(t)+ εi jk(t), (2.1)

where the superscript (g) denotes treatment group, μ(g)·· (t) are the population mean curves, μ(g)j · (t),
μ
(g)
·k (t) and μ(g)jk (t) are week-specific, day-specific and week × day interaction mean curves, ξ i (t), ηi j (t),

ζ ik(t) and γ i jk(t) are mutually independent subject-specific, week-within-subject, day-within-subject and
week × day interaction-within-subject random effects curves, and εi jk(t) denotes random noise with mean
zero and variance σ 2. Although there is a single curve for each subject-day-week combination, similarly
to random effects linear regression with random slopes, the smooth reduced rank modeling strategy allows
the model to include both this curve and a residual error. We do not vary the random effect distributions
by group, but we implement a model to investigate that possibility in our application in Section 7. For
ease of notation, we present the model for the case when each subject contributes data from J weeks and
K days. Necessary modifications to the model and algorithm to accommodate the situation when this is
not the case are in Section 4. Motivated by our application, we consider the case where each subject is
only in one treatment group. For identifiability, we constrain μ(g)1· (t)=μ

(g)
·1 (t)=μ

(g)
1k (t)=μ

(g)
j1 (t)= 0 for

all g, k, j, t .
Each subject is only in one group, and observations from different subjects are modeled to be indepen-

dent. Within subject, the covariance structure depends on whether observations are from the same week
and/or day. The 4 covariance structures are:

1. same subject, week and day:

cov{Y (g)
i jk (t),Y (g)

i jk (s)} = cov{ξ i (t), ξ i (s)} + cov{ηi j (t), ηi j (s)}
+ cov{ζ ik(t), ζ ik(s)} + cov{γ i jk(t), γ i jk(s)},

2. same subject, week, different day (k |= k ′):

cov{Y (g)
i jk (t),Y (g)

i jk ′(s)} = cov{ξ i (t), ξ i (s)} + cov{ηi j (t), ηi j (s)},
3. same subject, day, different week ( j |= j ′):

cov{Y (g)
i jk (t),Y (g)

i j ′k(s)} = cov{ξ i (t), ξ i (s)} + cov{ζ ik(t), ζ ik(s)}
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4. and, same subject only ( j |= j ′, k |= k ′):

cov{Y (g)
i jk (t),Y (g)

i j ′k ′(s)} = cov{ξ i (t), ξ i (s)}.

2.2 Principal component form of the random effects

We write the random effects in principal component form in this section. This allows us to consider the
possibility that subject-to-subject variability is a linear combination of a limited number of principal com-
ponent functions:

ξ i (t)=
Pξ∑
�=1

fξ,�(t)αξ,i,�; ηi j (t)=
Pη∑
�=1

fη,�(t)αη,i j,�;

ζ ik(t)=
Pζ∑
�=1

fζ,�(t)αζ,ik,�; γ i jk(t)=
Pγ∑
�=1

fγ,�(t)αγ,i jk,�.

The �th principal component functions for subject-specific, week-specific, day-specific and week × day
interaction random effects curves are fξ,�(t), fη,�(t), fζ,�(t), fγ,�(t), respectively, αξ,i,�, αη,i j,�, αζ,ik,�,
αγ,i jk,� are the corresponding components’ random loadings, and Pξ , Pη, Pζ , Pγ are the numbers of prin-
cipal components for the 4 random effect variables. The principal components functions are orthogonal
if �= �∗,∫

fξ,�(t) fξ,�∗(t) dt =
∫

fη,�(t) fη,�∗(t) dt =
∫

fζ,�(t) fζ,�∗(t) dt =
∫

fγ,�(t) fγ,�∗(t) dt = 1,

and the integrals are 0 otherwise. As is standard in an eigenvalue decomposition, we order indices so
that var(αξ,i,1) > · · ·> var(αξ,i,Pξ ), var(αη,i j,1) > · · ·> var(αη,i j,Pη ), var(αζ,ik,1) > · · ·> var(αζ,ik,Pζ ) and
var(αγ,i jk,1) > · · ·> var(αγ,i jk,Pγ ) which makes the model identifiable.

In order to model the correlation of each random effect using only the principal component functions,
we assume that the αξ,i,�, αη,i j,�, αζ,ik,� and αγ,i jk,� are mutually independent random effects variables, and
different instances of each from the 4 levels are assumed to be independent and identically distributed.
The model is specified with notation in the next subsection where we also describe how we represent the
functions.

2.3 Modeling with B-splines

We model the fixed effect and principal component functions using B-splines which we chose because our
application requires a smooth function and their compact support can prevent computational instability.
We define them as follows. Let b(t)= {b1(t), . . . , bq(t)}T be the q × 1 vector of B-splines basis functions

evaluated at t . Define β(g), (β(g)T1· , . . . , β
(g)T
J · )T, (β(g)T·1 , . . . , β

(g)T
·K )T and (β(g)T11 , . . . , β

(g)T
J K )T to be group-

specific fixed effects coefficients for population, week-specific, day-specific and week × day interaction
mean structures, respectively. For identifiability, we set β(g)1· = β

(g)
·1 = β

(g)
j1 = β

(g)
1k = 0 for all g, j, k. The

non-zero fixed effects coefficients are grouped together in β. We let gξ,�, gη,�, gζ,� and gγ,� denote q × 1
principal components vectors. Then we have

μ(g)·· (t)= bT(t)β(g); μ
(g)
j · (t)= bT(t)β(g)j · ; μ

(g)
·k (t)= bT(t)β(g)·k ; μ

(g)
jk (t)= bT(t)β(g)jk ;

fξ,�(t)= bT(t)gξ,�; fη,�(t)= bT(t)gη,�; fζ,�(t)= bT(t)gζ,�; fγ,�(t)= bT(t)gγ,�.
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To maintain the orthogonality restrictions in Section 2, b(t), gξ,�, gη,�, gζ,� and gγ,� are restricted to be
orthogonal. We use orthogonal B-spline basis functions from the R package “orthogonalsplinebasis”.

Model (2.1) then becomes

Y (g)
i jk (t)= bT(t)β(g) + bT(t)β(g)j · + bT(t)β(g)·k + bT(t)β(g)jk

+ bT(t)Gξαξ,i + bT(t)Gηαη,i j + bT(t)Gζαζ,ik + bT(t)Gγαγ,i jk + εi jk(t), (2.2)

where Gξ = (gξ,1, . . . , gξ,Pξ ), Gη = (gη,1, . . . , gη,Pη ), Gζ = (gζ,1, . . . , gζ,Pζ ) and Gγ = (gγ,1, . . . , gγ,Pγ )

are q × Pξ , q × Pη, q × Pζ and q × Pγ matrices, respectively, and αξ,i = (αξ,i,1, . . . , αξ,i,Pξ )
T, αη,i j =

(αη,i j,1, . . . , αη,i j,Pη )
T, αζ,ik = (αζ,ik,1, . . . , αζ,ik,Pζ )

T and αγ,i jk = (αγ,i jk,1, . . . , αγ,i jk,Pγ )
T are Pξ × 1,

Pη × 1, Pζ × 1 and Pγ × 1 vectors. The orthogonality restrictions mean that GT
ξGξ , GT

ηGη, GT
ζGζ and

GT
γGγ are identity matrices.
Next, we develop notation for the variance components of the component loadings. Let�ξ = cov(αξ,i ),

�η = cov(αη,i j ), �ζ = cov(αζ,ik) and �γ = cov(αγ,i jk). With the restrictions and independence assump-
tions described in Section 2, �ξ , �η, �ζ and �γ are Pξ × Pξ , Pη × Pη, Pζ × Pζ and Pγ × Pγ diagonal
matrices with decreasing positive diagonal elements.

To obtain the fixed and random effects curves, we need estimates of β, Gξ , Gη, Gζ and Gγ . Estimates
of σ 2,�ξ ,�η,�ζ and�γ are also needed in order to estimate the random effects covariance structure and
to make inferences.

2.4 Link to the linear mixed model

In this section, we demonstrate that our model is in fact related to the familiar linear mixed model. If
we build 4 sets of q-dimensional random variables,

uξ,i = Gξαξ,i ; uη,i j = Gηαη,i j ; uζ,ik = Gζαζ,ik; uγ,i jk = Gγαγ,i jk,

then model (2.2) can be rewritten as

Y (g)
i jk (t)= bT(t)β(g) + bT(t)β(g)j · + bT(t)β(g)·k + bT(t)β(g)jk

+ bT(t)uξ,i + bT(t)uη,i j + bT(t)uζ,ik + bT(t)uγ,i jk + εi jk(t). (2.3)

The variance components are cov(uξ,i )=ψξ = Gξ�ξGT
ξ , cov(uη,i j )=ψη = Gη�ηGT

η , cov(uζ,ik)=
ψζ = Gζ�ζGT

ζ and cov(uγ,i jk)=ψγ = Gγ�γGT
γ . If Pξ = Pη = Pζ = Pγ = q, then ψξ , ψη, ψζ and ψγ

would be full rank, and (2.3) is equivalent to a 3-level linear mixed model with unstructured random effect
covariance matrices (Laird and Ware, 1982). Exploiting that connection, our estimation algorithm for (2.2)
iteratively combines 2 steps which we describe in the next section. The algorithm takes q as an initial value
for Pξ , Pη, Pζ and Pγ . The latter are then updated during the iterations.

3. ALGORITHM

The previous section demonstrates that our model is a linear mixed model with reduced rank variance
component matrices for the random effects. As a result, our estimation method iterates 2 steps. The first
step uses the ECME algorithm (Schafer, 1998) to obtain updates of (β, σ 2) and full rank versions of
ψξ ,ψη, ψζ and ψγ . The second step reduces the rank of ψξ , ψη, ψζ and ψγ to obtain Gξ , Gη, Gζ , Gγ ,
�ξ , �η, �ζ and �γ . These steps are described in more detail in the next 2 subsections, and the steps
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are repeated until convergence. Liu and Rubin (1994) discuss convergence properties of the algorithm in
general.

We note that in this section, we present results rather than derive them since the steps are based on
existing methods. That said, care must be taken to avoid bottlenecks caused by large matrix inversions,
and methods to address these non-trivial problems are in Section S.2 of Supplementary Material available
at Biostatistics online.

3.1 ECME update step

Using notation described in Section S.1 of Supplementary Material available at Biostatistics online, model
(2.3) can be expressed as

Y(g)
i = B(g)μi β + BU

i Ui + εi . (3.1)

We further define  = cov(Ui ), Vi (σ
2, )= Vi = cov(Y(g)

i )/σ 2 = INi ×Ni + BU
i BU T

i /σ 2 and Si

(σ 2, )= Si = cov(Ui |Y(g)
i )/σ 2 =/σ 2 −BU T

i V−1
i BU

i /σ
4. Let the current parameters be (βcurr,

σ 2
curr, 

RR
curr), leading to (Si,curr,Vi,curr).

Using that notation, parameter updates are

βnew =
(

n∑
i=1

B(g)μ
T

i V−1
i,currB

(g)μ
i

)−1( n∑
i=1

B(g)μ
T

i V−1
i,currY

(g)
i

)
,

σ 2
new = N−1

n∑
i=1

(Y(g)
i − B(g)μi βnew)

TV−1
i,curr(Y

(g)
i − B(g)μi βnew),

and

UN
new = n−1

n∑
i=1

(Ûi Û
T
i + σ 2

newSi,curr), where Ûi = Si,currB
U T

i (Y(g)
i − B(g)μi βnew).

The first two updates come from maximizing the likelihood with other parameters held fixed, and the
third update is an EM step.

The variance component matrices ψξ,curr, ψη,curr, ψζ,curr and ψγ,curr can be extracted from the block
diagonal elements of UN

new with indices that correspond to the subvectors in Ui as described in Section
S.1 of Supplementary Material available at Biostatistics online. We describe the rank reduction step which
leads toRR

new in the next subsection. After that step, we update βcurr = βnew, σ
2
curr = σ 2

new andRR
curr =RR

new.

3.2 Reduced rank model implementation

We obtain RR
new, eigenvalue decompositions of (ψξ,curr, ψη,curr, ψζ,curr, ψγ,curr). These are

ψξ,curr = G̃ξ,new�̃ξ,newG̃
T
ξ,new, ψη,curr = G̃η,new�̃η,newG̃

T
η,new,

ψζ,curr = G̃ζ,new�̃ζ,newG̃
T
ζ,new, ψγ,curr = G̃γ,new�̃γ,newG̃

T
γ,new.

The tildes denote that these are full rank decompositions, and we describe the properties of the terms
in these decompositions in Section 2.1.
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Next, to select the number of principal components (Pξ , Pη, Pζ , Pγ ), we set a threshold P and select
by defining

Pξ,new = min

{
q∗ :

var(αξ,i,1,new)+ · · · + var(αξ,i,q∗,new)

var(αξ,i,1,new)+ · · · + var(αξ,i,q,new)
� P

}
,

Pη,new = min

{
q∗ :

var(αη,i j,1,new)+ · · · + var(αη,i j,q∗,new)

var(αη,i j,1,new)+ · · · + var(αη,i j,q,new)
� P

}
,

Pζ,new = min

{
q∗ :

var(αζ,ik,1,new)+ · · · + var(αζ,ik,q∗,new)

var(αζ,ik,1,new)+ · · · + var(αζ,ik,q,new)
� P

}
,

and

Pγ,new = min

{
q∗ :

var(αγ,i jk,1,new)+ · · · + var(αγ,i jk,q∗,new)

var(αγ,i jk,1,new)+ · · · + var(αγ,i jk,q,new)
� P

}
. (3.2)

For each of the 4 random effect groups (ξ, η, ζ and γ ) we then retain that many of each of the columns
for the corresponding eigenvectors (Gs) and the rows and columns for random loadings (�s) to define
Gξ,new,Gη,new,Gζ,new and Gγ,new and �ξ,new,�η,new,�ζ,new and �γ,new.

Finally, we obtain the updated reduced rank matrices

ψRR
ξ,new = Gξ,new�ξ,newGT

ξ,new, ψRR
η,new = Gη,new�η,newGT

η,new,

ψRR
ζ,new = Gζ,new�ζ,newGT

ζ,new, ψRR
γ,new = Gγ,new�γ,newGT

γ,new,

and these are combined into RR
new as described in Section S.1 of Supplementary Material available at

Biostatistics online.
To choose P , a subjective choice is usually satisfactory and is often used. We use P = 0.85 in our sim-

ulation studies which works very well in our experience. Alternatively, cross-validation or model selection
methods such as BIC could be used.

3.3 Maximum penalized likelihood

The previous discussion focuses on the modeling of the response variables using basis functions, but it is
important to introduce roughness penalties to regularize the function fits.

We use penalized maximum likelihood for parameter estimation with maximization of

Lpen =L − τμβ
T Dμβ − τg

⎛⎝ Pξ∑
�=1

gT
ξ,�Dgξ,� +

Pη∑
�=1

gT
η,�Dgη,� +

Pζ∑
�=1

gT
ζ,�Dgζ,� +

Pγ∑
�=1

gT
γ,�Dgγ,�

⎞⎠, (3.3)

where L= (−N/2)log(σ 2)− (1/2)
∑n

i=1 log(|Vi |)− (2σ 2)−1
∑n

i=1(Y
(g)
i − B(g)μi β)TV−1

i (Y(g)
i −

B(g)μi β), the penalty parameters are τμ and τg, D = ∫ b′′(t)b′′(t)T dt, and Dμ = IG J K q×G J K q ⊗ D.
Using maximum penalized likelihood has minor effect on the equations that are used to update β

and. The technical details are in Section S.3 of Supplementary Material available at Biostatistics online.
A search over a candidate set of parameters is a feasible way to choose the penalty parameters τμ and τg.

We used that approach and 5-fold cross-validation in our numerical work. It would be possible to model
the penalty parameters as variance components and estimate them by REML as well.
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4. ALGORITHM FOR INCOMPLETE DATA

The model and algorithm discussed in Sections 2 and 3 assume that all subjects contribute the same num-
bers of weeks and days within each week. Although the observed data likelihood is proper for the missing
data, the estimation algorithm and notation need to be modified to accommodate the data incomplete-
ness. Define J obs

i , K obs
i , Mobs

i and N obs
i to be number of observed weeks, days, week-days and observed

records for subject i , respectively. We write i j ∈ O , ik ∈ O and i jk ∈ O to represent that week j , day k
and week-day ( j, k) are observed for subject i , respectively. Let B(g)μ,obs

i and BU,obs
i to be the B(g)μi and BU

i

matrices with unobserved block rows removed, respectively. Define Uobs
i = (uobsT

ξ,i ,UobsT

η,i ,UobsT

ζ,i ,UobsT

γ,i )
T

to be the {(1 + J obs
i + K obs

i + Mobs
i )× q} × 1 vector corresponding to subject-specific, week-specific,

day-specific and week × day interaction random effects for the observed data. Then define obs
i = diag

(ψξ ,
obs
η,i , 

obs
ζ,i , 

obs
γ,i ), whereobs

η,i = IJ obs
i ×J obs

i
⊗ ψη,obs

ζ = IK obs
i ×K obs

i
⊗ ψζ , andobs

γ = IMobs
i ×Mobs

i
⊗ ψγ .

Because of different missing patterns for each subject, Uobs
i and obs

i may not have identical dimensions
across i .

We define V−1,obs
i (σ 2, obs

i )= V−1,obs
i = (IN obs

i ×N obs
i

+ BU,obs
i obs

i BU,obsT

i /σ 2)−1, and Sobs
i (σ 2, obs

i )=
Sobs

i =obs
i /σ 2 −obs

i BU,obsT

i V−1,obs
i BU

i 
obs
i /σ 4. The joint log-likelihood function for the available data

becomes

Lobs = −(N obs/2)log(σ 2)− (1/2)
n∑

i=1

log(|Vobs
i |)

− (1/2σ 2)

n∑
i=1

(Y(g)obs
i − B(g)μ,obs

i β)TV−1,obs
i (Y(g)obs

i − B(g)μ,obs
i β),

where N obs =∑n
i=1 N obs

i .
Updates for β and σ 2 follow the complete data strategy. On the other hand, since subject-specific

Uobs
i and obs

i may have different dimensions, additional modification of the algorithm for updating

 is necessary. For each subject i , we can obtain unstructured UN,obs
i = Û

obs
i Û

obsT

i + σ 2Sobs
i , where

Û
obs
i = Sobs

i BUobsT

i (Y(g)obs
i − B(g)μ,obs

i β).
Similar to the algorithm used for complete data, we extract the diagonal blocks from 

UN,obs
i . For

the complete data case, ĉov(uξ,i ), ĉov(uη,i j ), ĉov(uζ,ik) and ĉov(uγ,i jk) can be extracted directly from
UN because each i contributes 1, J , K and J K components, respectively. However, the incomplete data


UN,obs
i contributes 1, Ji , Ki and Mi components for ĉov∗

(uξ,i ), ĉov∗
(uη,i j ), ĉov∗

(uζ,ik) and ĉov∗
(uγ,i jk),

respectively, which may be different among subjects. Thus, we calculateψξ ,ψη,ψζ andψγ by considering
the different number of complete cases for each subject:

ψξ = n−1
n∑

i=1

ĉov∗
(uξ,i ), ψη = n−1

n∑
i=1

∑
j,i j∈O

ĉov∗
(uη,i j )/Ji ,

ψζ = n−1
n∑

i=1

∑
k,ik∈O

ĉov∗
(uζ,ik)/Ki , ψγ = n−1

n∑
i=1

∑
jk,i jk∈O

ĉov∗
(uγ,i jk)/Mi ,

which leads to the updated values of. The estimators of Gξ , Gη, Gζ , Gγ ,�ξ ,�η,�ζ and�γ are identical
to the method in Section 3.
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5. HYPOTHESIS TESTS FOR MEAN CURVES

In this section, we discuss testing for the fixed effects mean structures, while keeping the random effects
structures as previously specified. Model (2.1) involves mean curves for treatments and week-specific,
day-specific and week × day interaction effects for each treatment. We next discuss testing whether these
effects equal zero. Using the parameterization in model (2.3), inference is equivalent to testing whether a
subvector of β equals zero, and we discuss the Wald test approach with null hypothesis Lβ = 0, where L
is a known matrix constructed for a specific hypotheses test. Thus, the Wald statistics can be written as
(Lβ̂)T{L ĉov(β̂) LT}−1Lβ̂, where ĉov(β̂) is an estimate of the covariance matrix of β̂.

The hypothesis test is based on the model discussed in Section 2 and the estimation results obtained
from the algorithm discussed in Section 3. When β̂ is obtained from the unpenalized likelihood function,

ĉov(β̂) can be calculated as σ̂ 2(
∑n

i=1B(g)μ
T

i V̂
−1
i B(g)μi )−1 with σ̂ 2 and V̂i obtained from the algorithm. The

Wald statistic then follows asymptotically a χ2 distribution with degrees of freedom equal to the rank of L.
In the simulation reported below in Section 6, this test has acceptable level for a small to moderate number
of basis functions, and for both complete and missing data. When the model involves a large number of
knots, the test levels deteriorate, especially with incomplete data and a small sample size, but this problem
does not occur if the sample size is large.

An alternative is to use the penalized likelihood. For β̂ obtained from penalized likelihood (3.3), ĉov(β̂)
can be estimated by

σ̂ 2

(
n∑

i=1

B(g)μ
T

i V̂
−1
i B(g)μi + 2τμDμ

)−1( n∑
i=1

B(g)μ
T

i V̂
−1
i B(g)μi

)(
n∑

i=1

B(g)μ
T

i V̂
−1
i B(g)μi + 2τμDμ

)−1

.

However, the resulting Wald test performs poorly in terms of test level, leading to too many false

positives. An alternative is to use the so-called Bayesian variance estimator σ̂ 2(
∑n

i=1B(g)μ
T

i V̂
−1
i B(g)μi +

2τμDμ)
−1 as the asymptotic covariance matrix, see Ruppert and others (2003), Equation (6.13). However,

we have found that this leads to much too conservative a test and with little power. Ruppert and others
(2003) suggest using 10 000 to 100 000 Monte Carlo simulations to calculate the p-values. However, the
Monte Carlo approach is very computationally expensive for our 3-level model.

6. SIMULATION STUDIES

In this section, we illustrate the performance of our methodology. In each simulation run, we have n = 60
subjects for J = 5 weeks with K = 5 days, and each day has 36 measurement times. The probability that
a day’s records is observed is 50%. Here, we report the setting with G = 1, but we also implement the
setting with G = 2 and the results are very similar. A measurement at time t on day k in week j for subject
i results in observation Y (1)

i jk (t) which is generated according to

Y (1)
i jk (t)=μ(1)·· (t)+ μ

(1)
j · (t)+ μ

(1)
·k (t)+

2∑
�=1

fξ,�(t)αξ,i,� +
2∑
�=1

fη,�(t)αη,i j,�

+
2∑
�=1

fζ,�(t)αik,� +
2∑
�=1

fγ,�(t)αγ,i jk,� + εi jk(t),

with detailed settings of curves and parameters listed in Table 1.
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Table 1. Settings and parameter estimation results for the simulation study in Section 6. The first part of
the table displays the true curves used in the model. The second part of the table displays the true value,
the average estimates and the mean squared errors (MSE) of the parameters in the joint model. σ 2,

�ξ,1, �ξ,2, �η,1, �η,2, �ζ,1, �ζ,2, �γ,1, �γ,2 are the variances of εi jk(t), αξ,i,1, αξ,i,2, αη,i j,1, αη,i j,2,

αζ,ik,1, αζ,ik,2, αγ,i jk,1 and αγ,i jk,2, respectively. The number marked with an asterisk is the actual num-
ber multiplied by 1000. The lower part of the table displays the rate of true null hypothesis for 4 meth-
ods with α = 0.05. PEN10 represents the penalized likelihood with 10 knots. UN10, UN24 and UN30

are the unpenalized likelihood methods with 10, 24 and 30 knots, respectively

μ
(1)·· (t) 1 + t/500 + exp{−(t − 18)2/500}
μ
(1)
j · (t) exp{t/( j − 1)− 5.5}/[1 + exp{t/( j − 1)− 5.5}] − 0.5 (when j > 1)

μ
(1)
·k (t) 0.5 − exp{t/(k − 1)− 5.5}/[1 + exp{t/(k − 1)− 5.5}] (when k > 1)

fξ,1(t) sin{2π(t − 1)/35}/√17.5

fξ,2(t) cos{2π(t − 1)/35}/√17.5

fη,1(t) sin{4π(t − 1)/35}/√17.5

fη,2(t) cos{4π(t − 1)/35}/√17.5

fζ,1(t) 1/
√

35

fζ,2(t)
√

3{2(t − 1)/35 − 1}/√35

fγ,1(t) [6{(t − 1)/35}2 − 6{(t − 1)/35} + 1]/
√

7

fγ,2(t) 1/
√

35

Parameter σ 2 �ξ,1 �ξ,2 �η,1 �η,2 �ζ,1 �ζ,2 �γ,1 �γ,2
True 1.00 8.00 4.00 6.00 3.00 4.00 2.00 2.00 1.00
Mean 1.00 8.33 3.86 6.00 2.86 3.89 2.00 1.95 0.93
MSE 0.08∗ 2.11 0.55 0.26 0.11 0.18 0.04 0.03 0.02

Complete data Missing data Complete data Missing data
n = 60 n = 60 n = 250 n = 250

PEN10 0.37 0.32 0.62 0.46
UN10 0.06 0.08 0.07 0.06
UN24 0.06 0.15 0.05 0.07
UN30 0.10 0.23 0.04 0.07

We use B-spline basis functions with 10 equispaced knots to fit the data. Figures 2 and 3 give results
for the fixed effects and principal component curves, respectively. Parameter estimation results are shown
in Table 1. The results suggest that our method has excellent performance.

We next study the performance of the Wald statistics discussed in Section 5 to test the null hypothesis
that μ(1)jk (t)= 0 for all j, k. The nominal rejection rate is set to 0.05. Four methods are studied: penalized
likelihood with 10 knots (PEN10), unpenalized likelihood with 10 knots (UN10), unpenalized likelihood
with 24 knots (UN24) and unpenalized likelihood with 30 knots (UN30). For each method, Table 1 displays
the rejection rate of 500 replicates under complete and incomplete data scenarios with sample size n = 60,
and the rejection rate of 200 replicates for sample size n = 250. With complete data, unpenalized likelihood
works well in terms of test level with 10 and 24 knots, but has an inflated rejection rate if 30 knots are used.
Under the missing data scenario, unpenalized likelihood with small sample size performs poorly in terms
of rejection rate when more knots are added, but this problem does not occur with large sample size. On
the other hand, testing based on penalized likelihood leads to unacceptable Type I errors in all scenarios.
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Fig. 2. Fitted fixed effects curves for 500 simulated data sets: (a) fixed effects curveμ(1)·· (t), (b)–(e) fixed effects curves
μ
(1)
2· (t), μ

(1)
3· (t), μ

(1)
4· (t), μ

(1)
5· (t), (f)–(i) fixed effects curves μ(1)·2 (t), μ

(1)
·3 (t), μ

(1)
·4 (t), μ

(1)
·5 (t). Dotted lines denote

true curves. Solid lines represent the averaged values of fitted curves. The upper and lower dashed lines are the 10%
and 90% quantiles of the fitted values in 500 simulation studies.

7. APPLICATION

7.1 Background

In this section, we apply our model to data from the physical activity intervention trial described in
Section 1, which uses an activity monitor to estimate the physical activity levels of subjects over time.
For this paper, the outcome of interest is energy expenditure, which is expressed in units of metabolic
equivalents (METs). A person’s MET value for an activity is defined as the ratio of energy expenditure
during an activity to resting energy expenditure. The unit for both numerator and denominator of a MET
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Fig. 3. Fitted principal components curves for 500 simulated data sets: (a) and (b) principal components curves fξ,1(t)
and fξ,2(t), (c) and (d) principal components curves fη,1(t) and fη,2(t), (e) and (f) principal components curves fζ,1(t)
and fζ,2(t), (g) and (h) principal components curves fγ,1(t) and fγ,2(t). Dotted lines denote true curves. Solid lines
represent the averaged values of fitted curves. The upper and lower dashed lines are the 10% and 90% quantiles of the
fitted values in 500 simulation studies.

is oxygen consumption per kilogram of body weight per minute, and the ratio makes a MET value inde-
pendent of body weight or time. A MET value of at least 3 defines moderate to vigorous physical activity
(MVPA). The gold-standard for measuring energy expenditure is doubly labeled water, but it is expensive
and estimates only total daily energy expenditure; thus, the patterns and temporal distribution of inten-
sity (of interest in our application) cannot be estimated. Another approach is to use indirect calorimetry
where a person wears a mask and an electronic device that analyzes inhaled and exhaled gases to mea-
sure energy expenditure over time. This approach provides temporal detail, but it is impractical for large
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scale monitoring outside of controlled settings since the mouth is covered and the equipment is bulky and
expensive. As a result, accelerometer-based activity monitoring is widely used in the physical activity and
health literature. Accelerometers are small, unobtrusive and provide time-stamped estimates of accelera-
tion. Estimates of energy expenditure from those measurements are based on the principle that acceleration
is proportional to net external forces, therefore reflective of the energy cost of movement. Freedson and
others (2012) provide a recent review of this work, and introduce a special issue of a journal that is devoted
to this topic.

The activPALTM (www.paltech.plus.com) accelerometer activity monitor was used in this study. This
device were taped to the front of the thigh and used accelerometers to assess the angle of the thigh and
movement. The angle differentiates sitting from standing, and the movement differentiates standing still
from stepping. Those measurements are then used by an algorithm in the device to estimate energy expen-
diture. The algorithm is proprietary, but it appears to yield constant values for sitting and standing, and to
be a linear function of a summary of total acceleration when stepping. The calibration is based primarily
on locomotive activities, thus for some activities that involve significant upper body movement, energy
expenditure may be underestimated. Additionally, it should be noted that acceleration tends not to be a
smooth function of time, and the activPALTM’s estimates of energy expenditure (oxygen use) also tend not
to be smooth. However, a person’s actual use of oxygen and the resulting MET value are smooth functions
of time for physiological reasons (Powers and Howley, 2001, Chapter 4).

7.2 Analysis of daily METs

In the study, 63 individuals wore the activPALTM for 5 weeks (denoted weeks 0, 3, 6, 9, 12), 5 days in a week
(Monday to Friday) and measurements were recorded every 5 min during each day. After week zero each
individual was assigned randomly to either the treatment group or the control group. Each member of the
treatment group received a personal trainer who developed an exercise program for them and supervised
40 min exercise sessions 5 days a week. Members of the control group were instructed to continue their
lives as before.

We analyze these data with model (2.1) with g = 1, 2 denoting the control and treatment groups, respec-
tively. We also fit models that allow the distributions of the random effects to vary by group, but the
results do not change appreciably and are not shown. The model’s response is METs over time, and, as
discussed in Section 7.1, the activPal’s estimate of METs is less smooth in time than actual oxygen con-
sumption. Figure S.1 in Supplementary Material available at Biostatistics online shows the activPal METs
over time for a particular day and subject overlaid with the model fit, where the fit includes the max-
imum likelihood estimates of the μ functions and the empirical best linear predictions of the random
effects.

We next describe figures for the analysis of MET levels over the course of the entire day, 8:00 (8AM)
to 20:00 (8PM). The top panel in Figure 4 illustrates that the mean MET levels in the treatment and control
groups are similar before treatment assignment (p = 0.27), and the next panel shows the different means
(p< 0.0001) in the 2 groups after treatment assignment. Both are averaged over days and the second panel
is averaged over weeks. It is likely that the modes in the treatment group correspond to times when the
treatment group subjects tend to schedule their exercise sessions.

The individual level daily random effect principal components are in the bottom 4 panels of Figure 4.
These components are readily interpretable as the times of day when there is likely to be subject level
variability in METs irrespective of day and week. The principal components for the other levels of variation
are similar to the ones in this figure. One exception is that the other levels of variation show more variation
in the evening (not shown).

The 4 levels of the covariance matrix described in Section 2.1 are shown in Figure 5. The top left
panel shows that, independent of day and week, some subjects tend to be more or less active early in the

http://www.paltech.plus.com
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Fig. 4. The estimated mean METs over the course of the day for each treatment group before and after the treatment
assignment.

morning with periods of relatively smaller variation just before and just after noon. The other panels show
that week, day, and week-by-day levels of variation increase these peaks and also add variation in the
evening. In contrast to the morning variation that is purely subject-specific, this variation suggests that the
subject level variation in the evening tends to be week- or day-specific. Additionally, we note that most of
correlation is positive and off-diagonal regions of the matrix are close to zero.

We also did an analysis using data before and after the first event of MVPA. See Figures S.2 and S.3 in
the Supplementary Material available at Biostatistics online.
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Fig. 5. Plots of the estimated covariance matrix of the subject random effects, including the contributions from the
weeks, days and their interactions.

8. CONCLUSION

We have proposed a general modeling and estimation strategy for a treatment effect in the presence of
3-level correlated functional data. Our algorithm can handle incomplete data and employs a data-based
method to select the number of principal components for the random curves. Simulation results for the
model fitting strategy are encouraging and indicate little bias. We also discuss the performance of the Wald
test to assess the evidence that linear combinations of mean structure parameters are zero. Our simulation
results suggest that the Wald test works well for the unpenalized likelihood, but the number of knots should
be restricted to be moderate, especially when the data are incomplete and the sample size is small.

The Wald test leads to biased results when using penalized likelihood. Wood (2006, 2013) discusses
a modified Wald statistic based on the Bayesian variance estimator described in Section 5. However, his
modifications assume that the data responses are independent, and in our case they are correlated with a
complicated structure. It is an interesting problem for future research to extend the modified Wald statistic
to accommodate the data associations inherent in our model.
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We applied our model to analyze data from a physical activity intervention trial. The response data from
this trial consisted of measurements of relative energy expenditure (MET level) every five minutes during
the day for 5 days during 5 weeks from 63 individuals. The individuals in the trial were randomized into
a treatment group that engaged in structured exercise and a control group. The detailed functional data
analysis revealed how the patterns of activity in these groups differ in terms of timing and intensity.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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