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SUMMARY

Technological advances have yielded a wealth of biomarkers that have the potential to detect chronic
diseases such as cancer. However, most biomarkers considered for further validation turn out not to have
strong enough performance to be used in clinical practice. Group sequential designs that allow early ter-
mination for futility may be cost-effective for biomarker studies based on biobanks of stored specimens.
Previous studies proposed a group sequential design for the validation of a single biomarker. In this arti-
cle, we adapt a 2-stage design to the setting where a panel of candidate biomarkers are under investigation.
Conditional estimators of the clinical performance are proposed under an updated risk model that uses all
accrued data, and can be computed through resampling procedures. Under a special case where a multivari-
ate binormal distribution applies for biomarkers following a suitable transformation, these estimators have
analytical forms, alleviating the computational burden while retaining statistical efficiency. Performance
of the proposed 2-stage design and estimators are compared with a traditional fixed-sample design and
an existing 2-stage design that allows early termination but does not update the risk model with accrued
information. Our proposed design and estimators show an ability to reduce sample size when the biomarker
panel is not promising, while controlling rejection rate and gaining efficiency when the panel is promising.
We apply the proposed methods to a biomarker panel development for the detection of high-grade prostate
cancer in a study conducted within the National Cancer Institute’s Early Detection Research Network.
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1. INTRODUCTION

Technological advances have yielded a wealth of biomarkers that have the potential for early detection
of chronic diseases such as cancer. The evaluation of diagnostic biomarkers often undergoes 5 phases
(Pepe and others, 2001). Take a specific cancer as an example. A phase 1 study is usually a pre-clinical
study to identify biomarkers that are differentially expressed in tumor and normal tissues; a phase 2 study
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retrospectively validates performance of biomarkers in subjects with known disease status; a phase 3 study
is usually a retrospective longitudinal study to evaluate the ability of biomarkers to detect disease early;
a phase 4 study involves a prospective screening test on relevant population to assess sensitivity and speci-
ficity; and a phase 5 study is usually a population-based screening study to estimate cancer mortality
reduction. Rigorous and efficient study designs for the early phases are important but frequently over-
looked, posing an obstacle for biomarker research.

In a phase 1 biomarker study, a large pool of biomarkers, for example based on genomic or proteomic
studies, may be evaluated. False signals can be expected because of the large number of tests. When the
candidate biomarkers are further evaluated in a phase 2 study, many of them will not meet performance
criteria to continue to later phases. Different from clinical trials which may sequentially enroll patients, a
phase 2 biomarker study is usually based on biobanks of stored biospecimens. An early termination option
in a phase 2 study is desirable to conserve specimens and minimize assay cost. A 2-stage group sequential
design for a phase 2 study has been proposed for this purpose (Pepe and others, 2009). The cases and
controls are randomly divided into 2 stages. Samples assigned to stage 1 are assayed to test whether the
biomarker performance passes a minimal acceptance criterion. If not, this biomarker is not considered fur-
ther and samples assigned to stage 2 are saved for other purposes. Otherwise, stage 2 samples are assayed
and analyzed. For biomarkers that complete both stages, one is interested in obtaining valid estimates of
their clinical performance, such as sensitivities and specificities. These performance parameters can facili-
tate the design of a phase 3 study, for example in sample size determination. When such a sequential design
is implemented, it is necessary to take the early termination possibility into account, to avoid overestima-
tion of performance parameters. Pepe and others (2009) proposed conditional estimators under a 2-stage
design for the sensitivity and specificity of a dichotomous biomarker. Koopmeiners and others (2012)
extended this design and the conditional estimators to a continuous biomarker. Based on saving specimens
and reducing cost when a biomarker is not useful and more efficient performance parameter estimates for
a promising biomarker, this design and the corresponding conditional estimators have become standard in
biomarker evaluation in the National Cancer Institute (NCI)’s Early Detection Research Network (EDRN).

For many diseases, such as prostate cancer, it has been recognized that a single biomarker usually does
not have adequate performance to be used for population screening. When properly combined, a panel of
biomarkers may have greater potential for adequate performance. However, validation of a biomarker panel
is more challenging compared with that for a single biomarker. Overfitting can be expected if the same
dataset is used for both developing a risk model and evaluating its performance. Recently, the Institute of
Medicine Omics Committee proposed guidelines for a 2-phase marker panel development and validation
process, which includes a discovery and test validation phase and an evaluation for clinical use phase.
To avoid overfitting, the first phase consists of 2 stages: a discovery stage and a validation stage. A risk
model is developed on training samples in the discovery stage, followed by a “lock-down” of all com-
putational procedures. In the validation stage, the risk model is tested on independent blinded samples.
For a pivotal trial, using a lock-down model is preferred to maintain simplicity, and there is typically no
early termination option. However, for a biomarker panel discovery study with the goal of developing a
robust and optimal biomarker panel, allowing early termination for futility and updating the risk model
with complete data are desirable study features. Koopmeiners and Vogel (2013) proposed a 2-stage design
for this purpose. They suggest a risk model be developed in stage 1, and a Receiver Operating Characteris-
tic (ROC) curve be constructed on the same set of data to provide the optimistic estimate of performance.
If the performance achieves a pre-specified minimal criterion, the risk model is evaluated on stage 2 data
to estimate its performance parameters. This study design allows model selection in stage 1 to accom-
modate a large number of candidate biomarkers, and could improve efficiency over fixed-sample design
by allowing early stopping. However, since this design is proposed for a large number of biomarkers, the
risk model is not updated with complete data to avoid complication of model selection in both stages. In
situations where the number of candidate biomarkers is relatively small and model selection is not needed,
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the proposed design and estimators can be inefficient. In addition, since the termination decision is based
on an over-fitted ROC curve, type I error may not be well controlled.

In this manuscript, we propose a sequential 2-stage design for a phase 2 biomarker panel development
study that allows early termination for futility. Accompanying this design, we also provide estimators of
both the risk model and the corresponding performance parameters that make full use of available data.
In Section 2, we describe this study design and the conditional estimators. Resampling procedures are
used to compute these estimates. We also discuss a simplification of computational procedures under a
multivariate binormal distribution special case. In Section 3, we present simulation studies to compare
our proposed approach with existing methods. In Section 4, we apply the proposed method to an EDRN
prostate cancer biomarker study that aims to develop a biomarker panel for the detection of high-grade
prostate cancer. We summarize our work with discussion in Section 5.

2. METHODS

2.1 Two-stage design

We consider a panel of k biomarkers X , where X is a vector of length k. The study aims to assess whether
this panel can be used in clinical practice for the detection of a disease D and to develop a risk model f
with parameter β. Here, we restrict our discussion to a small set of candidate biomarkers, so no model
selection is required. Extensions to allow model selection are mentioned in Section 5.

We assume an underlying logistic model:

log
P(D = 1|X)

1 − P(D = 1|X)
= α + XTβ. (2.1)

According to McIntosh and Pepe (2002), the optimal risk score is r(X) = P(D = 1|X), and under the
logistic model it can be written as

r(X) = exp(α + XTβ)

1 + exp(α + XTβ)
, (2.2)

which is a monotone function of W = XTβ. Since ROC curve is invariant under monotone transformations,
we will focus on the performance of W . In the following description and simulation, we use ROC(t),
0 < t < 1, which is the sensitivity at specificity 1 − t , as an example of a performance parameter of interest.
Other performance parameters, such as the inverse of ROC(t) (ROC−1(t)), the area under the ROC curve
(AUC), partial AUC, positive predictive value or negative predictive value can be considered similarly.

A minimal desirable performance criterion needs to be specified beforehand. This criterion can reflect
the performance of current standard practice, with a new test only acceptable if its performance is better
than the current standard. For example, we may want the test to have sensitivity at least γ0 when the
specificity is 1 − t . That is,

H0 : ROC(t) < γ0 vs. HA : ROC(t) � γ0. (2.3)

For a fixed-sample phase 2 biomarker study, samples are randomly divided into a training and a valida-
tion dataset. A risk model with β̂fixed is built on the training dataset and evaluated on the validation dataset.
We accept H0 if the upper limit of the 95% confidence interval for ROC(t) is smaller than γ0. In contrast, for
a 2-stage design, one first randomly assigns m samples to stage 1 and the remaining n − m to stage 2. Stage
1 samples are first assayed for their biomarker values X1, X2, . . . , Xm . There are several approaches to
develop a risk model based on stage 1 samples, such as K -fold cross-validation. Here, we propose a highly
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stable bootstrap approach, which is described in Section 2.2 as an inner bootstrap procedure. If the upper
limit of the confidence interval of ˆROCs1(t) is less than γ0, we conclude there is not enough evidence to
support this panel for further evaluation (C = 0). Otherwise, the study continues to stage 2 (C = 1), and
the remaining n − m samples are assayed for their biomarker values Xm+1, Xm+2, . . . , Xn . The procedures
for estimating β and ROC(t) upon study completion are described in Section 2.3.

2.2 An inner bootstrap procedure for performance estimation

Consider stage 1 data {X1, X2, . . . , Xm; D1, D2, . . . , Dm}. Copas and Corbett (2002) discussed the mag-
nitude of overestimation of ROC(t) if a risk model is developed and evaluated on the same dataset, and
pointed out that the overestimation is largest with the high specificities that are usually of the most inter-
est. However, for most biomarker studies, especially for expensive biomarkers, sample size is usually not
very large. Further dividing these subjects into a training and a validation dataset may result in efficiency
loss and unstable estimates. Even if one starts with a relatively large study, e.g. n = 1600 as will be dis-
cussed in Section 3, a random assignment of half patients to stage 1 will reduce the sample size to 800, and
training and validation datasets will only have 400 subjects, respectively. Also, it is known that maximum-
likelihood estimates (MLEs) of logistic regression parameters can have non-trivial bias when sample size is
small (Cordeiro and McCullagh, 1991), which can result in an underestimation of ROC(t). Thus, methods
that avoid sample size reduction are of interest.

Here, we propose a bootstrap approach to develop a risk model and test its performance while making
full use of available data. This approach will be used as the basis for the estimation procedure of the
proposed 2-stage design, and we refer to it as an inner bootstrap procedure. We describe this procedure
with an underlying logistic regression model, but it applies readily to other classes of models. For the
lth bootstrap sample, we have the following steps:

Step A: Sample m subjects with replacement, and denote the data as {X1(l), X2(l), . . . , Xm(l);
D1(l), D2(l), . . . , Dm(l)}.

Step B: A logistic regression model is fitted to {X1(l), X2(l), . . . , Xm(l); D1(l), D2(l), . . . , Dm(l)}, to

obtain β̂
(l)

s1 .

Step C: Risk scores ŵ(l) = XTβ̂
(l)

s1 are computed for subjects who are not sampled in Step A, that is
{X1, X2, . . . , Xm}\{X1(l), X2(l), . . . , Xm(l)}.

Step D: ˆROC
(l)

s1 (t) is estimated based on these risk scores and their corresponding disease status.

This procedure is repeated for a large number of times (L). Then we estimate

β̂s1 = 1

L

L∑
l=1

β̂
(l)

s1 , ˆROCs1(t) = 1

L

L∑
l=1

ˆROC
(l)

s1 (t). (2.4)

A percentile bootstrap confidence interval can be formed to decide whether to continue to stage 2. This
procedure is expected to provide an unbiased estimate, and it is computationally easy to implement. Also

we expect this procedure to be efficient, since there is no sample size reduction in calculating β̂
(l)

s1 , and
averaging over bootstrap replications allows us to use information of all m subjects. Although described
based on stage 1 data, this inner bootstrap procedure can also be applied to stage 2 data, and to combined
stage 1 and 2 data, as will be amplified below.
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2.3 Estimation following completion of a 2-stage design

If after performing the inner bootstrap procedure on the m stage 1 subjects, the biomarker panel showed
sufficient promise, samples of the remaining n − m stage 2 subjects are then assayed. We now consider how
to estimate β and ROC(t) for a study that completes both stages. As discussed in Pepe and others (2009)
and Koopmeiners and others (2012), for a single biomarker, there are several approaches, including an
estimate based on all data, an estimate based on stage 2 data only, and a conditional estimate that takes the
early termination possibility into account. All 3 estimates can be extended to the evaluation of a biomarker
panel. Their implementation and corresponding properties are discussed below.

First, upon completion of a 2-stage study, we can estimate β and ROC(t) using the inner bootstrap
procedure on all subjects {X1, X2, . . . , Xn; D1, D2, . . . , Dn}, and denote these estimates as β̂all,C=1 and

ˆROCall,C=1(t). Here, we treat the 2-stage study as a fixed-sample study, ignoring the fact that stage 1
data has to pass a minimal acceptable criterion for a study to continue to completion. These estimates are
positively biased, because only studies that have high performances in stage 1 can continue to stage 2.
To simplify the notation, we suppress the condition C = 1 in the following discussion.

We may also estimate the ROC curve with stage 2 data {Xm+1, Xm+2, . . . , Xn; Dm+1, Dm+2, . . . , Dn},
again with the inner bootstrap procedure. We denote these estimates as β̂s2 and ˆROCs2(t). These estimates
are also conditional on C = 1, but they are expected to be unbiased, since stage 1 and 2 data are independent.
However, they can be inefficient due to the lack of use of stage 1 data.

Unbiased conditional estimators, similar to those proposed by Pepe and others (2009) and
Koopmeiners and others (2012) for a single biomarker study, can improve efficiency compared with esti-
mators using solely stage 2 data. The conditional estimators are defined as

β̂cond = E{β̂s2|(X1, . . . , Xn; D1, . . . , Dn), C = 1}, (2.5)

̂ROCcond(t) = E{̂ROCs2(t)|(X1, . . . , Xn; D1, . . . , Dn), C = 1}. (2.6)

It is straightforward to prove that β̂cond and ̂ROCcond(t) are unbiased for β and ROC(t), and they have

smaller variances than β̂s2 and ̂ROCs2(t), respectively. For example, for a fixed t ,

E{̂ROCcond(t)} = E[E{̂ROCs2(t)|(X1, . . . , Xn; D1, . . . , Dn), C = 1}] = E{̂ROCs2(t)} = ROC(t),

var{̂ROCcond(t)} = var{̂ROCs2(t)} − E[var{̂ROCs2(t)|(X1, . . . , Xn; D1, . . . , Dn), C = 1}]
� var{̂ROCs2(t)}.

These estimators do not have closed forms for a general biomarker distribution. Hence, we propose the
following resampling steps to estimate them: for the j th resampling,

Step 1: From the n subjects, randomly sample m subjects to serve as the pseudo stage 1 data, and the
remaining n − m as the pseudo stage 2 data.

Step 2: Use the inner bootstrap procedure on the pseudo stage 1 data to calculate β̂
[ j]

s1 (t), ̂ROC
[ j]

s1 (t) and
the corresponding 95% confidence interval. If the upper limit of the 95% confidence interval of
̂ROC

[ j]

s1 (t) is lower than γ0, we terminate with C [ j] = 0; otherwise, we continue to stage 2 with
C [ j] = 1.

Step 3: If C [ j] = 1, the same inner bootstrap procedure is used on the pseudo stage 2 data to calculate

β̂
[ j]

s2 (t) and ̂ROC
[ j]

s2 (t).
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We repeat this procedure for a large number of times (J ). Then we estimate

β̂cond = 1∑J
j=1 C [ j]

J∑
j=1

β̂
[ j]

s1 C [ j], ̂ROCcond(t) = 1∑J
j=1 C [ j]

J∑
j=1

̂ROC
[ j]

s1 (t)C [ j]. (2.7)

We call this resampling procedure an outer bootstrap procedure. In order to provide percentile confi-
dence intervals for β̂cond and ̂ROCcond(t), another resampling layer is needed. This resampling procedure is
similar to the non-parametric bootstrap approach in Pepe and others (2009), with extension to a biomarker
panel by 3 nested bootstrap resampling procedures.

2.4 Special cases under multivariate binormal distributions

In the previous discussion, we described a 2-stage design and an inference procedure based on a widely
used logistic regression model. The proposed conditional estimates at study completion can be calculated
through the outer bootstrap procedure. Since each outer bootstrap replication involves the inner bootstrap,
the computational burden can be heavy, especially for confidence interval calculation. Also, if the under-
lying model is not a logistic model, W = XTβ from the logistic model may be a suboptimal score, leading
to an underestimation of the panel performance. In this section, we describe a simplification of the inner
bootstrap procedure under a multivariate binormal distribution where the optimal risk score can be derived
analytically. The proposed outer bootstrap procedure and the estimators at study completion follow only
with minor changes.

We assume the underlying distribution of biomarkers X , or properly transformed X , is multivariate
binormal:

X |D = 0 ∼ MV N (M0, V 0), X |D = 1 ∼ MV N (M1, V 1), (2.8)

where M0, M1 are mean vectors of length k and V 0, V 1 are k × k variance matrices. Under this model,
the optimal risk score r(X) = P(D = 1|X) is a monotone function of

W = (X − M0)
TV−1

0 (X − M0) − (X − M1)
TV−1

1 (X − M1). (2.9)

Under the special case that V 0 = V 1 = V , W can be further simplified to W = XTβ, where β =
V−1(M1 − M0), which is also binormally distributed. Thus, ROC(t) has an analytic form:

ROC(t) = �

[√
(M1 − M0)TV−1(M1 − M0) + �−1(t)

]
, (2.10)

where � is a standard normal distribution function. This analytic form allows one to replace the inner
bootstrap approach with a direct estimate of β and ROC(t), by plugging in the corresponding estimates of
M0, M1 and V . To get β̂cond and ̂ROCcond(t), the outer bootstrap procedure is slightly changed: in Step 2,

we directly estimate β̂s1, ̂ROCs1(t) and C by plugging in {M̂ s1

0 , M̂
s1

1 , V̂
s1}, which are group sample means

and pooled sample variance from stage 1 data; in Step 3, we plug in {M̂ s2

0 , M̂
s2

1 , V̂
s2} estimated from stage

2 data to obtain β̂s2, ̂ROCs2(t). Under this common variance special case, the optimal score W has the
same linear form as arose from a logistic regression model. Hence replacing the inner bootstrap approach
with direct estimates of β and ROC(t) can be expected to result in small changes in point estimates, but
also to improve efficiency of the estimates as well as the computational simplicity.

For a general case of V 0 �= V 1, W is a quadratic form of X rather than a linear combination. This
indicates that the logistic model is not correct under this distribution and using the quadratic combination
W can lead to better accuracy under the binormal model. Once again, one can simplify the bootstrap
procedure. First one can estimate M0, M1, V 0, V 1 as sample means and variances from the corresponding
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disease group. Although one is not able to write the analytic form of ROC(t) because W has a quadratic
form of X , we can simulate a large dataset of multivariate binormal random variables with M̂0, M̂1, V̂ 0, V̂ 1

as the corresponding means and variances, and then calculate ROC(t) using an empirical estimator. Similar
to the common variance special case, the outer bootstrap procedure is modified by replacing the inner
bootstrap approach by this numerical approach. We note that, under this setting, mis-specification of a
logistic model will provide a suboptimal risk model for the panel and underestimation of its performance.
We expect this parametric bootstrap approach will tend to produce accurate risk models and efficient
performance estimates in many application settings.

Furthermore, this parametric bootstrap approach is not restricted to the special case of binormal distri-
bution. If the distribution of X or transformed X follows a known parametric distribution with parameters
A, we can use similar methods to estimate A with appropriate data and simulate datasets to obtain empir-
ical estimates of ROC curves. Although the simulation may have similar computational complexity as
the inner bootstrap approach when the parametric distribution is complicated, this parametric bootstrap
approach can be expected to provide more efficient estimates if the parametric model is well chosen.

3. SIMULATION

We now examine the performance of the proposed 2-stage group sequential design and the conditional
estimators with simulation studies.

We first simulated X from a multivariate normal distribution with k = 2, means 0, variances 1 and
correlation 0.2. Disease status D was simulated from a logistic model with α = 1, βT = (0.5, 1). We focus
on ROC(0.2) as an example, which has value 0.591 in this setting. We vary the sample size as n = 1600,
800, 400 and 200, and half of the subjects were assigned to stage 1 (i.e. m = n/2). Minimal acceptance
γ0 for ROC(0.2) ranged from = 0.55 to 0.7 across simulation configurations. A similar simulation was
repeated for k = 4. Biomarker values X were simulated from a multivariate normal distribution with means
0, variances 1 and correlations 0.2. Disease status D was simulated from a logistic model with α = 1, βT =
(0.4, 0.5, 0.5, 0.5). The targeted ROC(0.2) in this context is 0.590. All the simulations are repeated 1000
times. Simulation results for ̂ROC(0.2) are summarized in Table 1, and those for β̂ are provided in Table 1
of the supplementary material available at Biostatistics online.

With a fixed-sample design, the estimate for ROC(0.2) presents some bias with smaller sample sizes,
due to bias in logistic regression parameter estimates. This bias becomes stronger as number of biomark-
ers increases. Comparing our 2-stage design with the design described in Koopmeiners and Vogel (2013)
shows that our design has a higher continuation rate. When γ0 increases to 0.59, which is the true ROC(0.2),
the Koopmeiners and Vogel approach rejects about 50% of simulated datasets, due to defining the rejection
region in terms of point estimate. Our approach only rejects about 1.1–3% of simulated studies, which is
close to the expected 2.5% under H0. This is a desirable property in the context of motivating research
projects, and it derives from defining the continuation region in terms of the upper limit of 95% confi-
dence interval. Although minimizing cost and saving samples is the main objective of a sequential design,
it is also important that useful biomarker panels proceed for full evaluation. Our approach balances the
reliability and cost of studies comparing to the other designs.

With our proposed 2-stage design, when γ0 is higher than the true ROC(0.2), the continuation rate
increases as sample size decreases. This is because when sample size is large, our estimate based on stage 1
is less variable, and the confidence interval is less likely to cover γ0; while with small sample size, we are
less confident about stage 1 estimates and thus more likely to continue to stage 2. Therefore, our proposed
continuation rules takes the uncertainty in the initial evaluation into account. For the 3 estimators discussed
before, i.e. ̂ROCall(0.2), ̂ROCs2(0.2) and ̂ROCcond(0.2), their performances are as expected. ̂ROCall(0.2)

gives the highest estimates among the 3, while the standard error is low. The overestimation is obvious,
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Table 1. Simulation results on R̂OC(0.2) comparing performance between fixed-sample design, Koopmeiners and Vogel approach and the
proposed 2-stage design with m = n/2. True ROC(0.2) is 0.591 for k = 2 and 0.590 for k = 4

Fixed sample Koopmeiners and Vogel Two-stage design with m = n/2

k n ̂ROC(0.2)(se) # Samples ̂ROC(0.2)(se) %(C = 1) # Samples ̂ROCall(0.2)(se) ̂ROCs2(0.2)(se) ̂ROCcond(0.2)(se) %(C = 1) # Samples

γ0 = 0.55
2 1600 0.590 (0.041) 1600 0.590 (0.041) 85.3 1482 0.589 (0.029) 0.588 (0.039) 0.589 (0.028) 99.8 1598

800 0.589 (0.057) 800 0.589 (0.058) 78.2 713 0.589 (0.038) 0.589 (0.051) 0.588 (0.037) 99.9 800
400 0.586 (0.081) 400 0.586 (0.081) 73.0 346 0.589 (0.053) 0.585 (0.072) 0.587 (0.050) 100.0 400
200 0.582 (0.114) 200 0.583 (0.114) 70.6 171 0.588 (0.069) 0.585 (0.097) 0.583 (0.066) 99.9 200

4 1600 0.587 (0.040) 1600 0.587 (0.040) 87.3 1498 0.588 (0.027) 0.586 (0.038) 0.585 (0.026) 100.0 1600
800 0.584 (0.058) 800 0.584 (0.058) 81.6 726 0.584 (0.038) 0.579 (0.052) 0.578 (0.036) 99.9 800
400 0.578 (0.081) 400 0.578 (0.082) 77.7 355 0.580 (0.052) 0.570 (0.071) 0.567 (0.050) 99.8 400
200 0.566 (0.117) 200 0.568 (0.116) 76.5 176 0.566 (0.074) 0.545 (0.099) 0.545 (0.070) 99.9 200

γ0 = 0.59
2 1600 0.590 (0.041) 1600 0.590 (0.040) 44.4 1154 0.591 (0.028) 0.591 (0.039) 0.590 (0.028) 98.9 1591

800 0.589 (0.057) 800 0.589 (0.058) 46.9 587 0.590 (0.038) 0.589 (0.051) 0.588 (0.037) 97.0 788
400 0.586 (0.081) 400 0.587 (0.081) 51.0 302 0.590 (0.052) 0.585 (0.072) 0.587 (0.050) 98.6 395
200 0.582 (0.114) 200 0.584 (0.114) 54.3 154 0.588 (0.069) 0.585 (0.097) 0.583 (0.066) 98.4 197

4 1600 0.587 (0.040) 1600 0.588 (0.041) 46.9 1174 0.588 (0.027) 0.586 (0.038) 0.585 (0.027) 97.1 1577
800 0.584 (0.058) 800 0.584 (0.058) 51.2 605 0.585 (0.037) 0.579 (0.052) 0.578 (0.037) 97.4 786
400 0.578 (0.081) 400 0.579 (0.082) 56.6 313 0.580 (0.052) 0.570 (0.071) 0.567 (0.051) 98.3 395
200 0.566 (0.117) 200 0.567 (0.116) 61.4 161 0.567 (0.073) 0.545 (0.099) 0.545 (0.071) 98.3 197

γ0 = 0.65
2 1600 0.590 (0.041) 1600 0.590 (0.040) 7.6 861 0.596 (0.026) 0.591 (0.038) 0.591 (0.029) 83.2 1466

800 0.589 (0.057) 800 0.592 (0.058) 16.6 467 0.592 (0.036) 0.589 (0.051) 0.588 (0.038) 93.8 775
400 0.586 (0.081) 400 0.587 (0.080) 26.5 253 0.591 (0.052) 0.585 (0.073) 0.587 (0.051) 97.3 395
200 0.582 (0.114) 200 0.584 (0.113) 36.5 136 0.589 (0.069) 0.584 (0.097) 0.583 (0.067) 98.1 198

4 1600 0.587 (0.040) 1600 0.587 (0.040) 8.7 869 0.593 (0.025) 0.587 (0.039) 0.585 (0.029) 84.1 1473
800 0.584 (0.058) 800 0.584 (0.057) 19.2 477 0.588 (0.036) 0.579 (0.052) 0.578 (0.038) 91.4 766
400 0.578 (0.081) 400 0.580 (0.082) 31.8 264 0.583 (0.050) 0.570 (0.071) 0.568 (0.052) 95.5 391
200 0.566 (0.117) 200 0.570 (0.115) 44.1 144 0.569 (0.073) 0.544 (0.099) 0.544 (0.072) 97.6 198

γ0 = 0.70
2 1600 0.590 (0.041) 1600 0.585 (0.043) 0.3 802 0.609 (0.025) 0.594 (0.040) 0.593 (0.033) 38.4 1107

800 0.589 (0.057) 800 0.593 (0.058) 2.7 411 0.601 (0.034) 0.589 (0.051) 0.590 (0.039) 70.7 683
400 0.586 (0.081) 400 0.585 (0.080) 9.6 219 0.595 (0.050) 0.585 (0.071) 0.587 (0.053) 90.3 381
200 0.582 (0.114) 200 0.582 (0.113) 20.8 121 0.591 (0.068) 0.584 (0.097) 0.583 (0.068) 95.5 196

4 1600 0.587 (0.040) 1600 0.585 (0.043) 0.4 803 0.604 (0.023) 0.585 (0.038) 0.583 (0.031) 34.5 1076
800 0.584 (0.058) 800 0.586 (0.056) 3.6 414 0.597 (0.033) 0.579 (0.052) 0.579 (0.040) 65.1 660
400 0.578 (0.081) 400 0.583 (0.082) 12.7 225 0.589 (0.048) 0.571 (0.071) 0.569 (0.054) 84.2 368
200 0.566 (0.117) 200 0.571 (0.115) 26.8 127 0.573 (0.071) 0.544 (0.099) 0.544 (0.075) 92.5 193
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Table 2. Simulation results on R̂OC(0.2) comparing logistic regression approach and
parametric bootstrap approach, with equal variances. True ROC(0.2) is 0.602

Logistic regression approach Parametric bootstrap approach

n ̂ROCcond(0.2)(se) %(C = 1) # Samples ̂ROCcond(0.2)(se) %(C = 1) # Samples

γ0 = 0.55
1600 0.596 (0.025) 100.0 1600 0.603 (0.020) 100.0 1600
800 0.590 (0.034) 100.0 800 0.606 (0.029) 100.0 800
400 0.579 (0.047) 100.0 400 0.606 (0.042) 100.0 400
200 0.556 (0.062) 100.0 200 0.617 (0.056) 99.9 199

γ0 = 0.60
1600 0.597 (0.025) 98.8 1590 0.603 (0.021) 98.5 1588
800 0.589 (0.035) 99.2 797 0.606 (0.029) 98.7 795
400 0.579 (0.048) 99.4 399 0.606 (0.043) 99.3 399
200 0.557 (0.062) 99.3 199 0.617 (0.057) 99.3 199

γ0 = 0.65
1600 0.597 (0.027) 86.0 1488 0.603 (0.024) 68.3 1346
800 0.589 (0.036) 93.2 773 0.606 (0.033) 82.0 728
400 0.579 (0.050) 95.9 392 0.607 (0.045) 89.0 378
200 0.556 (0.063) 97.8 198 0.617 (0.058) 95.1 195

γ0 = 0.70
1600 0.597 (0.029) 39.6 1117 0.601 (0.026) 9.8 878
800 0.590 (0.038) 68.0 672 0.602 (0.036) 37.7 551
400 0.581 (0.051) 83.0 366 0.610 (0.047) 62.5 325
200 0.556 (0.065) 92.5 193 0.618 (0.062) 82.1 182

especially for scenarios with large sample sizes (n = 1600, 800) and high γ0 (γ0 = 0.70). In these scenarios,
̂ROCs2(0.2) and ̂ROCcond(0.2) are both unbiased, and ̂ROCcond(0.2) is always associated with a smaller
standard error than ̂ROCs2(0.2).

When sample size is small (n = 400, 200), the underestimation due to bias in logistic parameter esti-
mates offsets the overestimation due to ignoring the early stopping possibility, leading to a small bias
in ̂ROCall(0.2). On the other hand, ̂ROCs2(0.2) and ̂ROCcond(0.2) are lower than the true ROC(0.2) as
expected, but ̂ROCcond(0.2) still has the smallest standard error. Although in these settings, ̂ROCs2(0.2)

and ̂ROCcond(0.2) are biased for the true ROC(0.2) under optimal risk model with β, they are unbiased
estimates for the ROC(0.2) under suboptimal risk model with β̂s2 and β̂cond.

We also conducted a simulation study with 33% subjects assigned to stage 1 and remaining to stage 2.
Results based on 1000 simulation replications are summarized in Table 2 of the supplementary material
available at Biostatistics online. When stage 1 sample size is smaller, we are less likely to terminate a study
for futility. For a study that continues to stage 2, ̂ROCcond(0.2) is still more accurate than ̂ROCall(0.2) and
more efficient than ̂ROCs2(0.2).

We now compare the performances of the proposed estimate with and without parametric distribution
specification. We let k = 4, and

M0 = (0, 0, 0, 0), M1 = (0.5, 0.5, 0.5, 1), V 0 = V 1 =

⎛
⎜⎜⎝

1 0.2 0.2 0.2
0.2 1 0.2 0.2
0.2 0.2 1 0.2
0.2 0.2 0.2 1

⎞
⎟⎟⎠ .
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Table 3. Simulation results on R̂OC(0.2) comparing logistic regression approach and
parametric bootstrap approach, with unequal variances. True ROC(0.2) is 0.607

Logistic regression approach Parametric bootstrap approach

n ̂ROCcond(0.2)(se) %(C = 1) # Samples ̂ROCcond(0.2)(se) %(C = 1) # Samples

γ0 = 0.55
1600 0.583 (0.024) 99.9 1599 0.610 (0.020) 99.9 1599
800 0.577 (0.033) 100.0 800 0.618 (0.028) 99.7 799
400 0.565 (0.047) 99.8 400 0.636 (0.037) 98.8 398
200 0.540 (0.066) 99.6 200 0.669 (0.047) 98.9 199

γ0 = 0.61
1600 0.583 (0.024) 97.8 1582 0.610 (0.020) 96.5 1572
800 0.577 (0.033) 98.1 792 0.618 (0.028) 95.2 781
400 0.565 (0.047) 98.6 397 0.636 (0.038) 94.7 389
200 0.540 (0.067) 98.3 198 0.670 (0.048) 95.6 196

γ0 = 0.65
1600 0.584 (0.026) 75.0 1400 0.610 (0.022) 70.2 1362
800 0.577 (0.035) 87.5 750 0.618 (0.029) 75.5 702
400 0.565 (0.049) 93.3 387 0.636 (0.040) 79.9 360
200 0.540 (0.069) 95.4 195 0.669 (0.050) 86.8 187

γ0 = 0.70
1600 0.582 (0.028) 22.0 976 0.613 (0.023) 23.7 990
800 0.576 (0.038) 54.1 616 0.617 (0.032) 35.6 542
400 0.565 (0.051) 77.6 355 0.636 (0.043) 49.0 298
200 0.541 (0.070) 87.7 188 0.669 (0.053) 67.8 168

With this data structure, the optimal risk model has β = (0.23, 0.23, 0.23, 0.86), and ROC(0.2) is 0.602.
We applied both the logistic regression approach and the parametric bootstrap approach to the simulated
datasets. Simulation results of ̂ROCcond(0.2) based on 1000 replications are summarized in Table 2. With
both approaches, ̂ROCcond(0.2) provides estimates that are close to the true value when sample size is
large. As sample size decreases, both approaches are associated with some bias. However, this bias is
larger with the logistic regression approach as expected, as β̂ from logistic regression is more sensitive to
small sample sizes. Standard errors are smaller with parametric approach in all scenarios. This leads to a
lower continuation rate when γ0 is high, which is desirable as more samples will be saved.

Simulation results with unequal variances based on 1000 replications are summarized in Table 3. Here,
we generated data similarly as in the equal variance scenario, but let

V 0 =

⎛
⎜⎜⎝

1 0.2 0.2 0.2
0.2 1 0.2 0.2
0.2 0.2 1 0.2
0.2 0.2 0.2 1

⎞
⎟⎟⎠ , V 1 =

⎛
⎜⎜⎝

1 0.4 0.4 0.4
0.4 1 0.4 0.4
0.4 0.4 1 0.4
0.4 0.4 0.4 1

⎞
⎟⎟⎠ .

Under this data structure, the true ROC(0.2) is 0.607. As expected, ̂ROCcond(0.2) in logistic regres-
sion approach is biased even when sample size is large, while with the binormal parametric approach
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bias is negligible with large sample size. As sample size decreases, neither approach provides satisfactory
estimates, as logistic regression approach suffers from both model mis-specification and parameter esti-
mation bias with small sample size, and the parametric approach depends on the accuracy of binormal
model parameter estimates. Standard errors are smaller with the parametric approach, which also leads to
lower continuation rate with high γ0.

In summary, our proposed 2-stage design has the highest potential to save samples when the total
planned sample size is large. In our various simulation settings, we can save up to 35% of available sam-
ples. When the total sample size is relatively small, the number of samples saved from this 2-stage design
is limited regardless, and it might be preferable to use the fixed-sample design. Conditional estimators of
the performance parameters are accurate and efficient.

4. PROSTATE CANCER BIOMARKER APPLICATION

In this section, we apply the proposed group sequential design and the estimators to a multi-center EDRN
prostate cancer biomarker validation study. Prostate Specific Antigen (PSA) is widely used for prostate
cancer screening, but has limited sensitivity and specificity. Prostate Cancer Antigen 3 (PCA3) is a urinary
biomarker that is approved by the Food and Drug Administration as a risk assessment biomarker of prostate
cancer. The objective of this study is to examine the performance improvement from adding PCA3 to the
standard clinical PSA biomarker in detecting high-grade prostate cancer (i.e. Gleason score �7). Since
most low-grade prostate cancer are indolent, a reliable mean of distinguishing between low- and high-
grade prostate cancers may allow some patients to avoid biopsies and other invasive treatments such as
radical prostatectomy.

This study includes 859 men from 11 EDRN centers who are scheduled for a prostate biopsy due to
some previous prostate cancer related indications. Among these patients, 562 patients were presenting for
their initial biopsy, while the other 297 patients had a prior negative biopsy. PSA and PCA3 measures
were taken prior to biopsy. Gleason scores were assessed by pathologists at each clinical center based on
biopsy samples. We analyze the initial biopsy patients and the repeat biopsy patients separately. Since
these patients were scheduled for biopsy for indications related to prostate cancer, we want the combined
biomarker test to have high sensitivity to avoid missing high-grade prostate cancer, while improving speci-
ficity so that more low-grade patients can avoid biopsy and treatment. Hence we use ROC−1(0.95) to
evaluate the performance of combined test. Both PSA and PCA3 measures are log-transformed to achieve
approximate normality in both the high-grade and low-grade groups.

When we use PSA to distinguish high- and low-grade prostate cancer patients, ROC−1(0.95) is 0.144
for the initial biopsy group and 0.149 for the repeat biopsy group. With PCA3 only, it is 0.235 and 0.406,
respectively. PCA3 is a somewhat better marker to use in clinical practice, compared with PSA. To inves-
tigate if combining PSA and PCA3 will improve performance, we use the higher performance of the 2
biomarkers applied individually as the minimal acceptance criteria, that is γ0 equals to 0.235 and 0.406 for
the 2 patient groups. For each biopsy group, we randomly assign half of the patients to stage 1. Results are
summarized in Table 4.

For the initial biopsy group, we first use the logistic regression approach. Stage 1 data suggests an

improved performance by combining PSA with PCA3, with estimated ̂ROC
−1

s1 (0.95) equal to 0.353 and
confidence interval covering 0.235, and β̂s1 is (1.20, 0.64). Thus, the study continues to stage 2. Upon
completion of stage 2, we estimate ROC−1(0.95) as 0.315 if only using stage 2 data, and 0.324 if using
the conditional estimate. The corresponding β estimates are (0.72, 0.85) and (0.98, 0.74). Note that
̂ROC

−1

cond(0.95) has a much narrower confidence interval than that of ̂ROC
−1

s2 (0.95). In addition, note that

̂ROC
−1

cond(0.95) is between ̂ROC
−1

s1 (0.95) and ̂ROC
−1

s2 (0.95). Although in theory we would expect both
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Table 4. Estimates of ROC−1(0.95) for the PSA, PCA3 and their combinations

Biomarkers ̂ROC
−1

(0.95)

Initial biopsy group

PSA 0.144 (0.069, 0.201)
PCA3 0.235 (0.129, 0.295)
PSA + PCA3 Logistic regression approach Parametric bootstrap approach
Stage 1 0.353 (0.174, 0.580) 0.362 (0.307, 0.441)
Stage 2 0.315 (0.154, 0.526) 0.282 (0.238, 0.347)
Conditional 0.324 (0.255, 0.418) 0.319 (0.241, 0.370)

Repeat biopsy group

PSA 0.149 (0.103, 0.322)
PCA3 0.406 (0.284, 0.539)
PSA + PCA3 Logistic regression approach Parametric bootstrap approach
Stage 1 0.639 (0.327, 0.746) 0.582 (0.513, 0.632)
Stage 2 0.480 (0.122, 0.727) 0.380 (0.295, 0.437)
Conditional 0.509 (0.395, 0.692) 0.494 (0.408, 0.672)

̂ROC
−1

s1 (0.95) and ̂ROC
−1

s2 (0.95) to be unbiased estimates of ROC−1(0.95), they may not be accurate

enough in practice with limited sample size. Under this situation, using ̂ROC
−1

cond(0.95) reduces bias due
to the resampling stage 1 and 2 data in the outer bootstrap steps, and is expected to have more stable
performance. We also investigated the parametric bootstrap approach. The sample covariance matrices
are slightly different for the 2 outcome groups, so we allowed for unequal variances. The estimated
̂ROC

−1

s1 (0.95) and ̂ROC
−1

s2 (0.95) differ slightly from those from logistic regression approach, with nar-

rower confidence intervals. ̂ROC
−1

cond(0.95) is quite similar to that with logistic regression approach, but
again with a narrower confidence interval. This also suggests that a linear combination is likely to be suit-
able for these 2 biomarkers. Similar analysis were conducted for the repeat biopsy group. With randomly
selected stage 1 data, both approaches suggests continuing to stage 2. Upon study completion, we estimate
̂ROC

−1

cond(0.95) as 0.509 and β̂cond as (0.81, 0.95) with the logistic regression approach and ̂ROC
−1

cond(0.95)

as 0.494 with the parametric bootstrap approach. Again, estimates from the parametric bootstrap approach
is associated with a narrower confidence interval.

5. DISCUSSION

Cost-effective designs are urgently needed for biomarker studies, as the number of biomarkers poten-
tially useful in clinical practice has increased dramatically with technology developments. Group sequen-
tial methods have a natural place due to this early termination for futility possibility. Previous literature
has discussed the use of a group sequential strategy for inference upon study completion with a single
biomarker. In this manuscript, we extended existing methods to a phase 2 biomarker panel development
study. We described a 2-stage study design, and proposed conditional estimators that take early termina-
tion into account. Although this 2-stage design has already been used in EDRN to conserve samples and
minimize cost, its properties and the corresponding estimators following study completion have not been
studied systematically. We compared this study design with fixed-sample design and a previously proposed
2-stage design that does not allow for updating the risk model. The proposed design has the ability to save
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samples when candidate biomarkers are not promising, while providing an efficient conditional estimate
of performance when they are promising.

Resampling procedures are typically needed to calculate the proposed conditional estimates. In this
manuscript, we provided an alternative approach if a multivariate binormal distribution can be assumed.
As mentioned, our method also applies to other families of parametric distributions. Under parametric
assumptions, one can expect the performance parameter estimates to be more efficient, and computational
burden may be reduced.

Here, we restricted the application to a relatively small number of biomarkers. This is of practical impor-
tance for studies focusing on biomarkers that have strong evidence for use in clinical practice. Hence we
defined the rejection criterion in terms of the 95% confidence interval, which is lenient in order not to miss
potentially useful panels. In other situations where the potential utility of candidate markers not evident, we
could use a stricter criterion, for example, by considering an approach similar to that of the Koopmeiners
and Vogal approach, i.e. terminating the study when the point estimate is below a pre-specified threshold.
Then we only need to modify how we define C [ j] in the outer bootstrap procedure, and all the other steps
will follow.

When the candidate panel is of high-dimensional, one needs to consider model selection procedures.
Our proposed 2-stage design can be extended for use in conjunction with dimension reduction. For exam-
ple, we can replace the logistic regression model with a LASSO model (Tibshirani, 1996) in both stages 1
and 2. For studies that continue to study completion, extra steps are needed to obtain conditional estimators
of performance parameters. That is, when we perform the outer bootstrap procedure, different biomark-
ers can be selected each time. At the end of bootstrap replications, we may consider selecting the final
model by restricting to those markers that appear enough number of times in the bootstrap replications.
This selection needs to be taken into account in the conditional estimators. The methods for doing so are
beyond the scope of this paper but well worth exploring. In the simulation, we compared our results with
the Koopmeiners and Vogel approach. In the setting of validating a small number of markers with strong
evidence, the Koopmeiners and Vogel approach suffers from high rejection rate and may not efficiently
use all information. However, under a higher-dimensional panel setting of their original proposal, their
approach is easy to use and performs well.

Our proposed 2-stage design and conditional estimators can be extended to assess the performance of
a biomarker panel when outcome is a censored failure time. Instead of a disease indicator D, the outcome
is (Y, δ), where Y = min(T, C) is the minimum of the actual event time T and the independent censoring
time C , and δ = I (T � C). At a specific time point τ , we can define a binary outcome D(τ ) = I (T � τ).
With censoring present, a logistic regression with inverse probability weighting can be used as discussed
in Zheng and others (2006): subjects censored before τ will have weight 0, subjects having events before
τ are weighted by 1/P(C > Y |X, Y ), and those still at risk at τ are weighted by 1/P(C > τ |X). With the
2-stage design, we can replace the standard logistic regression with this re-weighted logistic regression in
Step B of the inner bootstrap procedure. The probability in the weighting can be estimated as described in
Zheng and others (2006), with the data from current cohort under investigation. The conditional estimators
can be applied with a valid ROC(t) estimate in each stage.
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