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spatial frequency features of the
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Abstract

Background: The efficacy of histological analysis of colon sections used for evaluation of inflammation severity can
be improved by means of digital imaging giving quantitative estimates of main diagnostic features. The aim of this
study was to reveal most valuable diagnostic features reflecting inflammation severity in colon and elaborate the
evaluation method for computer-aided diagnostics.

Methods: Tissue specimens from 24 BALB/c mice and 15 patients were included in the study. Chronic and acute
colon inflammation in mice was induced by oral administration of dextran sulphate sodium (DSS) solution, while
mice in the control group did not get DSS. Human samples of inflamed colon tissue were obtained from patients
with ulcerative colitis (n = 6). Non-inflamed colon tissue of control subjects (n = 9) was obtained from patients with
irritable bowel syndrome or functional obstipation. Analysis of morphological changes in mice and human colon
mucosa was performed using 4-μm haematoxylin-eosin (HE) sections. The features reflecting morphological
changes in the images of colon mucosa were calculated by convolution of Gabor filter bank and array of pixel
values. All features were generalized by calculating mean, histogram skewness and entropy of every image
response. Principal component analysis was used to construct optimal representation of morphological changes.

Results: First principal component (PC1) was representing the major part of features variation (97 % in mice and
71 % in human specimens) and was selected as a measure of inflammation severity. Validation of new measure
was performed by means of custom-made software realizing double blind comparison of differences in PC1 with
expert’s opinion about inflammation severity presented in two compared pictures. Overall accuracy of 80 % for
mice and 67 % for human was reached.

Conclusion: Principal component analysis of spatial frequency features of histological images may provide
continuous scale estimation of inflammation severity of colon tissue.

Background
Ulcerative colitis (UC) is a chronic relapsing-remitting in-
flammatory disorder affecting intestinal mucosa. The
pathogenic mechanisms of UC are complex and involve
interaction between genetic, host immune system and en-
vironmental factors [1–3]. The diagnosis of UC is deter-
mined by standard clinical, endoscopic, radiological, and

histological criteria [4]. Histological analysis is an important
component in diagnosis, classification, and evaluation of
treatment effectiveness of UC [5]. Several scoring schemes
for images of haematoxylin–eosin (HE) stained sections are
currently used in inflammatory bowel diseases and classifi-
cation of colon inflammation activity. Some histological
scoring schemes are designed particularly for UC cases [6–
10]. Analysis of microscopy images and histological scoring
is not only time consuming, but the results are often sus-
ceptible to inconsistency due to human factor [11, 12]. De-
velopment of digital microscopic imaging technology and
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image processing techniques [13] inspired research towards
translational computational systems that can detect,
analyze, classify, and quantify tissue sections. Usage of
digital imaging systems could make histological image
assessment less time consuming, but also could im-
prove diagnostic quality due to objective estimation of
image features.
Histological features of chronic active UC listed in the

guidelines for visual inspection and evaluation of histologic
images include crypt distortion, crypt branching, and lym-
phoplasmacytic infiltration deep into the crypts [14]. It is
possible to elaborate quantitative estimates of these and
similar features based on mathematical transforms used for
pattern evaluation in the images from various technical
areas, e.g. defect detection in textile [15] or medical diag-
nostics, e.g. detection of early stage of cancer in human cer-
vical tissues [16]. The approach mentioned above is based
on estimation of spatial frequency parameters of the im-
ages and provides quantitative estimates of periodic and/
or random structures. Majority of known diagnostic fea-
tures of UC could also be considered as estimates of peri-
odic and/or random structures. Therefore, methods aimed
at evaluation of spatial frequency parameters could pro-
vide promising results.
The aim of this study was to develop a method for auto-

mated evaluation of inflammation severity based on evalu-
ation of spatial frequency features in histological images of
inflamed mice and human colon tissue.

Methods
Animals and experimental colitis model
BALB/c mice used in this study come from our previous
research that aimed to evaluate the role of NADPH oxi-
dase in pathogenesis of colon inflammation [17]. Acute
and chronic colon inflammation in the animals was in-
duced by oral administration of 3.5 % dextran sulphate so-
dium (DSS, TdB Consultancy, Uppsala, Sweden). Detailed
methods of experimental colitis induction in mice and
clinical data analysis have been published in R. Ramo-
naite et al. paper [17] and our current study included only
histological samples of the colon. Lithuanian Animal Eth-
ics Committee approved the design of experiments (Proto-
col no. 0201).

Histological specimen imaging
Images were taken by means of OLYMPUS IX71 light
microscope (×20 magnification) equipped with Q IM-
AGING EXI aqua camera at 1392 × 1040 pixels resolution
(0.6 μm/pixel).

Assessment of the histological score in mice
Colonic segments were washed with the Mg+2 or Ca+2

free phosphate-buffered solution (PBS) and immediately
fixed by the neutral 10 % formalin for 4 h at room

temperature for paraffin embedding. Serial 4-μm sec-
tions were cut for each tract and stained with HE. The
experts approved the image resolution for further ana-
lysis, confirming that all the tissue levels and structures
are not distorted and clearly visible. Histological examin-
ation was performed using analysis method according to
M. Hausmann et al. [18].

Patients
Fifteen subjects participated in the study: 6 patients with
UC (medium age (year ± SD) = 42 ± 20.85, men n = 4,
women n = 2) and 9 control subjects (medium age (year
± SD) = 64.44 ± 15.73, men n = 5, women n = 4). UC
patients and control subjects were recruited in the
Department of Gastroenterology, Hospital of Lithuanian
University of Health Sciences during the years 2011–
2014. The diagnosis of UC was based on standard clin-
ical, endoscopic, radiological, and histological criteria
[19–21]. Patients with mild to severe disease activity
were included in the study (Mayo UC Endoscopic Score
1 to 3). The control group consisted of patients with
irritable bowel disease or functional constipation and
routine colonoscopy was performed as a part of their
planned examination workup. Individuals were included
in the control group if they had a no endoscopic signs of
inflammation during colonoscopy. Kaunas Regional Bio-
medical Research Ethics Committee approved inclusion
of patients within the study (Protocol No. BE-2-10).

Assessment of histological score in humans
The colon biopsies were obtained from inflamed (UC
patients) and non-inflamed mucosa (control subjects)
during endoscopy. Biopsies were washed with the PBS
and immediately fixed by the neutral 10 % formalin for
4 h at room temperature for paraffin embedding. Serial
4-μm sections were cut for each tract stained with HE
and examined using Riley scoring technique [8].

Statistical analysis
All clinical and histological data were analyzed using
SPSS version 16.0 software (SPSS Inc., Chicago, IL). Stat-
istical analyses were performed using one-way ANOVA
according to Ramonaite et al. [3, 17].

Image preprocessing
Image processing algorithms were realized as programs
in MATLAB computation environment and ran on per-
sonal computer with an Intel® Core™ 2 Duo, 3.06 GHz
processor and 2GB of RAM.
Normalization of illumination intensity in images was

realized by means of image histogram alignment using
algorithm similar to Petrolis et al. [22]. All images con-
tained empty white areas with no cells, the pixel values
of which were forming a peak on the right side of the
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image histogram used as the reference. Image illumin-
ation adjustment was made adding certain bias to pixel
values. The bias value was determined by maximizing
correlation between histogram peaks representing white
areas in analyzed pictures and ones in reference image.
All analyzed pictures were preprocessed with the same
procedure.
Automatic image features formation was performed

on 512 × 512 pixel mice and human colon image cut-
outs (samples) selected by the experts, representing as
much as possible homogeneous and typical tissue pat-
tern without any gaps. Fifty such samples were repre-
senting acute inflammation, 50 chronic inflammation and
50 healthy controls for mice specimen cutouts. One-

hundred-fifty-six samples were representing UC and 96
came from controls of human biopsy images.
Examples of typical images representing whole range of

tissue patterns form healthy controls to acute inflamma-
tion and their cutouts are presented in top and middle
rows of Fig. 1.

Algorithm for feature extraction
Main diagnostic features in histologic images character-
izing UC include crypt distortion, branching, and ap-
pearance of lymphoplasmacytic infiltrate deep in the
crypts [23]. In digital image representation crypts are el-
liptic white spots varying about 180–350 pixels long and
50–130 pixels wide, both for human and mice

Fig. 1 Examples of typical analyzed images representing whole range of tissue patterns: healthy control (a–mice; f–human) on the left; chronic
inflammation (b–mice; g–human) in the middle and acute inflammation (c–mice; h–human) in the right. Examples of image cutouts used for
analysis are below the whole sample images (from A1 to H2). Graph (e) and image of typical Gabor function (d) in the middle row
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specimens. Appearance of eosinophils, which also might
be present during inflammation, is expressed as appear-
ance of rounded spots of 7–25 pixels in diameter for all
test samples. Therefore, development of inflammatory
process could be described by appearance or disappear-
ance of certain contrasted spots of some dimensions,
changes of their density and even some specific changes
in tissue pattern structure. We used Gabor filters for
detection and evaluation of such morphological
changes. The procedure performs convolution of ana-
lyzed image with function constructed of a cosine wave
modulated by two-dimensional Gaussian function [24]:

gλ;θ;φ;σ;γ x; yð Þ ¼ exp −
x′2 þ γ2y′2

2σ2

� �
cos 2π

x′
λ
þ φ

� �
;

ð1Þ

where x ′ = x cos θ + y sin θ, and y ′ = − x sin θ + y cos θ.
θ in the equations is the orientation of the Gabor func-

tion in degrees; λ represents the wavelength of the co-
sine factor; φ is the phase offset in degrees; γ is the
spatial aspect ratio of elliptic Gabor function and σ is
the standard deviation of the Gaussian kernel. We can
construct Gabor functions similar in shape to the sought
objects in the images or patterns expecting maximal Ga-
bor filter response when applied to corresponding place
in the image. That for we need to define following Gabor
functions parameters: spatial frequency of the cosine fac-
tor f = 1/ λ and half-response spatial frequency band-
width b (in octaves) of a Gabor filter. The last is related
to the ratio σ / λ as follows:
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According to recommendations given in [24] we used
following parameters to construct Gabor filter bank:
φ 0
θ 0°, 30°, 60°, 90°, 120°, 150°
γ 0.5, 2, 4
λ 20, 30, 40
b 5 octaves, 10 octaves, 15 octaves, 20 octaves.
The example of Gabor function is presented on the

bottom of Fig. 1. It is easy to recognize similarity be-
tween the shape of Gabor function and certain objects
of interest in analyzed images, e.g. crypts, neutrophils,
abnormalities of the muscularis mucosae, increase of the
cells in transmucosal lamina propria, etc.

Assessment of inflammation in digital images cutouts
Constructed filter bank consisted of 216 filters in total (6
orientations; 3 spatial aspect ratios; 3 wave lengths; 4 fre-
quency bandwidths). Application of each filter to ordin-
ary 512 × 512 pixels sample image produced 512 × 512
arrays of responses corresponding to particular spatial
aspect ratios, wavelengths and frequency bandwidths for
each of 6 orientations. Only the maximal values of re-
sponses in regard to orientations were taken for further
analysis compensating initial arbitrary orientation of tis-
sue structure in the analyzed image. After this operation
we have 36 arrays of 512 × 512 filter responses repre-
senting each sample image. We generalized these fea-
tures calculating mean, histogram skewness and entropy
of every responses array, finally getting array of 108 fea-
tures (36 triplets) representing each analyzed sample
image. Mean was calculated:

mean ¼ 1
mn

Xm
i¼1

Xn
j¼1

xij ð4Þ

where xij is pixel value of ith row and jth column of ana-
lyzed image cutout; m–number of rows and n–number
of columns of analyzed image cutout.
Histogram skewness was calculated:

skewness ¼
1
mn

Pm
i¼1

Pn
j¼1

xij−x
�� �3

s3
ð5Þ

where xij is pixel value of ith row and jth column of ana-
lyzed image cutout; m–row number and n–column
number of analyzed image cutout; x̅–mean of pixel
values of analyzed image cutout.
Entropy was calculated:

entropy ¼ −
Xn
i¼1

pi⋅ log2 pið Þð Þ; ð6Þ

where pi is normalized ith bin value of histogram of ana-
lyzed image cutout.
Pooling all data representing analyzed images arrays

which contained data representing several cutouts of im-
ages taken from several histological pictures of each inves-
tigative. It means, one can expect the data array to be not
homogeneous and independent, but rather a mixture of
several clusters. Testing null-hypothesis about equality of
distributions of parameter values in all hierarchal levels
(between histological pictures and between investigatives)
proved homogeneity of these arrays (Kruskal-Wallis test,
p > 0.1). Array of features representing all sample images
formed 150 × 108 matrix (108 features form 150 images)
for mice and 252 × 108 (108 features from 252 images)
matrix for human specimens:
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X ¼
x1;1 x1;2 ⋯ x1;m
x2;1 x2;2 ⋯ x2;m
⋯ ⋯ xi;j xi;m
xn;1 xn;1 ⋯ xn;m

2
664

3
775; ð7Þ

where xi,j is the jth feature of ith image cutout. Principal
component analysis (PCA) transforms original feature
data set X into new space of variables maximizing vari-
ation and concentrating correlated original variables [25].
Our training sets of images were constructed so that vari-
ation in feature values in regard to inflammation intensity
takes the biggest part in it. Then we expect that first or at
least one of the first computed new variables (principal
components) will give optimal quantitative estimate of in-
flammation. Spatial correlation R of original representa-
tion of all images feature data set X can be estimated as:

RX ¼ 1
n⋅m

X⋅XT ð8Þ

The eigenvector equation for RX [25], representing
variation of original feature data set X, is:

RX ⋅ψ ¼ ψ⋅Λ ð9Þ
where Λ denotes the eigenvalue matrix with the eigen-
values sorted in descending order, and Ψ is the corre-
sponding eigenvector matrix. The matrix Ψ defines an
orthonormal transform, which is applied to the original
data X and principle component matrix Y is computed:

Y ¼ ψT ⋅X: ð10Þ
The first principal component (PC1) appears in first row

of matrix Y and we will use it as quantitative estimate of
inflammation.
To validate this new constructed variable, estimated for

human and mice specimens separately, experts participated
in double blind experiment realized by means of special

software created in JAWA programing language. The
program shows two randomly selected images for the
expert, asking him to select the one corresponding to
more severe inflammation. The choice of the expert is
stored together with values of PC1 corresponding to
shown images. Screenshot of the program window is
shown on Fig. 2.

Results
Histological assessment of colon inflammation in mice
Oral administration of 3.5 % DSS solution for 7 days in-
duced severe acute colitis in mice with significant morpho-
logical alterations in the colon mucosa. We determined
inflammatory cell infiltration of L. submucosa (3.8 ± 0.46)
and major epithelium damage with loss of crypts in large
areas (3.9 ± 0.38) in mice colon tissue with acute colitis.
Administration of 3.5 % DSS for 44 days induced less

Fig. 2 Screenshot of developed program for double blinded validation of computed inflammation severity measure by comparing it to
expert’s opinion

Table 1 Histological characteristics of BALB/c mice colon tissue

Group n Epithelium
damage

Inflammatory cells
infiltration

Control 10

Means 0.2 ± 0.25 0.2 ± 0.18

Min/max
ranges

0 to 1 0 to 1

Acute colitis 7

Means 3.9 ± 0.38 a 3.8 ± 0.46 a

Min/max
ranges

2 to 4 2 to 4

Chronic colitis 7

Means 2.8 ± 0.16 ab 2.3 ± 0.31 ab

Min/max
ranges

1 to 3 1 to 3

Analysis of histological parameters was performed as described in Methods.
aStatistically significant difference between control and dextran sulphate
sodium (DSS)-induced colitis groups (P <0.05). b Statistically significant difference
between acute DSS-induced colitis and chronic DSS-induced colitis groups
(P <0.05)
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severe damage of colon tissues, however, inflammatory cell
infiltration of L. muscularis mucosae (2.3 ± 0.31) and loss
of goblet cells in large areas (2.8 ± 0.16) were observed.
Control mice possessed no histological alterations in the
colon tissues (Table 1).

Histological assessment of colon inflammation in humans
We determined crypt abscesses, (1.50 ± 0.55) epithelial
integrity (2.17 ± 0.75) and crypt architectural (2.00 ± 0.63)
irregularities together with inflammatory cell infiltra-
tion (acute inflammatory cell infiltrate was assessed 1.83
± 0.75; chronic inflammatory cell infiltrate–2.33 ± 0.82)
and mucin depletion (2.33 ± 0.82) in colon mucosa of
patients with UC. Control subjects had no or minor
histological alterations in the colon tissues. Analysis of
histological parameters showed statistically significant
differences between control and UC groups (Table 2).

Assessment of PC1 ordered digital images cutouts for
inflammation
Principal Component Analysis transformed characteri-
zation of all sample images from 108 features space,
into optimal variables (‘Principal Components’) space.
PC1 was representing the major part (97 % in mice and
71 % in human specimens) of total variation. Exact

percentage of contribution of each principal component
is shown in Fig. 3.
We normalized obtained values of PC1 corresponding

to all images into [0, 1] range and considered it as the
inflammation severity measure. Maximal value “1” was
corresponding most severe inflammation and “0”–no
inflammation (control). Ordered values of PC1 are pre-
sented in Fig. 4 together with several sample images,
corresponding to certain values of PC1. Whole set of
sample images ordered according to their correspond-
ing values of PC1 are shown on Fig. 5.
Three histology experts participated in double blind val-

idation of proposed inflammation severity measure using
custom made software. The software was showing ran-
domly selected images corresponding to different values
of PC1 and registered opinion of the expert which of them
was corresponding to more severe inflammation. Expert’s
opinion was matching with decision according PC1 values
in 79.9 % of 3402 mice image pairs of specimen and in
67 % of 5796 human image pairs of specimen covering
whole range of PC1 values. Absolute matching was in
cases when difference in PC1 values was maximal. De-
pendency of ratio of expert’s opinion mismatching with
difference in PC1 values is shown in Fig. 6. The highest
yet acceptable ratio indicates resolution of our method.

Table 2 Histological characteristics of human colon tissue

n Acute inflammatory cell
infiltrate

Chronic inflammatory cell
infiltrate

Crypt
abscesses

Mucin
depletion

Surface epithelial
integrity

Crypt architectural
irregularities

UC 6

Means 1.83 ± 0.75 2.33 ± 0.82 1.50 ± 0.55 2.33 ± 0.82 2.17 ± 0.75 2.00 ± 0.63

Min/max
ranges

1 to 3 1 to 3 1 to 2 1 to 3 1 to 3 1 to 3

Control 9

Means 0.25 ± 0.46# 0.38 ± 0.52# 0.00 ± 0.00# 0.13 ± 0.35# 0.13 ± 0.35# 0.00 ± 0.00#

Min/max
ranges

0 to 1 0 to 1 0 0 to 1 0 to 1 0

Analysis of histological parameters was performed as described in Methods. # Statistically significant difference between control and ulcerative colitis (UC) groups
(P <0.05)

Fig. 3 Contribution percentage of total feature variation of the first ten principal components
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Proposed measure of inflammation severity–first Prin-
cipal Component, is constructed by convolution of first
eigenvector with initial set of features (see formula (7)).
Therefore, values of its elements reflect contribution of
particular features for constructed optimal representa-
tion. Values of first eigenvector corresponding to each
particular feature (mean, histogram skewness or entropy
at certain spatial frequency or spatial aspect ratio) are
shown in Fig. 7. Highest values were found at positions
corresponding to features representing objects similar
to eosinophils (rounded spots about 7–25 pixels in
diameter). Interestingly, Gabor functions corresponding
to objects similar to crypts (elliptic spots varying about
180–350 pixels long and 50–130 pixels wide) were not
expressed as important.

Discussion
Several studies have shown that image processing and
analysis systems may be successfully used for diagnosis
and classification of various diseases, such as neuroblast-
oma, melanoma, lung, prostate, and breast cancer. How-
ever, these computerized analysis systems are based
mainly on color-space derived features of histological im-
ages and indicate only areas with positive or negative diag-
nostic result [26–30] ignoring morphological properties of
specimen. In this study, we presented a new method for
automated evaluation of inflammation severity based on
spatial frequency features extracted from histological im-
ages of mice and human colon tissue. Developed tech-
nique computed quantitative estimate of inflammation
severity and constructed a continuous scale estimate of it.

Fig. 4 Computed first principal component (PC1) values with analysed images, corresponding to certain values of it

Fig. 5 Set of analyzed images ordered according to their computed first principal component (PC1) values. Composed pictures are starting with
healthy control cutouts from mice and human specimens at top left images and ends with most severe inflammation at bottom right images
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Currently published guidelines for visual evaluation
of histological preparations of colon tissue describe ex-
pert scoring schemes enabling to classify severity of
inflammation into several grades [8, 10, 31]. Our idea
of elaboration of possibly continuous scale measure for
inflammation severity was based on presumption that
even specimens from the same investigative could rep-
resent certain variety of inflammation severity. The
same principle concerns image cutouts from the same
histological preparation. This presumption was supported
by experts pathologists, who observed certain variety of
visually evaluated features within cases classified into one
or another class according to currently used scoring tech-
niques. So we decided to pool all data, construct continu-
ous scale measure and test it by simplified question to the
experts during double blind experiment showing them

two randomly selected images and asking: “just use your
experience and select image representing more severe
inflammation”. That experiment confirmed suitability of
our measure. Pooling all data representing analyzed im-
ages arrays contained data representing several cutouts of
images taken from several histological pictures of each in-
vestigative. It means, one can expect the data array to be
not homogeneous and independent, but rather a mixture
of several clusters. Therefore we tested and retained null-
hypothesis about equality of distributions of used data
from these several clusters (Kruskal-Wallis test).
At the moment we do not have any “golden standard”

method for verification of our results, so determination
of resolution achieved by our method could be based on
maximal yet acceptable value of discordance between
expert’s opinion in double blind test and our principal

Fig. 6 Mismatch ratio between expert’s decision and first principal component (PC1) values

Fig. 7 Values of first eigenvector corresponding to each particular feature: mean (marked with diamonds); analyzed image histogram skewness
(marked with circles) or analyzed image entropy (marked with asterices) at certain spatial frequency and aspect ratio
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component analysis based estimate. The estimation of
maximal yet acceptable value of mismatch ratio could be
detected by evaluation of concordance between opinions
of different experts on the same image pairs. However,
this requires recruitment of many experts into the ex-
periment and should be an interesting task of further
research in this field. Detailed analysis of eigenvector
values reveals diagnostic value of particular features and
could be used for optimization of initial feature set for
processing. Particular disease is related with unique tissue
structure and changes of it in progress of disease. So,
using our methodology we can elaborate disease progress
measures for other diseases as well.
Currently, clinical, endoscopic, radiological, histological

criteria and molecular markers are used to evaluate in-
flammation severity of colon in UC patients. Estimates ob-
tained from standard clinically approved features could be
also used for verification of our method. However, regis-
tration of such estimates “in vivo” is technically difficult
and such combined experiments remain an interesting
topic for future research. We show that complex evalu-
ation of colon inflammation severity using computer-
aided analysis could reveal new alternatives for evaluation
of the degree of inflammation severity with higher preci-
sion and may provide new diagnostic possibilities.

Conclusions
Quantitative evaluation of inflammatory changes in histo-
logical preparations of colon tissues is feasible by esti-
mation of spatial frequency parameters of histological
images. Principal component analysis of the spatial fre-
quency features improves efficacy of estimation of in-
flammation severity of colon tissue. The method may
have potential clinical applications in patients with
colon inflammation.
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