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Summary

We propose a Bayesian dose-finding design that accounts for two important factors, the severity of 

toxicity and heterogeneity in patients’ susceptibility to toxicity. We consider toxicity outcomes 

with various levels of severity and define appropriate scores for these severity levels. We then use 

a multinomial likelihood function and a Dirichlet prior to model the probabilities of these toxicity 

scores at each dose, and characterize the overall toxicity using an average toxicity score parameter. 

To address the issue of heterogeneity in patients’ susceptibility to toxicity, we categorize patients 

into different risk groups based on their susceptibility. A Bayesian isotonic transformation is 

applied to induce an order-restricted posterior inference on the average toxicity scores. We 

demonstrate the performance of the proposed dose-finding design using simulations based on a 

clinical trial in multiple myeoloma.
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1 Introduction

The purpose of phase I oncology trial designs is to determine the highest dose with 

acceptable toxicity, the maximum tolerated dose (MTD), by sequentially assigning doses to 

patient cohorts. In these designs, the dose assigned to the next cohort is chosen adaptively 

based on the toxicity response data from previously treated patients in the trial.

Numerous statistical designs in which toxicity is assumed to be binary have been developed 

for phase I oncology trials (See Thall and Lee (2003) for a review). However, it is often 

useful to distinguish between levels of toxicity severity, which requires modeling toxicity as 

an ordinal, categorical, or continuous outcome (Bekele and Thall, 2004; Yuan, Chappell, 
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and Bailey, 2007; Ivanova and Kim, 2008). In addition, a common assumption of most dose-

finding methods is that patients are homogeneous in their susceptibility to toxicity. In 

reality, patients may actually be heterogeneous due to their underlying disease status, 

clinical characteristics, or demographics (Extermann et al., 2004; Rogatko et al., 2004). For 

example, patients with good performance status (a measure of general well-being) may be 

less likely to experience toxicity at a given dose than those with poor performance status. 

Similarly, younger patients may tend to tolerate higher doses than older patients. 

Throughout this paper, we use the term “risk group” to denote a group of patients considered 

homogeneous in their susceptibility to toxicity. To our knowledge, a few papers have 

attempted to incorporate risk groups into statistical models for dose finding (Wijesinha and 

Piantadosi, 1995; Babb and Rogatko, 2001; Legedza and Ibrahim, 2001; O’Quigley and 

Paoletti, 2003; Yuan and Chappell, 2004; Ivanova and Wang, 2006), but all of these treat 

toxicity as a binary outcome.

In this paper, we consider the design of a clinical trial in which 1) toxicity is measured by 

severity levels, and 2) patients from various risk groups will be enrolled. Correspondingly, 

our method consists of two major components. First, after eliciting a score for each toxicity 

severity level, we adopt a Bayesian multinomial-Dirichlet model to estimate the 

probabilities of observing these toxicity scores. We then define the average toxicity score as 

a measure of the overall toxicity at each dose. Second, assuming a partial ordering of the 

average toxicity scores across dose/risk-group combinations, we borrow strength by 

modeling these scores using a Bayesian isotonic regression transformation (Robertson et al., 

1988; Dunson and Neelon, 2003; Li et al., 2008). We propose decision rules for dose finding 

based on the posterior distributions of the order-constrained average toxicity scores.

There are various clinical scenarios in which this method could be used. These include 

situations in which investigators have identified clinical characteristics (gender, performance 

status, age category); biomarker characteristics (for example, investigators may know that 

patients with specific genetic characteristics may be more susceptible to toxicity due to the 

drug’s mechanism of action); and factors such as prior or current treatment (for example 

heavily pre-treated patients may be more susceptible to toxicity relative to patients exposed 

to less prior therapy).

The remainder of the paper is organized as follows. Section 2 describes a motivating trial. 

Section 3 presents the probability model, and Section 4 outlines the dose-finding algorithm. 

Section 5 compares the proposed method to another recently developed approach via 

computer simulations. Section 6 ends the paper with a discussion.

2 Motivating trial

The method developed in this paper is motivated by a phase I trial of a new treatment from 

the class of immunomodulatory drugs (that is, the compound is in the same therapeutic class 

as thalidomide) in combination with dexamethasone (a steroid) for multiple myeoloma 

(MM) patients with renal insufficiency. This new compound has both immunomodulatory 

and anti-angiogenic properties, which could confer antitumor and antimetastatic effects. The 

main objective of the study is to determine if this compound can be safely given to patients 
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with MM. MM is a type of hematologic malignancy in which the immune system cells 

known as plasma cells become cancerous. Although MM may be amenable to treatment 

with this compound, a common negative consequence associated with this disease is renal 

insufficiency– a condition in which the kidneys fail to function properly. Renal functioning 

is measured via the glomerular filtration rate (GFR); patients with GFRs of 60 mL/min or 

less are categorized as having renal insufficiency. In the context of phase I clinical trials, the 

degree of renal insufficiency is believed to have an impact on how well a patient tolerates 

treatment. The principal investigators (PIs) of this phase I trial wanted to protect patients 

with renal insufficiency against the possible risk of increased toxicity. To this end, the PIs 

decided to stratify patients into three risk groups: patients with 40 < GFR ≤ 60 mL/min were 

deemed low risk, patients with 20 < GFR ≤ 40 mL/min were considered moderate risk, and 

patients with GFR ≤ 20 mL/min were categorized as high risk. The PIs planned to evaluate 

up to four doses in the low risk group, but only evaluate the three lowest doses in the 

moderate risk group and the two lowest doses in the high risk group. Specifically, maximum 

sample sizes of 21, 18, and 12 were set for the low, moderate, and high risk groups, 

respectively, hence resulting in a total maximum sample size of 51 patients. Guidelines for 

how to choose the sample size is given in section 5 below.

In addition to defining the risk groups above, the PIs believed that the various toxicities 

expected in the trial could be classified into several toxicity severity categories and they 

believed that incorporating these toxicity severities into the dose-finding algorithm would be 

helpful and important. The toxicity severity categories are: Category 1 (no toxicity); 

Category 2 (grade 3 or 4 fatigue, and respiratory infection); Category 3 (anemia, 

thrombocytopenia, and neutropenia); Category 4 (cardiotoxicity); Category 5 (blood clots 

and myelosuppression with fever). Since a patient may experience two or more toxicity 

events from different categories, they decided to record the highest severity observed for 

that patient.

3 Methodology

3.1 Probability model

Let (Y1, …, Yn) denote the vector of toxicity outcomes on n patients currently enrolled in the 

trial. Note that n increases as new patients are enrolled in the study. The toxicity outcome 

for the ith patient, Yi, can take on one of K +1 ordered values. Without loss of generality, we 

rank these ordered values as 0, 1, …, K, where by convention, 0 represents no toxicity. In 

the MM trial example, K = 4. Assume that there are M risk groups, and let ri be the risk-

group membership of the ith patient for ri = 1, …, M. Assume that Jh doses are under 

investigation in the hth risk group, h = 1, …, M. Define di to be the dose received by the ith 

patient for di = 1, …, Jri. Lastly, let pkjh = Pr(Yi = k | di = j, ri = h) be the probability of 

toxicity outcome k at the jth dose for the hth risk group. For a fixed dose j and a risk group 

h, we assume that .

Let  be the number of patients in risk group h assigned to 

dose j who experienced toxicity of severity category k. The likelihood for {nkjh} with fixed j 

and h is a multinomial probability
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and the full likelihood is given by . Defining the vector Pjh = (p0jh, p1jh, 

…, pKjh), we assume a priori that Pjh follows a Dirichlet distribution given by

Due to conjugacy, the posterior distribution of Pjh is also a Dirichlet,

(1)

We will discuss the choice of the parameters α0jh, …, αkjh in Section 5.

3.2 Average toxicity score

To incorporate the impact of each toxicity severity category, we take an approach similar to 

that of Bekele and Thall (2004). Specifically, we first elicit a score for each toxicity severity 

category from the PIs. Let sk be the elicited score for toxicity severity category k, and denote 

s = (s1, …, sK), where 0 = s0 < s1 < s2 < … < sK. Here, the ordering of sk reflects the 

ordering of the toxicity severity level. To measure the overall toxicity at a dose, we define 

the average toxicity score (ATS) at each dose/risk-group combination as

(2)

For the MM trial, toxicity is defined as an ordinal variable with five levels (no toxicity, mild 

toxicity, moderate toxicity, severe toxicity, and extremely severe toxicity). The toxicity 

score sk represents the PIs’ expert opinion and may take on any positive values subject to the 

monotonicity constraint s0 < s1 < s2 < … < sK. Because only the relative magnitudes of the 

toxicity scores matter in our dose-finding algorithm, we elicited the sk values from the PIs sk 

and scaled them to be between 0 and 1. For the MM trial, we elicited the following scores 

for the five toxicity severity levels identified in Section 2: Category 1 (no toxicity) with s0 = 

0; Category 2 with s1 = 0.25; Category 3 with s2 = 0.5; Category 4 with s3 = 0.75; Category 

5 with s4 = 1.0. Note that different investigators may prefer different scores. For example, 

one could use the National Cancer Institute common toxicity criteria grading system – a 

scale used to classify toxicities observed during the conduct of clinical trials.

3.3 Isotonic regression transformation

The ATS ψ(s, j, h) is a parameter summarizing the overall toxicity at dose j and risk group h. 

An underlying assumption in dose-finding trials is that a higher dose and a risk group with 
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higher susceptibility should lead to a higher toxicity rate. Therefore, a reasonable statistical 

model should constrain ψ(s, j, h) such that it increases in j and h. We apply a Bayesian 

isotonic transformation to posterior samples of ψ(s, j, h) so that the transformed samples can 

be considered from a posterior distribution that obeys the desired order constraints (Li et al., 

2008). In implementing the Bayesian isotonic transformation, we first draw posterior 

samples of Pjh from (1), which results in posterior samples of ψ(s, j, h) after the application 

of (2). We then apply the minimum lower sets algorithm (MLSA) (Robertson et al., 1988) to 

the posterior samples of ψ(s, j, h) and define ψ*(s, j, h) to be the transformed ATS’s for the 

jth dose and hth risk group. The transformed ATS parameters follow the partial ordering 

constraints such that

i.e., ψ*(s, j, h) are monotonically increasing in dose given risk group and in risk group given 

dose. A rationale for using the MLSA in a similar matrix-order setting, can be found in Li et 

al. (2008). Details on the MLSA are in the Biometrics journal Supplementary Materials 

website.

4 Proposed dose-finding scheme

4.1 Dose-finding algorithm

As a first step the researchers will need to determine the target average toxicity score. 

Determination of this quantity (in a slightly different context) is given in Bekele and Thall 

(2004). Specific details on how to calculate this quantity in the context of the method 

proposed in this article can be found in the Biometrics journal Supplementary Materials 

website. Once we have determined the target ATS ψT, we develop decision rules for dose 

assignment and MTD estimation based on the posterior probabilities ξjh = Pr{ψ*(s, j, h) > 

ψT | data}. To start, we partition the unit interval into three subintervals determined by the 

probability cut-offs 0 < ξ < ξ̄ < 1.

Definition—For a fixed risk group h, the toxicity at dose j is negligible if ξjh < ξ, 

acceptable if ξ ≤ ξjh ≤ ξ̄, and excessive if ξjh > ξ̄.

Reasonable values for these cut-offs are .05 ≤ ξ ≤ .30 and .70 ≤ ξ̄ ≤ .95 (Bekele et al., 2008), 

with the particular values chosen to reflect how aggressively or conservatively the PIs wish 

the algorithm to behave. In addition, the choices of ξ and ξ̄ should be guided by preliminary 

computer simulations and adjusted to obtain a design with desirable operating characteristics 

for the proposed trial. Given ψT, ξ, and ξ̄, we describe below a dose-finding algorithm for 

trials with multiple toxicity categories and risk groups.

1. Within any risk group, if the current dose exhibits negligible toxicity, then escalate 

to the next higher dose in that risk group.

2. Within any risk group, if the current dose exhibits acceptable toxicity, then stay at 

the current dose for that risk group.
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3. Within a risk group, if the jth dose exhibits excessive toxicity and j > 1, then de-

escalate to the highest dose less than j that is not excessively toxic.

4. At any point in the trial when a cohort of patients is fully assessed for toxicity 

within a given risk group, reassess all risk groups for toxicity and for dose-

assignment decisions to de-escalate, stay, or escalate.

5. At the end of the trial, select from within each risk group a dose with either 

negligible or acceptable toxicity having a posterior mean of ψ*(s, j, h) closest to the 

target ψT.

The algorithm above guides dose finding when using our proposed method. In addition to 

these steps, we include additional trial-conduct rules due to practical considerations. These 

rules are: 1) treat the first cohort of patients in each risk group at the lowest dose for that risk 

group (note, while the clinical trial for which the method was originally designed used this 

rule, the method is not constrained to require it), and 2) at any point in the trial, if the 

starting dose for the lowest risk group is deemed unsafe, then stop the trial. To assess the 

safety of the starting dose one could use ξ̄ or alternatively, since the negative impact of 

stopping enrollment to a risk group without choosing a dose is high one may chose to define 

a risk group stopping probability ξ*such that if ξ1h > ξ*stop the trial. These rules are usually 

incorporated into a practical trial to protect the patients safety, even though they are not 

directly related to the statistical model used for dose finding.

5 Simulation study

For our simulation study, we constructed six scenarios with different true ATS across dose/

risk-group combinations (see Figure 1). As stated in Section 2, the maximum sample size 

chosen for this simulation was 51, with maximum risk-group sample sizes of 21, 18, and 12 

for the low, moderate, and high groups, respectively. In general the number of subjects 

chosen for a multiple risk groups trial is a function of the number of doses and risk-groups 

being studied. As a rule of thumb, an investigator could initially consider 6 patients per 

dose/risk-group combination (In this trial that number would be 54 subjects). The sample 

size obtained from this rule is equivalent to the maximum possible sample size under 3 

independent trials using the standard 3+3 algorithm. From this starting point the investigator 

could subsequently identify the sample size to achieve desirable operating characteristics via 

simulations, in conjunction with the selection of tuning parameters ξ, ξ̄, and ξ*. For each 

dose/risk-group combination, we set the parameters (α0jh, …, αKjh) = (0.604,0.178,0.089, 

0.071,0.059) for the Dirichlet prior of Pjh. Under this prior, it can be shown that a priori ψ(s, 

j, h) is centered around 0.20 and has an effective sample size approximately equivalent to 

one patient.

In our simulation, we used the target ATS ψT = 0.25, based on the elicitation process 

described in Section 4.1. In addition, we used cutoff probabilities ξ = 0.25, ξ̄ = 0.90 and risk 

group stopping probability ξ* = 0.95. We examined six scenarios for the MM trial, and for 

each scenario we simulated 1,000 trials.

For comparison purposes, we also implemented the modified continual reassessment method 

(M-CRM) by Yuan, Chappell, and Bailey (2007). They model the toxicity scores 0 = w0 < 
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w1 < …< wK = 1 as fractional responses using a Bernoulli quasi-likelihood. Let  be the 

observed toxicity score for the ith patient. If the ith patient experiences the kth category of 

toxicity, then . Within each risk group, the model parameters for the M-CRM are θJhh 

= (ŝ1h, …, ŝJh,h) and αh, which are estimated by the quasi-likelihood given by

(3)

The quantity θJhh can be considered a “toxicity score skeleton” in which ŝjh is fixed with 0 < 

ŝ1,h < … < ŝJh,h < 1. In addition, αh = eβh, where βh has a normal prior distribution with 

mean 0 and variance 100. In the simulations, we used θ4,1 = (0.05, 0.10, 0.3, 0.40) for the 

lowest risk group, θ3,2 = (0.15, 0.3, 0.40) for the middle risk group, and θ2,3 = (0.25, 0.35) 

for the highest risk group. These skeletons were chosen to reflect the PIs’ belief that toxicity 

would increase with dose and risk group. In addition, we attempted to calibrate the prior 

means and variances of βh so that the reported M-CRM design had reasonable operating 

characteristics.

Within each risk group, we used the M-CRM to choose each successive dose, and 

determined the MTD by minimizing . To ensure a fair comparison, we modified 

this method so that it would stop early for excessive toxicity, since our method does the 

same. Specifically, we inserted an additional rule when implementing the M-CRM that 

stopped the accrual of new patients to a risk group if .

The operating characteristics for our proposed method and the M-CRM are summarized in 

Tables 1 and 2, which are organized into scenario sections. For each scenario section, 

italicized rows represent the true ATS for that dose/risk-group combination multiplied by 

100. Rows in bold face show the selection percentages and average number of patients 

assigned to a given dose/risk-group combination. The columns “Scen” and “Risk Grp” 

indicate the scenario and risk group being evaluated, while the column “None” represents 

the percentages of the 1,000 simulated trials in which no doses were selected from any of the 

risk groups due to excessive toxicity.

Recall that there are four doses for risk group 1 (low risk), three for risk group 2 (moderate 

risk), and two for risk group 3 (high risk). Our proposed method generally treats more 

patients at doses closer to the target ATS ψT = 0.25, and tends to be more conservative for 

higher risk groups (a positive feature in dose finding) because it uses information regarding 

toxicity risk across risk groups. For example, under Scenario 1, our method is more likely 

than the M-CRM to choose a dose closest to the target ATS (except for risk group 3), and on 

average places more patients at these doses. Scenario 2 is characterized by a steep increase 

in the dose-toxicity curve. Our method selects the highest non-toxic doses (dose 3 for risk 

group 1, dose 2 for risk group 2, and dose 1 for risk group 3) at least 35% more often than 

the M-CRM. In Scenario 3, both methods choose doses closest to the target ATS over 50% 

of the time, the M-CRM outperforms our method with respect to correct selection 

percentage for risk groups 1 and 3 while our method outperforms the M-CRM for risk group 

2. In scenarios 4–6 our method compares favorably to the M-CRM.
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In the Biometrics journal Supplementary Materials website we provide additional simulation 

results which show how the method behaves under a wide variety of situations. These 

include additional simulation results evaluating the prior; spacing of the elicited toxicity 

scores; a set of cases in which the elicited toxicity scores are restricted to take on values of 

either 0 or 1 (equivalent to the binary toxicity case); additional simulation scenarios; 

scenarios comparing the proposed method and the M-CRM to a case in which the middle 

and lower risk groups are allowed to escalate to higher doses; cases in which the posterior 

mean toxicity score is isotonized rather than incorporating the isotonic regression as part of 

the Monte Carlo simulation; and lastly, cases in which concurrent independent phase I trials 

in each risk group are monitored using our proposed Dirichlet model in conjunction with the 

ATS framework and then using the MLSA only at the end of the trial to combine the results 

and make final dose selections. In general we found that our method works well. Of 

particular note is that the modified versions of the method using either the posterior mean 

isotonized ATS or the independent clinical trials ATS also work reasonably well.

6 Discussion

We have described a statistical framework for dose finding that incorporates ordinal toxicity 

severity levels. Our method also accommodates the degree of patients’ susceptibility to 

toxicity via a Bayesian isotonic regression transformation for an average toxicity score 

across dose/risk-group combinations. Our method requires close interaction between the PIs 

and statisticians to establish the risk groups, toxicity severity categories, toxicity severity 

scores, and target ATS.

There are various alternative to modeling ordinal toxicity severity levels, including the 

cumulative link ordinal logistic regression, the adjacent categories logistic regression, and 

the continuation ratio models. However, each of these approaches requires that specific 

assumptions be met, and it is unclear how they would perform in the context of risk-group-

specific dose finding.

In this article we compared our method to three independent applications of the M-CRM to 

each risk group. We note that it may be possible to extend the original M-CRM method to 

better handle clinical trials in which risk-groups have been identified. There are two ways to 

extend the M-CRM model to the multiple risk group setting. The first involves adding a 

risk-group effect to the M-CRM model in a manner analogous to O’Quigley and Paoletti 

(2003). The second approach would be to calculate the expected posterior toxicity score 

using the M-CRM within each risk group and then use the minimum lower sets algorithm on 

these expected posterior toxicity scores to obtain partially ordered estimates for dose 

finding. Although the model would be different, the dose-escalation rules would be similar 

to the rules used in our proposed method.

Our current design assumes fixed sample sizes with risk groups. If an investigator fills up 

one risk group and another patient of that risk comes along at a later timepoint, the 

investigators may want to enter him/her into the trial anyway. We note that our method can 

be modified to relax the restriction on fixed within risk-group sample sizes. Having noted 

this and although the concern over possibly wasting patients is a valid one, it is not clear that 
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an investigator will necessarily want to enter an excess patient into an arm which has already 

met its target sample size. Specifically, the investigators must balance the desire to not waste 

a possible patient against the competing desire to ensure that the toxicity profile of the 

compound is adequately characterized across all risk groups. Given that most trials are 

limited in the number of patients they can accrue, putting an excess number of patients on a 

filled risk group automatically ensures that fewer patients in the other risk groups can be 

enrolled into the study (under the usual assumption that the total sample is fixed due to 

monetary cost or study duration constraints). While in our trial the PI and sponsor both 

agreed that characterizing the toxicity profile for each group was most important, this is not 

an open-and-shut issue. This issue should be reviewed by the PI and statistician; potentially 

even running simulations comparing the two alternative enrollment strategies with respect to 

various operating characteristics.

As suggested by one reviewer, some may consider toxicity grades a more important factor in 

assessing toxicity than risk group. In this case, one could assume that the dose response 

curves are different for each risk group then it may possible to experiment with more dose 

levels over a finer grid rather than a subset of a few doses. While this is a valid concern, 

practical and statistical limitations may recommend use of risk-group based designs. First, 

safely escalating over a fine grid poses challenges because it may not be possible to 

implement a “do-not-skip a dose” without having an excessively large trial. In the absence 

of a do-not-skip rule, one could decide to implement a “do-not-jump-more-than-X-dose-

units” rule. The researcher would have to carefully assess the operating characteristics of 

such a design. Second, it may not be possible to physically manufacture doses over a fine 

grid (due to financial constraints). This statement is especially true for compounds given in 

pill form. Specifically, the process of preparing and combining the various components of a 

new treatment can complex, expensive, and feasible only for a few doses because each of 

these doses should meet Regulatory Good Manufacturing Practice standards. Lastly, there is 

still something to be gained (either at the end of the trial or during the trial) from borrowing 

strength across doses. Specifically, were we to use only the information in a particular risk 

group to make dose-escalation decisions, we could possibly end-up in an situation in which 

the MTD for a higher risk groups is higher than the MTD for a lower risk group.

Our supplemental simulations showed that the method based on a non-isotonized dose-

escalation scheme could be calibrated to provide similar operating characteristics to the 

method proposed in this article. While simple, care should be given in its application as it 

could lead to undesirable situations during trial conduct in which patients with higher risk 

profiles are assigned to higher doses than patients with lower risk profiles. The trade-off 

between simplicity and possible undesirable outcome should be explored carefully before 

the non-isotonized version of the method is implemented.

Extentions of this research include developing models to characterize continuous toxicity 

outcomes and ordinal-competing-risks outcomes (ordinal-competing-risk allow for 

enrollment before the current patient has been completely assessed for toxicity). We believe 

that the method presented in this paper could possibly be used in the case of continuous 

toxicity outcomes via an extension of Ivanova and Kim (2008). In the case of ordinal-
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competing-risk outcomes, the method proposed in this paper could be extended using 

models developed by Cheung and Chappell (2000), Cheung and Thall (2002).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Scenarios in the simulation study for the multiple myeoloma trial. The horizontal and 

vertical axes are dose and average toxicity score, respectively. The ATS ≡ 0.25 is 

represented by the horizontal dotted line. True ATS’s for the low risk group (40 < GFR ≤ 60 

mL/min), moderate risk group (20 < GFR ≤ 40 mL/min), and high risk group (GFR ≤ 20 

mL/min) are represented by a circle, triangle, and square, respectively. Table 1: Simulation 

results using the proposed design for dose finding with risk groups. For each scenario we 

provide the true ATS by risk group (italicized numbers in table) and report the correct 

selection probabilities and the average number of patients per dose for each risk group.
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