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Abstract Breast density is a strong risk factor for breast can-
cer. In this paper, we present an automated approach for breast
density segmentation in mammographic images based on a
supervised pixel-based classification and using textural and
morphological features. The objective of the paper is not only
to show the feasibility of an automatic algorithm for breast
density segmentation but also to prove its potential application
to the study of breast density evolution in longitudinal studies.
The database used here contains three complete screening
examinations, acquired 2 years apart, of 130 different patients.
The approach was validated by comparing manual expert an-
notations with automatically obtained estimations.
Transversal analysis of the breast density analysis of
craniocaudal (CC) and mediolateral oblique (MLO) views of
both breasts acquired in the same study showed a correlation
coefficient of ρ=0.96 between the mammographic density
percentage for left and right breasts, whereas a comparison
of both mammographic views showed a correlation of ρ=
0.95. A longitudinal study of breast density confirmed the
trend that dense tissue percentage decreases over time, al-
though we noticed that the decrease in the ratio depends on
the initial amount of breast density.

Keywords Breast tissue density . Segmentation .

Mammography . Longitudinal studies . Computer-assisted
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Introduction

Mammographic density represents the amount of
fibroglandular tissue, which is radiographically dense, in con-
trast to fat tissue, which appears lucent in a mammogram [1].
Breast density is one of the strongest risk factors for breast
cancer [2, 3], and women with highly dense tissue have
a threefold to sixfold increase in breast cancer risk [4].
Additionally, dense breast tissue also affects methods used
for automatic tumour detection [5, 6]. Specifically, studies
have shown that either the sensitivity of computer-aided
detection (CAD) systems is significantly decreased as breast
density increases (whereas the specificity of the system
remains relatively constant) [7, 8] or when specificity is
decreased [9].

Several risk assessment metrics have been proposed in the
literature to classify mammograms according to their internal
density [10]. Currently, the American College of Radiology
(ACR) Breast Imaging-Reporting and Data System (BI-
RADS) has become a standard in the medical community.
According to the BI-RADS protocol, mammograms can be
classified into four categories: I (almost entirely fat), II
(scattered fibroglandular densities), III (heterogeneously
dense) and IV (extremely dense). Figure 1 shows four mam-
mograms, one of each density class. The amount of
fibroglandular tissue increases with each category.

There are automatic approaches that can qualitatively clas-
sify mammograms according to the above metrics [11, 12].
However, a quantitative segmentation of the breast into fatty
and dense tissues provides more information at the local level
than breast classification; nonetheless, manual breast density
segmentation is difficult, time-consuming and prone to inter-/
intra-rater subjectivity. The semiautomated Cumulus soft-
ware1 can perform an interactive intensity threshold [13, 14]

1 Cumulus software, University of Toronto, Toronto, Ontario, Canada
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and is considered one of the best methods for obtaining a quan-
titative segmentation [3]. However, the use of thresholds may
not be sufficient to distinguish all of the dense parts of the breast.
Fully automated techniques are currently being developed for
obtaining a more objective and quantitative evaluation of breast
density. For instance, the Volpara software2 [15, 16] returns the
percentage of dense tissue by means of a volumetric estimation
of the breast.

In contrast with the above approaches, supervised ap-
proaches allow training of the algorithms using the ex-
perts’ knowledge. In our previous work [17], we reported
the benefits of using a statistical approach in contrast to
various threshold-based approaches. The approach was
based on modelling the intensity of the pixel and its
neighbourhood information (texture). Kallenberg et al.
[18] extended the approach using a neural network clas-
sifier and by also modelling pixel position. The approach

presented here extends this work by using additional fea-
tures as well as a different classifier. Instead of using a
neural network, we used a support vector machine
(SVM) classifier, which has been proven to be a more
robust and stable classifier in a variety of applications,
including mammography [19, 20].

Figure 2 graphically shows our proposal for breast density
segmentation. Two main parts, training and the testing, can be
distinguished. During training, the classifier learns to distin-
guish between fatty and dense pixels frommanually annotated
data, whereas in testing, the classifier assigns a fatty or dense
tissue label to each pixel of the input image. The results of the
approach are analysed qualitatively based on the BI-RADS
analysis and quantitatively by comparing the dense tissue per-
centage segmented in the four views of the same transversal
study. Finally, a longitudinal analysis is performed by
analysing the evolution of dense tissue percentage in different
temporal studies. In this paper, we report the first longitudinal
analysis of breast density performed by a fully automated
algorithm.

2 Volpara software is developed by Matakina International limited,
Wellington, New Zealand

Fig. 1 Four full-field digital
mammograms of increasing
internal density. a BI-RADS I, b
BI-RADS II, c BI-RADS III and
d BI-RADS IV
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Materials and Methods

Database

The data used in this paper consists of complete and temporal
full-field digital mammographic studies from 130 patients,
properly anonymised and acquired following the Spanish
screening programme specifications [21]. Each study includes
both mediolateral oblique (MLO) and craniocaudal (CC)
views from both breasts of a patient. The initial exam was
followed by two additional exams every 2 years. Hence, the
total number of mammograms analysed was 1560. The orga-
nisation of Spain’s NHS is decentralised, with the responsibil-
ity being delegated to each regional health system.
Specifically, in Catalonia, this program affects all women be-
tween 50 and 69 years of age; thus, the ages of the patients are
in this range. All mammograms were acquired from a Hologic
Selenia full-field digital mammogram, with a pixel resolution
of 70 μm and 12 bits per pixel. The images have a size of
4096×3328 pixels or 3328×2560 pixels, depending on the
breast size. All images were bicubically downsampled by a
factor of 4. This step reduced not only the computational cost
but also the image noise without having an impact on the final
density estimation.

A proper ground truth for the aim of this work would con-
sist of a manual breast density segmentation of mammograms
by an expert team. However, this approach is not feasible
because it is challenging and time-consuming and is not nec-
essary in real practice. Instead, a BI-RADS density score was

assigned to each mammogram of the patients by three differ-
ent expert radiologists with vast experience in mammography,
and the majority vote was taken as the ground truth [12]. It is
important to note that for each patient, the classification was
performed only during the first examination; therefore, further
evolution of the tissue cannot be accounted for. The database
was composed of 29, 38, 30 and 33 cases belonging to BI-
RADS I, II, III and IV density categories, respectively.
Although this uniform distribution does not represent the real
distribution of breast densities among women in screening
programmes, it was appropriate for the development of our
objectives.

Pre-processing

The background of a digital mammography image is homo-
geneous and completely black; thus, the only part of the image
that interferes with automatic algorithms is the pectoral mus-
cle (only in MLO images). The pectoral muscle is brighter
than the fatty tissue and may have a similar intensity as dense
areas of the breast and thus obstruct the performance of auto-
matic density segmentation algorithms. In our work, the pec-
toral muscle was automatically detected using the approach of
Kwok et al. [22], which was originally developed for digitised
mammograms, and we adapted it for digital mammograms.
However, this method failed for a few images, and thus, the
pectoral muscle was manually removed.

During mammographic acquisition, the breast is com-
pressed with a tilting compression paddle; hence, breast

Fig. 2 Our approach follows a
pixel-based classification scheme.
Firstly, the algorithm learns to
distinguish between fatty and
dense tissue (blue box), and
subsequently, it is used to
segment new images (green box)
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thickness during a mammogram is non-uniform, being lower
in the periphery. This implies that pixels near the skin line are
overexposed, and in a mammogram, those pixels appear
darker than other breast pixels (see Fig. 1). As such, an en-
hancement step is necessary to correct this issue. To solve this,
we applied a peripheral enhancement based on the work of
Tortajada et al. [23, 24]. Specifically, from the furthest
overexposed pixel from the skin line boundary to the closest,
the intensity of each pixel was iteratively corrected using the
following formula:

I
0
xð Þ ¼ I xð Þ*INin xð Þ

IN xð Þ ð1Þ

where IN xð Þ refers to the mean intensity of the neighbourhood
of pixel x and INin xð Þ and the mean intensity of the
neighbourhood located one pixel inside the breast.

Feature Extraction

The most common feature used for breast density seg-
mentation is the image’s own intensity. However, this
information alone might not be enough for correct clas-
sification. Texture information allows to introduce
neighbourhood information in the segmentation algo-
rithm [25]. Additionally, a recent report also suggested
the use of morphological features, which incorporates
information on the likely locations of dense tissue into
segmentation algorithms [18]. Our proposed tool com-
bines intensity, texture and morphological features.

We computed all of the features shown in Table 1 using two
mammograms of each BI-RADS class (i.e. eight mammo-
grams in total) and a large variety of scales. To compute the
texture features, a search window was centred on a pixel to
define a region of interest. Textural features were computed
inside this region and assigned to the corresponding central
pixel. This process was repeated for all pixels on the image,
except for pixels located at the border of the image where the
window could not be placed; these pixels were excluded from
further processing. The size of the window allowed experi-
mentation with different texture scales. Small windows
allowed detection of small tissue patterns whereas large win-
dows allowed detection of bigger patterns. The range of sizes
used enabled the detection of most textural patterns present in
the breast density.

From the complete feature set, the team of experts
visually selected the features that best distinguished be-
tween dense and fatty tissue (notice that the lack of a
proper ground truth prevents the use of automatic feature
selection algorithms). This led us to a smaller set of
features, which are summarised in Table 2 along with
the scale used. In total, 51 features were used: original

and corrected intensities, position x and y, distance to
skin, the three first histogram moments and histogram
entropy (computed at four different scales), the three first
Laplacian moments and Laplacian homogeneity and en-
tropy (also at four different scales) and local binary pat-
terns [26] (we used 10 bins), which were computed using
an elliptical neighbourhood. As Nanni et al. [27] ob-
served, using an anisotropic neighbourhood rather than
an isotropic one is usually more useful in medical imag-
ing, as anisotropic distributions are more common in
these types of images.

Segmentation

The segmentation step was performed for classification at the
pixel level by means of a SVM classifier [28]. An SVM is a
binary classifier that represents the already known samples as
data points in space and looks for the gap that separates the
two categories (fatty pixel or dense pixel) as wide as possible.
Therefore, new samples are mapped into that space and pre-
dicted to belong to a category based on the side of the gap they
fall on.

To train the SVM, dense and fatty regions were man-
ually selected from a set of eight mammograms (two for
each BI-RADS category), where they were removed
from the dataset and not used for further testing and
subsequent analysis. Therefore, each pixel was
characterised using its intensity, neighbourhood texture

Table 1 Features initially analysed for breast density segmentation.
The different window sizes used when computing each textural feature
are indicated

Type Feature Window size (in mm)

Intensity Original
Corrected

Morphologic Position x, y

Distance to skin

Distance to nipple

Angle to nipple

Texture Histogram moments
1, 2, 3

0.84, 1.96, 4.20, 5.88, 9.80,
14.28, 19.88

Histogram entropy 0.84, 1.96, 4.20, 5.88, 9.80,
14.28, 19.88

Laplacian moments 1, 2, 3 0.84, 1.96, 4.20, 5.88, 9.80,
14.28, 19.88

Laplacian homogeneity
and entropy

0.84, 1.96, 4.20, 5.88, 9.80,
14.28, 19.88

Co-occurrence matrices 1.96, 4.20, 9.80, 11.48, 19.88

Fractal dimension 1.96, 4.20, 9.80, 11.48, 19.88

Quaternion wavelets 1.96, 4.20, 9.80, 11.48, 19.88

Local binary patterns 4.20, 11.48
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and morphological information and was used as an in-
put for training the classifier. To extract the training
data, we combined two different strategies:

& Manual selection of regions of interest (ROIs) being clear-
ly dense or fatty. However, using only these regions, the
classifier had the lack of data from those regions where the
tissue is not clearly dense or fatty.

& Manual selection of ROIs from regions containing fatty
and dense tissue. The pixels in these ROIs were divided
using an automatic threshold [29]. Pixels with intensity
higher than this threshold were considered as dense,
whereas pixels with lower intensity than the threshold
were considered as fatty.

One of the main drawbacks of SVM is its large computa-
tional time for training. Notice that the training step is per-
formed prior to the testing step, hence allowing a fast segmen-
tation of the mammograms.

Evaluation

To evaluate the performance of the tool, we used three differ-
ent strategies. Firstly, using a box plot, we compared the per-
centage of dense tissue clustered according to its BI-RADS
class. Ideally, the denser the class, the higher the mean per-
centage of dense tissue should be. This analysis allows us to
manually correlate the ground truth labelled by the experts
with the results of the tool, and it provides a strong evaluation
of the tool due to the absence of manually segmented images.

To provide a complementary evaluation, we estimated the
dense tissue percentage in bilateral breasts (left and right) and
in ipsilateral views (MLO and CC views). In the first case, it is
well known that the internal tissue distribution is similar, de-
spite being two different breasts, and therefore, the percentage
of dense tissue should be highly correlated. In the second case,
we are comparing the tissue distribution of the same breast but
using different points of view, which should also be closely

correlated. These analyses allow us to test the repeatability of
the tool.

Longitudinal Analysis

As a potential use of this tool, we analysed the evolution of
breast density during three screening exams. The result of our
study was compared with the three different models that Boyd
et al. [3] proposed to describe density change over time.
Specifically, these models use the 25th and 75th percentiles
(i.e. first and third quartiles) of the distribution of density
percentage to describe the different density behaviours. In all
models, the percentage of breast density decreases when age
increases, but changes in the interquartile range (IQR) vary
depending on the model. The IQR increases with age in model
A, does not change in model B and decreases in model C.

Results

Transversal Analysis

Figure 3 presents a box-and-whisker plot representation of the
mammographic density percentage according to the BI-
RADS classification given by the experts. In this type of plot,
a box is drawn enclosing the first and third quartiles of the
data, and the median value divides the box into two parts.
Moreover, the whiskers show the variability outside the upper
and lower quartiles. Therefore, each box represents the vari-
ability of the automatic estimation of the dense percentage
clustered according to the experts’ manual annotation. It can
be observed in the figure that the dense percentage increases
as the BI-RADS class increases, showing high correlation
between manual annotations and automatic estimations.

Table 2 Features used for breast density segmentation, including the
scale used to compute them

Feature Window size (in mm)

Original intensity

Corrected intensity

Position x, y

Distance to skin

Histogram moments 1, 2, 3 1.96, 4.20, 9.80 and 19.88

Histogram entropy 1.96, 4.20, 9.80 and 19.88

Laplacian moments 1, 2, 3 1.96, 4.20, 9.80 and 19.88

Laplacian homogeneity and entropy 1.96, 4.20, 9.80 and 19.88

Local binary patterns 11.48 (10 bins)
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Fig. 3 Box plot between BI-RADS and density percentage of the seg-
mentation result
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Moreover, the distinction between BI-RADS I, II and III is
very clear (the boxes are well-separated). In contrast, the box-
es of BI-RADS III and IV partly overlap, although the median
for BI-RADS IV is outside the enclosed area in BI-RADS III.
Additionally, this figure seems to indicate that it is easier to
segment dense tissues in low dense mammograms than in
highly dense mammograms, where dense regions can be dis-
tributed along the mammogram. These claims are reinforced
numerically based on analysis of the mean density of each
BI-RADS class. Specifically, we obtained the following
results: BI-RADS I: 0.20±0.08, BI-RADS II: 0.32±0.09,
BI-RADS III: 0.47±0.10 and BI-RADS IV: 0.58±0.13.
Upon analysis of the independence of each class using
pairwise t tests, we found that the distributions were sig-
nificantly different (p value <0.01).

Figure 4 compares the percentages of dense tissue in the
transversal study. Figure 4a shows the results of the compar-
ison between dense percentage of all left and rightMLOmam-
mograms for the basal exploration (bilateral comparison),
whereas Fig. 4b shows the relationship between both views
of the same breast (ipsilateral comparison). Note that in each
graph, a point corresponds to a particular case. As expected,
the segmentation results for the bilateral comparison are high-
ly correlated, as indicated by the plotted regression line ρ=
0.958 (p value <0.05). These results can be extrapolated to the
fact that mammograms with similar tissue density are seg-
mented with similar percentages of dense areas. Regarding
the ipsilateral comparison, the correlation between dense area
segmentation in both views is also very strong (p value
<0.05). However, in contradiction to the bilateral comparison,
the slope of the regression line is greater than 1, indicating that
the density percentage in MLO mammograms is slightly low-
er than the CC view. This fact agrees with the results reported
in other studies, where a high correlation between both views
and a lower dense percentage for MLO view were observed
[30, 31].

Longitudinal Analysis

Regarding the analysis of the density evolution, we
computed the density percentage of all patients in the
first, second and third acquired studies. Afterwards, and
similarly to the box plot analysis, we derived the first
and third quartiles at each time to obtain the evolution
of the breast density, as performed by Boyd et al. [3].
Figure 5a shows the regression line for the first and
third quartiles when including the whole dataset in the
study. As expected, breasts tend to decrease their den-
sity with time, and it seems that the decrease in the first
quartile is slightly slower than the decrease in the third
quartile.

We repeated the same procedure for all of the patients
but clustered the mammograms according to the BI-

RADS density categories assigned by the experts in the
first study. These results are shown in Fig. 5b. Notice
that although both quartiles decrease their density in all
categories, the behaviour is different in each of these
categories. Specifically, for BI-RADS I, the decrease in
the ratio of both quartiles is significant and almost par-
allel, although the decrease of the first quartile is slightly
greater than that of the third one. For BI-RADS II and
III, the decrease in the third quartile is significant,
whereas the first quartile remains almost unaffected.
Finally, for BI-RADS IV, there is only a slight decrease
in both the first and third quartiles.

Furthermore, for each case within the database, we com-
puted a line of best fit for density percentage variation over

Fig. 4 Summary of the results. a Bilateral comparison and b ipsilateral
comparison
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Fig. 5 First (dotted line) and third (continuous line) quartile evolution of
breast density percentage when using a the entire database or b split
according to the BI-RADS categories (from left top to bottom right: BI-

RADS I, BI-RADS II, BI-RADS III and BI-RADS IV). S0 contains the
initial follow-up exams, S1 contains the second follow-up and S2 contains
the third follow-up. Note the differences between the density categories
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time, and we analysed the different slopes. As expected, the
mean slope for all women in the database was negative
(−0.02), indicating a density decrease. Upon analysing the
data in terms of BI-RADS category, the mean slope was also
negative. Specifically, for BI-RADS IV, we obtained the low-
est mean slope (−0.003).

Discussion

A novel automatic tool developed for breast density tissue
segmentation has been validated in this work. The bilateral
comparison of the results has shown a very strong correlation
that agrees with previous studies that analysed manually seg-
mented mammograms. Additionally, the ipsilateral compari-
son also showed a very strong correlation between both views
and with almost the same slope reported in previous studies
performed with manually segmented images.

Comparisons with other automatic approaches that seg-
ment the breast according to its density is not an easy task
because it is not feasible to obtain a ground truth detailing
all the dense regions in a large set of mammograms. In
addition to this difficult computational task, inter- and
intra-expert variability is very high when looking at breast
densities [12]. However, we claim that our approach out-
performs threshold-based approaches or clustering ap-
proaches that just use image intensities because the loca-
tion of dense areas also plays a key role in its classifica-
tion. We also tested the use of different classifiers typical-
ly used in mammography, such as a neural network [18]
and a boosting algorithm [32]. The performance of both
classifiers was worse than that obtained with SVM, with
slightly better results obtained using the neural network
compared to the boosting classifier. The main drawback
of SVM is its computational cost, mostly due to the
amount of time needed to compute the features. Note that
once the features are computed for each pixel, the classi-
fication can be quickly performed by parallelising
techniques.

The longitudinal analysis confirms the well-known fact
that breast density decreases with age. Although there are
other factors involved in breast density variations, such as
menopause status, pregnancy and childbearing [33], in this
work, we focused on the evolution with age, comparing
our results with the theoretical models proposed by Boyd
et al. [3] based on the IQR. According to the results ob-
tained with our database and graphically shown in Fig. 5a,
we observed that breast densities decreased over time,
whereas the IQR slightly decreased. Therefore, our data
seems to be congruent with model C, although the de-
crease is so slight that it could also be congruent with
model B. However, depending on the BI-RADS score,
no single model always described the density behaviour

of all of the women. Specifically, for BI-RADS I, densities
decreased with age, whereas IQR increased; therefore,
model A or B should have been assigned in this case. On
the other hand, BI-RADS II and III were clearly well-
described by model C. Finally, the BI-RADS IV category
label should be assigned to model B or C. Our database
was composed by only three screening studies per woman,
which limits the fitting of this model. More studies for
each patient are required to provide a better adjustment.
Additionally, the lower average slope obtained for high-
density breasts indicates that the group with an increased
risk of breast cancer [14] has a slower decrease in the
density of the breast.

There are some limitations in our study. The lack of
manual annotations of dense regions in a large dataset of
mammograms prevents not only the comparison between
manual and automatic segmentations using quantitative
overlapping measures but also the use of automatic feature
selection algorithms. On the other hand, regarding the lon-
gitudinal analysis, 6 years is a short time to detect chang-
es in breast density, and this does not allow significant
clinical conclusions to be made. However, automatic tools
allow the detection of density changes in this short period
of time.

Automatic tools based on computational approaches al-
low accurate estimation of breast density and quantifica-
tion of changes with time. Longitudinal changes in breast
density are dependent on the internal density of each
breast, in addition to other factors. In our experiments,
density changes in low-density breasts presented a more
heterogeneous behaviour than those in high-density
breasts, where the percentage of dense tissue seemed to
be more stable over time.
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