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Loss-of-Function Mutations
in APPL1 in Familial Diabetes Mellitus

Sabrina Prudente,1,* Prapaporn Jungtrakoon,2,3 Antonella Marucci,4 Ornella Ludovico,4

Patinut Buranasupkajorn,2,3 Tommaso Mazza,1 Timothy Hastings,2 Teresa Milano,5 Eleonora Morini,4

Luana Mercuri,1 Diego Bailetti,1,6 Christine Mendonca,2 Federica Alberico,1 Giorgio Basile,1,6

Marta Romani,1 Elide Miccinilli,1 Antonio Pizzuti,1,6 Massimo Carella,7 Fabrizio Barbetti,8,9

Stefano Pascarella,5 Piero Marchetti,10 Vincenzo Trischitta,1,4,6 Rosa Di Paola,4 and Alessandro Doria2,3,*

Diabetes mellitus is a highly heterogeneous disorder encompassing several distinct forms with different clinical manifestations

including a wide spectrum of age at onset. Despite many advances, the causal genetic defect remains unknown for many subtypes

of the disease, including some of those forms with an apparent Mendelian mode of inheritance. Here we report two loss-of-function

mutations (c.1655T>A [p.Leu552*] and c.280G>A [p.Asp94Asn]) in the gene for the Adaptor Protein, Phosphotyrosine Interaction,

PH domain, and leucine zipper containing 1 (APPL1) that were identified by means of whole-exome sequencing in two large families

with a high prevalence of diabetes not due to mutations in known genes involved in maturity onset diabetes of the young (MODY).

APPL1 binds to AKT2, a key molecule in the insulin signaling pathway, thereby enhancing insulin-induced AKT2 activation

and downstream signaling leading to insulin action and secretion. Both mutations cause APPL1 loss of function. The p.Leu552*

alteration totally abolishes APPL1 protein expression in HepG2 transfected cells and the p.Asp94Asn alteration causes significant

reduction in the enhancement of the insulin-stimulated AKT2 and GSK3b phosphorylation that is observed after wild-type APPL1

transfection. These findings—linking APPL1 mutations to familial forms of diabetes—reaffirm the critical role of APPL1 in glucose

homeostasis.
Diabetes mellitus (DM [MIM: 125853]) is the most com-

mon metabolic disorder, imposing a worldwide burden

on morbidity and mortality arising from its chronic com-

plications.1 Rather than being a single disorder, DM en-

compasses several distinct forms characterized by different

clinical manifestations including a wide spectrum of age

at onset.2 Such clinical heterogeneity is paralleled by a

marked genetic heterogeneity. Several disease genes have

been identified for some monogenic forms of the disease

such as ‘‘maturity-onset diabetes of the young’’ (MODY

[MIM: 606391]) and neonatal diabetes (ND [MIM:

606176]).2,3 However, despite these advances, the causal

genetic defect remains unknown for many subtypes of

the disease, including some of the forms with an apparent

Mendelian mode of inheritance. Filling this knowledge

gap would be extremely useful because it would allow

the development of predicting tools as well as novel treat-

ments tailored to specific etiological mechanisms. During

the past few years, whole-exome sequencing (WES),

made possible by the advent of ‘‘next-generation’’ array-

based sequencing methods, has emerged as a powerful

and cost-effective strategy to achieve this goal.4

Here we describe two loss-of-function mutations in the

gene for the Adaptor Protein, Phosphotyrosine Interac-

tion, PH domain, and leucine zipper containing 1 (APPL1
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[MIM: 604299]) that were identified through the WES

approach in two large families with a high prevalence of

diabetes not due to mutations in known MODY genes5,6

(S. Prudente et al., 2014, American Diabetes Association,

74th Scientific Sessions, abstract). WES was performed in

60 families (52 from the US and 8 from Italy) selected on

the basis of the following criteria: (1) presence of overt dia-

betes in at least three consecutive generations with an

apparent dominant transmission, (2) a proband and at

least one first-degree relative with diabetes diagnosed

before age 35, (3) diabetes entering the family from only

one side, and (4) lack of mutations in the six most com-

mon MODY genes7 (HNF4A [MIM: 600281], GCK [MIM:

138079], HNF1A [MIM: 142410], PDX1 [MIM: 600733],

HNF1B [MIM: 189907], and NEUROD1 [MIM: 601724]) as

determined by Sanger sequencing. Study protocols and

informed consent procedures were approved by the local

Institutional Ethic Committees in Italy and the US and

all participants gave written consent. This study was car-

ried out in accordance with the Declaration of Helsinki,

as revised in 2000. Family members were classified as hav-

ing diabetes, pre-diabetes, or normal glucose tolerance

based on the ADA 2014 criteria. For each family, WES

was carried out in the proband and an additional diabetic

member (both with age of disease onset <35 years) using
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Table 1. Clinical and Genetic Characteristics of Examined Members from the Italian and US Families

Family
Member

Mutation
Carrier Gender

Age
(years)

Age at Diagnosis
(years)

BMI
(kg/m2)

Glycemic
Status

Current
Treatment FPG

PG 2 hr
after OGTT HbA1c (%)

Family: Italian

III-1 yes M 63 32 29.73 DM ins NA NA 6.7

IV-1 yes F 43 43 29.05 DM diet 179 NA 7

IV-2 yes F 39 – 31.59 NG – 63 NA 4.5

IV-3 yes F 48 48 32.81 PD diet 92 NA 5.8

IV-4 yes M 39 – 31.64 NG – 86 74 NA

III-2 yes M 59 50 29.41 DM diet 153 NA NA

IV-5 no M 34 – 25.61 NG – 91 81 3.7

IV-6 no F 44 – 22.10 NG – 95 108 3.8

III-6 yes F 55 38 25.65 DM ins 315 NA NA

IV-7 yes M 38 – 28.67 NG – 78 NA 3.5

IV-8 yes M 33 – 27.13 NG – 98 121 3.8

IV-9 no F 43 – 21.11 NG – 77 NA 4.7

IV-10 yes F 35 – 21.72 NG – 81 NA 3.4

IV-11 yes F 41 40 24.16 PD diet 98 169 5.7

IV-12 no F 37 – 29.30 NG – 87 116 NA

III-7 no F 56 – 26.64 NG – 98 118 NA

IV-14 no F 35 – 26.37 NG – 86 119 5.6

IV-15 no F 27 – 23.58 NG – 76 75 NA

III-9 yes M 52 46 27.94 DM OHA 162 NA NA

IV-16 no F 32 – 34.77 NG – 75 103 NA

IV-17 yes F 24 – 25.77 NG – 80 91 NA

IV-18 yes M 30 – 28.41 NG – 78 70 NA

III-12 yes F 52 36 28.52 DM ins NA NA NA

IV-19 yes M 35 – 24.93 NG – 78 NA 3.2

IV-20 yes F 39 – 24.17 NG – 83 NA 5.2

III-14 yes F 41 20 30.48 DM ins 434 NA NA

IV-21 yes M 25 23 25.35 DM OHA 252 NA 7.7

IV-22 yes F 16 – 37.73 NG – 86 NA NA

Family: US

II-3 no M 75 – 27.26 NG – 92 NA NA

III-7 no M 41 10 23.01 DM ins NA NA NA

II-5 yes M 69 32 25.74 DM ins NA NA NA

III-1 no F 52 – 40.76 NG – 97 NA NA

III-2 yes M 49 48 27.33 DM ins NA NA NA

III-3 no M 46 45 27.33 DM ins 102 NA 6.4

III-4 no F 47 – 22.05 NG – 68 NA 5.4

IV-1 no M 24 – 24.37 NG – 75 NA 4.9

IV-2 no M 20 – 23.01 NG – 81 NA 5.1

III-5 yes M 44 32 30.75 DM ins NA NA 11.8

(Continued on next page)
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Table 1. Continued

Family
Member

Mutation
Carrier Gender

Age
(years)

Age at Diagnosis
(years)

BMI
(kg/m2)

Glycemic
Status

Current
Treatment FPG

PG 2 hr
after OGTT HbA1c (%)

III-6 no F 37 – 35.50 NG – 95 NA NA

III-8 yes M 48 – 28.01 NG – 72 62 5.4

Abbreviations are as follows: BMI, body mass index; DM, diabetes mellitus; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin; ins, insulin; NA, not
available; NG, normal glucose; OGTT, oral glucose tolerance test; OHA, oral antidiabetic agents; FPG, fasting plasma glucose; PD, pre-diabetes (as indicated
by HbA1c R 5.7%, according to ADA criteria).
DNA samples extracted from peripheral blood by standard

procedures; in the Italian families, a non-affected individ-

ual with age >50 years was also included in the study. All

protein-coding regions, as defined by RefSeq 67, were tar-

geted. About 210,000 coding exons were captured from

3 mg of genomic DNA using the Agilent SureSelect Human

All Exon v.4þUTRs, the Agilent SureSelect Human All Exon

v.5, or the SeqCap EZ human Exome Library v.2.0 kit, ac-

cording to the manufacturer’s protocols. Whole-exome

DNA libraries were sequenced on a HiSeq2000 (Illumina)

in the US and a SOLID 5500XL (Life Technologies) in Italy.

After mapping the short-reads to the GRCh37/hg19

human assembly by means of BWA8 and SAMtools9 or

LifeScope (Life Technologies),10 variants were detected

by means of GATK11 and filtered to include only those

withR53 orR83 depth of coverage as obtained by HiSeq

or SOLID, respectively, and per-base and mapping quality

phred values exceeding 30.

A total of 453,415 and 250,174 variants were identified

in the US and Italian families, respectively (Table S1). Of

these, 365,984 and 158,695, respectively, passed the pri-

mary QC filters. Homozygous variants, variants reported

as validated polymorphisms with frequency >0.01 in

publicly available human variation resources (dbSNP142,

1000 Genomes, NHLBI Exome Sequencing Project

Exome Variant Server [EVS]), and variants not shared

by both affected individuals were filtered out. Of the

remaining variants, 7,972 and 644, respectively, were

potentially deleterious, being nonsense, frameshift, or

missense, or affecting splicing sites (Table S1). These var-

iants were stratified through a mixed filtering/prioritiza-

tion strategy taking into account the predicted impact

of each variant12 and the functional relevance of the cor-

responding genes with regard to diabetes. At the end of

this process, described in detail in Figure S1, 35 variants

in 28 genes and 4 variants in 3 genes were prioritized

in the US and Italian datasets, respectively. The priori-

tized genes are listed in Table S2. One of them (APPL1,

GenBank: NM_012096.2 and NP_036228.1) was present

in both the Italian and US prioritization lists and, as

such, was investigated further by Sanger sequencing

and bioinformatic and functional studies. A nonsense

mutation (c.1655T>A [p.Leu552*]) was identified in this

gene in one of the Italian families whereas a missense

substitution (c.280G>A [p.Asp94Asn]) was found in

one of the US families (Figure S2). None of the other
The A
prioritized variants were found in these two families.

These other variants are being investigated by Sanger

sequencing in the families in which they were originally

identified to determine whether they segregate with dia-

betes according to an autosomal-dominant mode of

inheritance.

Clinical features of the members of the two families with

APPL1mutations are shown in Tables 1 and S3. In the Ital-

ian family, the p.Leu552* alteration was found in all the

ten members with diabetes or pre-diabetes (Figure 1A).

Eight of the individuals who did not have overt diabetes

at examination (n ¼ 19) did not have the mutation and

the remaining were carriers (Figure 1A). Of note, most of

the unaffected carriers were younger than 38 years (theme-

dian age at diabetes diagnosis among affected members)

and were still at risk of developing diabetes in the future,

especially considering that the presence of pre-diabetes

could not be excluded in most of them due to the lack of

oral glucose tolerance test (OGTT) data. It is also conceiv-

able that the concomitant presence of a specific environ-

ment and/or other ‘‘modifier’’ genes is needed for this

mutation to be fully penetrant—a scenario that has been

observed for several human inherited diseases including fa-

milial diabetes.13–16 In this context, it is noteworthy that

all non-affected subjects carrying the mutation belonged

to the youngest generation. Although, in general, the envi-

ronment has become more diabetogenic over the years, it

is conceivable that, as compared to previous generations,

young people from such heavily affected families might

be paying more attention to a salutary lifestyle such as a

proper diet and physical activity. This possibility is sup-

ported by the observation that in each affected subject of

the youngest generation, diabetes was diagnosed at an

older age (8 years on average) as compared to his/her

affected parent.

In the US family, the p.Asp94Asn alteration was found or

inferred to be present in five of the seven family members

with diabetes (Figure 1B). One of the diabetic members

who did not carry the mutation (III-7) had been diagnosed

with type 1 diabetes at age 10; the other one (III-3) might

have had the common, multifactorial form of type 2 dia-

betes, which is highly prevalent (12.3%) in the adult US

population.17 A non-penetrant subject (III-8) was observed

in the youngest generation also in this family (Figure 1B).

Both APPL1 p.Asp94Asn and p.Leu552* alteration

were not present in the database from the Exome
merican Journal of Human Genetics 97, 177–185, July 2, 2015 179



Figure 1. Pedigree Structures of the Two Families with APPL1 Mutations
Shown are families from Italy (A) and from the US (B). Round and square symbols denote females andmales, respectively. Filled and open
symbols denote diabetic and non-diabetic subjects, respectively; half-filled symbols denote individuals with pre-diabetes (see definition
in the text). The arrow points to the proband. Gray stars indicate family members in which WES was performed. Black stars indicate
those individuals who did not undergo OGTT. Gray symbol denotes individual with type 1 diabetes. NM denotes presence of heterozy-
gous APPL1mutations (p.Leu552* in the Italian family, p.Asp94Asn in the US family); NN denotes absence of suchmutations. The age at
examination is reported for each individual under the corresponding symbol; the age at diagnosis is reported for diabetic or prediabetic
individuals under the age at examination.
Sequencing Project (EVS, n ¼ 6,503) or in the larger

Exome Aggregation Consortium database (ExAC, n ¼
61,486). In addition, we could not find either alteration

among 1,639 non-diabetic and 2,970 T2D-affected unre-
180 The American Journal of Human Genetics 97, 177–185, July 2, 20
lated individuals of European ancestry we previously

described.18

No additional mutations were found by Sanger

sequencing within the entire APPL1 coding region
15



Figure 2. In Silico Prediction of the Ef-
fects of the Identified APPL1 Mutations
(A) Schematic representation of the do-
mains of the APPL1 protein and position
of the identified alteration. Abbreviations
are as follows: BAR, Bin/Amphiphysin/
Rvs domain; PH, pleckstrin homology
domain; PTB, phosphotyrosine-binding
domain. Orange circles indicate the
missense and the nonsense mutation at
positions 94 and 552, respectively.
(B) Structure of the BAR-PH domain dimer
of human APPL1 (PDB: 2Q13) and pre-
dicted effect of p.Asp94Asn alteration.
One monomer is shown in orange, the
other one in violet. The concave surface
at the bottom is the lipid-binding surface
enriched in positively charged residues,
which is needed for the interaction with
the plasma membrane. Asp94, located on
the a2 helix, and the positively charged
residues (His59 and Lys66), located on
the a1 helix, are represented by sticks. In-
teractions and atomic distances between
residues are visualized by yellow dashed
lines. The substitution of the negatively
charged amino acid Asp94 with a neutral
one (Asn94) disrupts salt bridges with
His59 and Lys66 (right). Inspection, mea-
surement, and rendering were made with
PyMOL software.
(consisting of 22 exons, Table S4) in the probands of 54

additional Italian kindreds with familial diabetes in which

WES has not been performed yet.

APPL1 is an anchor protein consisting of 709 amino

acids with multiple functional domains, including a

Bin1/amphiphysin/rvs167 (BAR) domain, a pleckstrin ho-

mology (PH) domain, and a phosphotyrosine binding

(PTB) domain19 (Figure 2A). As an adaptor protein,

APPL1 interacts with several proteins including critical

components of the insulin-signaling pathway.20–22 In

agreement with this, several studies of mice models have

clearly demonstrated a fundamental role for this protein

in glucose homeostasis.20,21,23–25 Of particular importance

in this regard is APPL1’s interaction with AKT (MIM:

164731) in competition with the AKT endogenous inhibi-

tor TRIB3 (MIM: 607898).20 By virtue of its binding with

APPL1 rather than TRIB3, AKT can be translocated to the

plasma membrane, where it can be phosphorylated and

activated, thereby propagating the insulin signal.21,22

The nonsense APPL1 alteration p.Leu552* is located in

the PTB domain (aa 499–625, Figure 2A), which has been

shown to bind the AKT catalytic domain.26 The introduc-

tion of a premature stop codon at position 552 leads to

the deletion of most of the PTB domain, thereby making

APPL1 unable to bind AKT (Figure S3).

The missense mutation affects the aspartic acid residue

at position 94 (i.e., Asp94), which resides on the concave

surface of the APPL1 BAR domain (Figure 2) and is highly

conserved among species (Figure S3). Sequence-based tools

do not provide unequivocal answers about a pathogenic

effect of an aspartic acid (Asp) to asparagine (Asn) substitu-
The A
tion at this position. However, structure-based tools

suggest that this mutation causes a protein structure desta-

bilization that is likely to have functional consequences

(Table S5). Structural and biochemical studies have shown

that APPL proteins, including both APPL1 and its homolog

APPL2 (MIM: 606231), are able to dimerize, forming

homodimers (APPL1-APPL1 and APPL2-APPL2) as well as

heterodimers (APPL1-APPL2).27 All the homotypic and

heterotypic APPL-APPL interactions are mediated by their

BAR domains, which are also necessary for the association

with curved cell membranes.27,28 The BAR dimer concave

surface, lined with positively charged residues, is respon-

sible for the interaction of this domain with the plasma

membrane.29–32 In agreement with this, mutations local-

ized to this surface have been reported to abolish APPL1

ability to bind the plasma membrane.33,34 The structural

model of the APPL1 BAR domain (PyMOL) predicts that

the substitution of a negatively charged amino acid

(Asp94) with a neutral one (Asn94) disrupts salt bridges

with residues His59 and Lys66 (Figure 3), thereby altering

the BAR domain structural stability and possibly affecting

its ability to dimerize as well as to bind the plasma

membrane.

To evaluate the impact of the twoAPPL1mutations on in-

sulin-mediated AKT activation and downstream signaling,

APPL1 carrying the p.Leu552* or the p.Asp94Asn alteration

were generated by site-directed mutagenesis of a pCMV6-

Entry APPL1 myc tagged cDNA (Origene) and expressed

in HepG2 cells (ATCC). These cells were chosen because

they are (1) of human origin, (2) very insulin-responsive,

and (3) isolated from liver, a central organ in the
merican Journal of Human Genetics 97, 177–185, July 2, 2015 181



Figure 3. In Vitro Effects of the APPL1 Mutations on Protein
Levels
HepG2cellswere transiently transfectedwithAPPL1,APPL1_Asn94,
APPL1_*552, or empty vector (HEPG2_EV). After 48 hr transfection,
cells were lysed and APPL1 and BETA ACTIN lower blot expression
were evaluated by immunoblot analyses. In brief, equal amounts
of protein from cell lysates were separated by SDS-PAGE and
probed with anti-APPL1 (Cell Signaling) and anti-BETA ACTIN
(Santa Cruz Biotechnology)-specific antibodies. A representative
blot is shown.
maintenance of in vivo glucose homeostasis. Cells were

kept at 37�C and 5% CO2 in DMEM/F12 containing 10%

FBS, were transiently transfected with APPL1 cDNA

pCMV6 constructs carrying the wild-type sequence

(HepG2 APPL1), the *552 alteration (HepG2 APPL1_*552),

or the Asn94 alteration (HepG2 APPL1_Asn94) by using

TransIT reagent according to the manufacturer’s instruc-
Figure 4. Effect of APPL1_Asn94 Transfection on Akt-S473 and GSK
HepG2 cells were transiently transfected with APPL1, APPL1_Asn94,
insulin for 5min and then lysed. Phospho-AKT-S473 (A) or phospho-G
amount of protein from cell lysates were separated by SDS-PAGE and
middle blot), anti-APPL1 (A and B, lower blot), or anti-phospho-G
antibodies, respectively. Gel images were acquired with Molecular Im
Imaging Software 4.0 or IMAGEJ 1.40 g (Wayne Rasband, NIH). A re
percentage of AKT-S473 phosphorylation/AKT OD ratio (A) or GSK3
are means 5 SD of three experiments in separate times.
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tions (Mirus). As compared to cells transfected with a con-

trol empty vector (HepG2_EV), cells transfected with any

of the APPL1 cDNA constructs showed significant increase

in APPL1 mRNA levels (as evaluated by quantitative RT-

PCR), indicating that RNA stability was not negatively

affected by these mutations (Table S6). In HepG2 APPL1

and APPL1_Asn94 cells, the mRNA increase was paralleled

by an increase in APPL1 protein levels. By contrast, in

HepG2APPL1_*552 cells, theAPPL1proteinwas almost un-

detectable, possibly due to instability and rapiddegradation

of the truncated protein (Figure 3). This result was

confirmed with three different antibodies raised against

three different APPL1 epitopes (data not shown). Given

the lack of APPL1 protein expression caused by the

p.Leu552* alteration, HepG2 APPL1_*552 cells were not

studied any further with regard to insulin signaling.

After insulin stimulation (100 nmol/l for 5 min) and cell

lysis, equal amounts of protein were analyzed by immuno-

blot with specific antibodies against APPL1, phospho-

AKT-S473, and phospho-GSK3b-S8 (Cell Signaling). The

blots were then stripped and re-probed with antibodies

against AKT and GSK3b (MIM: 605004; Cell Signaling)

for normalization (Figure 4). In HepG2 APPL1 cells, insu-

lin-induced AKT-S473 phosphorylation was increased

by 47% as compared to HepG2_EV cells (p ¼ 0.025)

(Figure 4A). Such stimulatory effect of APPL1 was

completely abolished by the Asn94 alteration (Figure 4A).
3b-S8 Phosphorylation
or empty vector. After 48 hr, cells were stimulated with 100 nmol/l
SK3b-S8 (B) were evaluated by immunoblot analyses. In brief, equal
probed with anti-phospho-AKT-S473 (A, upper blot), anti-AKT (A,

SK3b-S8 (B, upper blot) and anti-GSK3b (B, middle blot) specific
ager ChemiDoc XRS (Biorad) and analyzed with Kodak Molecular
presentative blot for each condition is shown. Bars represent the
b-S8/GSK3b OD ratio (B) in insulin-stimulated control cells. Data
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Figure 5. Correlation between APPL1 Expression and Glucose-
Induced Insulin Secretion in Human Islets
Pancreata were collected from ten non-diabetic brain-dead multi-
organ donors (age: 65.25 13.6 years; 50% females) and pancreatic
islets were prepared as previously described.35 Glucose-induced in-
sulin secretion was measured and then expressed as stimulation
index (SI) calculated by dividing insulin release after glucose stim-
ulation at 16.7 mmol/l over basal insulin release (i.e., at glucose
3.3 mmol/l). Prime Time Standard qPCR Assays (Integrated DNA
Technologies) were used to quantify relative gene expression
levels of APPL1, GAPDH (MIM: 138400), and BETA ACTIN (MIM:
102630) on ABI-PRISM 7900 (Applera Life Technologies). APPL1
expression was calculated by using the comparative DCT method.
Relationship between SI and APPL1 expression was evaluated by
Pearson’s correlation with SPSS 13 software. APPL1 expression
was significantly associated with SI (r2 ¼ 0.50, p ¼ 0.022). This
association remained significant also after adjusting for age and
gender (p ¼ 0.048).
Similarly, insulin-stimulated GSK3b-S8 phosphorylation

was increased by 27% in HepG2 APPL1 cells as compared

to HepG2_EV cells (p ¼ 0.012) (Figure 4B). In HepG2

APPL1_Asn94 cells, this effect was blunted to the extent

that insulin-stimulated GSK3b-S8 phosphorylation was

no longer different from that in HepG2_EV control cells

(Figure 4B).

Taken together, these results suggest that both p.Leu552*

and p.Asp94Asn are loss-of-function alterations, one deter-

mining a complete lack of expression of themutated allele,

the other causing decreased functionality of a normally

expressed allele. Given the central role of AKT in insulin

signaling, these results support a detrimental role of

both mutations on insulin action and, potentially, insulin

secretion.

Inmice, APPL1 iswidely expressed in all insulin target tis-

sues and organs including the liver, adipose tissue, skeletal

muscle, and pancreas.25 In the latter organ, the expression

of APPL1 is higher in the islet than in the non-islet fraction

(i.e., exocrine cells).24 In islets, APPL1 co-localizes with in-

sulin, indicating that this protein is abundantly expressed

in b cells where it acts as a physiological regulator of insulin

secretion.24 Also in humans, APPL1 is expressed in all insu-
The A
lin target tissues and organs (as reported by the public atlas

of gene expression and regulation across multiple human

tissues generated by The Genotype-Tissue Expression proj-

ect [GTEx]). As inmice, APPL1 expression is particularly en-

riched inhuman islets (as reportedby theT1Dbase-BetaCell

Gene Atlas), although no specific data on b cells are avail-

able. To obtain further insights about the role of APPL1 on

insulin secretion in humans, we measured APPL1 expres-

sion levels and glucose-induced insulin secretion in human

islets from ten brain-dead multi-organ donors (five males,

five females; BMI range: 19.4–34.8 kg/m2). None of the do-

nors were diabetic, as indicated by the medical records ob-

tained from the intensive care units (ICUs). Mean glucose

levels under continuous glucose infusion in the ICU

ranged from 63 to 192 mg/dl. Fructosamine levels were

available for five out of ten individuals and ranged from

105 to 278 mmol/l (reference values for non-diabetic

individuals: <285 mmol/l). APPL1 expression was signifi-

cantly correlated with glucose-induced insulin secretion

(Figure 5), suggesting that the positive role of APPL1 on in-

sulin secretion reported in rodents23–25 is also operating in

humans and reinforcing the possibility that human muta-

tions reducing APPL1 expression levels or its function in in-

sulin signalingmight affect not only insulin sensitivity but

also insulin secretion.

In conclusion, this study describes APPL1 mutations

as pathogenic factors for familial forms of diabetes. This

finding is consistent with previous evidence from animal

studies supporting a key regulatory role of APPL1 in

glucosemetabolism and points to this molecule as a poten-

tial target for future treatments aimed at preserving or

restoring glucose homeostasis.
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