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Hydrophobic Surfactant Proteins Strongly Induce Negative Curvature
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ABSTRACT The hydrophobic surfactant proteins SP-B and SP-C greatly accelerate the adsorption of vesicles containing the
surfactant lipids to form a film that lowers the surface tension of the air/water interface in the lungs. Pulmonary surfactant enters
the interface by a process analogous to the fusion of two vesicles. As with fusion, several factors affect adsorption according
to how they alter the curvature of lipid leaflets, suggesting that adsorption proceeds via a rate-limiting structure with negative
curvature, in which the hydrophilic face of the phospholipid leaflets is concave. In the studies reported here, we tested whether
the surfactant proteins might promote adsorption by inducing lipids to adopt a more negative curvature, closer to the configura-
tion of the hypothetical intermediate. Our experiments used x-ray diffraction to determine how the proteins in their physiological
ratio affect the radius of cylindrical monolayers in the negatively curved, inverse hexagonal phase. With binary mixtures of
dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), the proteins produced a dose-related
effect on curvature that depended on the phospholipid composition. With DOPE alone, the proteins produced no change.
With an increasing mol fraction of DOPC, the response to the proteins increased, reaching a maximum 50% reduction in cylin-
drical radius at 5% (w/w) protein. This change represented a doubling of curvature at the outer cylindrical surface. The change
in spontaneous curvature, defined at approximately the level of the glycerol group, would be greater. Analysis of the results in
terms of a Langmuir model for binding to a surface suggests that the effect of the lipids is consistent with a change in the
maximum binding capacity. Our findings show that surfactant proteins can promote negative curvature, and support the possi-
bility that they facilitate adsorption by that mechanism.
INTRODUCTION
Fusogenic peptides may provide a particularly simple
example of proteins that affect the curvature of lipids (1).
These short amino acid sequences promote the fusion
of two bilayers. The initial merger between the two outer
leaflets of the fusing bilayers supports a process that begins
with the formation of a stalk connecting the two membranes
(2). The leaflets composing the stalk would bend back upon
themselves to achieve the correct orientation at each bilayer.
The leaflets would have negative curvature, defined by the
concave shape of their hydrophilic surfaces. Several com-
pounds alter rates of fusion according to how they affect
spontaneous curvature (3), which monolayers adopt in the
absence of applied force (4). A spontaneous curvature closer
to the configuration of the stalk would reduce the energy of
bending required to form the proposed intermediate. Induc-
tion of negative curvature would provide a simple explana-
tion for how the fusogenic peptides achieve their function.

Direct evidence, however, that these peptides can make
the proposed changes in curvature has been limited (5).
There is a growing list of proteins that can produce positive
curvature, either by binding to a leaflet and imposing their
intrinsic shape or by inserting superficially into the face
of a leaflet and preferentially expanding the hydrophilic
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regions (1,6). Induction of negative curvature would instead
require a greater expansion of the hydrophobic side of the
monolayer. Measurements with the unpaired monolayers
of the inverse hexagonal (HII) phase (Fig. 1 A) can detect
how added constituents affect spontaneous curvature.
Diffraction from the cylindrical monolayers has provided
a few examples of fusogenic peptides that enhance negative
curvature (7–12), but the changes have been small.

The studies reported here address the effect on curvature of
the hydrophobic surfactant proteins SP-B and SP-C. These
proteins promote the fusion of vesicles in vitro (13,14) and
fit within the class of fusogenic peptides. The proteins
also greatly accelerate adsorption of the surfactant lipids
to form the thin film that lowers the surface tension of the
alveolar air/water interface (15). This activity may well
represent their physiological function. Adsorption of the
surfactant vesicles occurs by a process analogous to fusion.
The components of surfactant vesicles insert into the inter-
face collectively (16–18). Aswith fusion, several compounds
affect adsorption according to how they alter curvature
(19–23). These results suggest that surfactant proteins might
accelerate adsorption by facilitating the formation of a nega-
tively curved, rate-limiting intermediate (Fig. 1B) analogous
to the stalk proposed for fusion (24–26). Direct measure-
ments with HII structures have shown that the surfactant
proteins can promote more negative curvature, but their
effect is limited, amounting to a change of only ~8% (22).
http://dx.doi.org/10.1016/j.bpj.2015.05.030
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FIGURE 1 Diagrams of pertinent curved struc-

tures. (A) Structure of the HII phase. The double-

headed arrow indicates the lattice constant

measured by diffraction. The solid circle approxi-

mates the location of the pivotal plane, at which

the spontaneous curvature is estimated. The dashed

circle gives the location of the outer surface of the

cylindrical monolayer, the radius of which deter-

mines cout. (B) Hypothetical rate-limiting interme-

diate involved in the adsorption of phospholipid

vesicles to an air/water interface (25).
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The ability of the surfactant proteins to change the curva-
ture of lipids is not universal. In the HII phase formed by dio-
leoylphosphatidylethanolamine (DOPE), the proteins have
no effect (22). The change in curvature produced by the pro-
teins occurs with dioleoylphosphatidylglycerol (DOPG)
added to DOPE (DOPE:DOPG, 9:1 mol/mol) to replicate
the ~10% content of anionic lipids in pulmonary surfactant
(27). The effect of DOPG could reflect electrostatic interac-
tions between the cationic proteins and the anionic lipid.
SP-B and SP-C have a net charge of þ14 (28) and þ2–3
(29), respectively. Salt, however, which should screen elec-
trostatic effects, produces a remarkably limited change (22).

In addition to introducing negative charge, DOPG also
expands the HII cylinders (22,30). This observation suggests
that DOPG might alter the effect of the proteins by changing
the dimensions of the cylindrical monolayers rather than by
affecting the charge. In lamellar bilayers, the spontaneous
curvature of lipids can affect binding to other hydrophobic
peptides (31). Zwitterionic dioleoylphosphatidylcholine
(DOPC) expands the HII phase formed by DOPE (32)
without affecting charge. Here, we used DOPC to test
whether the measured effect of the proteins on curvature
depends on the radius of the HII cylinders.
MATERIALS AND METHODS

DOPC (Avanti Polar Lipids, Alabaster, AL), DOPE (Avanti Polar Lipids),

and tetradecane (n-tetradecane; MP Biomedicals, Solon, OH) were used

without further characterization or purification. Extracted calf surfactant,

obtained from Dr. Edmund Egan (ONY, Amherst, NY), provided the

source of the hydrophobic surfactant proteins, which were separated in

their physiological ratio from the surfactant lipids by gel permeation chro-

matography (33–35). SP-B and SP-C isolated by this procedure have the

expected characteristics (36,37). SP-B migrates electrophoretically on

gels as a reducible homodimer of monomers containing 79 amino acids.

SP-C has the appropriate mobility for a monomer of 35 amino acids.

Calculations on the molar content of the proteins assumed equal weights

for SP-B and SP-C (38), and molecular weights of 17,397 Da for SP-B and

4,042 Da for SP-C (39).

The constituents of the experimental samples were combined in chloro-

form, which was removed initially under a stream of nitrogen, followed by

incubation overnight at an ambient pressure of 2 mbar. After hydration

overnight in buffered electrolyte (HSC: 10 mM Hepes pH 7.0, 150 mM

NaCl, 1.5 mM CaCl2) at a phospholipid concentration of 50 mM, the
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samples were resuspended by repeated freezing and thawing, followed by

vigorous vortexing. The samples were transferred to capillaries, which

were then sealed. For measurements of small-angle x-ray scattering, the

capillaries were mounted on a temperature-regulated aluminum block and

heated to sequentially higher temperatures. Samples were equilibrated

at each temperature for at least 10 min, which we established both here

and in prior studies (22) as sufficient to achieve a signal that remained con-

stant for hours. The samples were then exposed for 2 min to synchrotron

radiation of wavelength 1.488 Å on beamline 1-4 at the Stanford Synchro-

tron Radiation Lightsource. The angular dependence of distance on the

detector was calibrated with samples of silver behenate. Structural phases

in the experimental samples were determined by fitting measured values

of the momentum transfer, q, to s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ hk þ k2

p
for hexagonal phases,

and to s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2 þ l2

p
for other space groups, for allowed values of

the Miller indices, h, k, and l (37,40). For the hexagonal phase, the

slope of these plots provided the lattice constant, a0, according to

a0 ¼ 4 p=ð ffiffiffi
3

p
slopeÞ. The curvature, cout, at the outer surface of the cylin-

drical monolayers was calculated from cout ¼ 2/a0.

A modified Langmuir equation,

cout ¼ �
cout0

�þ a1 SP

1þ a2 SP
XPC;

expressed the variation of cout with the total concentration of surfactant

protein, SP, and the mol fraction of DOPC, XPC, relative to hcout0 i, the aver-
aged curvature for the lipids alone. The best fit of data to the equation

minimized the square of the vertical error using the Levenberg-Marquardt

algorithm implemented by the program Igor Pro (WaveMetrics, Lake

Oswego, OR). This analysis omitted data at XPC ¼ 0.9 because of their

wide scatter.
RESULTS

Mixtures with mol fractions of DOPC (XPC) from 0.0 to
0.9 formed the HII phase. These structures were identified
by the powder diffraction obtained from dispersed samples
exposed to synchrotron radiation. The characteristic spacing
of at least three reflections (Fig. 2) established the presence
of structures with the hexagonal p6m space group. Tetrade-
cane, added at 16% (w/w) to minimize the unfavorable
disruption of chain packing in curved phases (41), in most
cases stabilized the HII phase relative to lamellar or bicon-
tinuous inverse cubic (QII) structures. Our analysis omitted
samples that diffracted poorly or that produced diffraction
from coexisting phases because of the uncertain composi-
tion of each structure.
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FIGURE 2 Diffraction from samples of DOPE:DOPC with 16% (w/w)

tetradecane and the hydrophobic surfactant proteins. The traces give the

radially integrated, diffracted intensity produced by the dispersed samples

as a function of the momentum transfer, q. The traces are shifted vertically

by arbitrary amounts without a change in scale for clarity of presentation.

The different panels illustrate the effects of (A) the content of surfactant

protein, (B) the composition of the phospholipids, and (C) temperature.

To see this figure in color, go online.
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The HII lattice constant, which equals the diameter of the
outer cylindrical surface (Fig. 1 A), provided access to the
curvature, defined as the reciprocal of the radius (42), at
the outer surface (cout). We reported all values of curvature
as their magnitudes, ignoring their uniformly negative sign.
With each set of lipids, increasing concentrations of the sur-
factant proteins (SP) in their physiological ratio determined
how they affected cout (Fig. 3). Measurements were obtained
after heating to different temperatures between 11�C and
90�C to provide an additional variable that altered the size
of the cylinders (Fig. 3).
Lipids alone

Analysis of our results required a description of how the sur-
factant proteins, the composition of lipids, and temperature
each affected cout, and how the different variables altered the
response to the other factors. We first considered the effect
of the lipids without the proteins, which is well understood
from prior studies (32,41), and then determined how the
proteins modified that behavior.

cout0 , the outer curvature for lipids without proteins,
changed linearly with XPC (Fig. 4). For coutPC and coutPE , the
outer curvatures for samples containing only DOPC or
DOPE, respectively, and the difference between them,
D ¼ coutPC � coutPE , the outer curvature followed the relation-
ship cout0 ¼ coutPE þ DXPC. The linear fits of cout0 versus XPC

at each temperature provided average values for the curva-
ture of the lipids alone, <cout0 >, for use in characterizing
the effect of the proteins.

During heating, the plots of cout0 at different values of XPC

(Fig. 4) shifted vertically. The y intercept changed linearly
with temperature (T) (Fig. 5). The slopes were temperature
invariant (Fig. 5). As reported previously (32), heating
produced the same linear change in the intrinsic curvature
for each phospholipid, such that the difference between
them remained constant. In the absence of the proteins,
the relationship cout0 ¼ aT þ bþ DXPC, for constants a
and b, adequately described the variation of cout with both
temperature and lipid composition.
Effect of the proteins

For samples that also contained the proteins, the effect of the
lipids remained generally unchanged. With any particular
content of the proteins, increasing XPC still produced a linear
decrease in cout (Fig. 6). The noise in the measurements
increased with larger amounts of the proteins, which are
notoriously difficult to work with because of their extreme
hydrophobicity. The data nonetheless continued to fit, at
least roughly, a linear dependence on XPC. These plots with
different amounts of proteins also shared a common y
intercept at XPC ¼ 0 (Fig. 6), such that cout ¼ coutPE þ aXPC.
The common y intercept agreed with our prior finding that
the proteins had no effect on cout for DOPE alone (22).

The added proteins changed themagnitude of the response
to XPC. With larger amounts of protein, adding DOPC
produced a smaller reduction in cout (Fig. 6). The slope, a,
of these linear plots was independent of temperature and
determined only by SP (Fig. 7), starting from a common
value for the lipids alone, such that a ¼ a0 þ a1 SP, and

cout ¼ coutPE þ ða0 þ a1 SPÞXPC

¼ cout0 þ a1 SPXPC
:

The proteins produced an initially linear decrease in the
magnitude of a (Fig. 7). This effect saturated at high SP,
Biophysical Journal 109(1) 95–105



FIGURE 3 Response of the cylindrical phospholipid monolayers to the

surfactant proteins. The panels share a common x axis. In the left column,

FIGURE 4 Effect of lipid composition on cout0 for samples without pro-

teins. To see this figure in color, go online.
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where the slopes approached a value of minimum magni-
tude (Fig. 7).

The Langmuir model of binding to a finite number of sites
on a surface (43) provided one example of behavior that
would saturate. The fraction of occupied sites, q, would
approach a maximum. For a concentration of bound protein,
SPb, given by SPb ¼ q SPm

b , where SPm
b is the maximum

capacity of bound protein, the Langmuir equation indicates
that q¼ Ka SPf/(1þ Ka SPf), for an association constant, Ka,
and a concentration of free protein, SPf. The low concentra-
tions of protein used here allowed expression of q in terms
of SP, the total added protein, rather than SPf according
to q ¼ e SP/(1 þ e SP), where e ¼ Ka=ð1þ Ka SP

m
b Þ (Sup-

porting Materials and Methods). For protein with an
intrinsic curvature of coutsp , the change induced by the pro-
teins, Dcouthcout � cout0 , would be given by

Dcout ¼ a1 SPXPC

¼ coutsp q
SPm

b

PL
¼ coutsp

e SP

1þ e SP

SPm
b

PL

¼ a1 SP

1þ a2 SP
XPC

;

where a1 XPC ¼ coutsp e SPm
b =PL, a2 ¼ e, and PL is the phos-

pholipid concentration.
which presents the lattice constant (a0) (left axis) for the HII phase, the

range of the y axis is common to all panels, emphasizing the variation

among samples with different XPC. In the right column, which gives cout

(right axis), the different scales in the panels emphasize the shape of the

curves. The samples, which contain 16% (w/w) tetradecane in addition to

the phospholipids and proteins, were dispersed in buffered electrolyte

(HSC). To see this figure in color, go online.



FIGURE 5 Effect of temperature on the response of cout0 to changes in

composition for the lipids without proteins. The graph gives the slope (solid

symbols, left axis) and intercept at XPC ¼ 0 (open symbols, right axis) of the

best linear fits to the data in Fig. 4. To see this figure in color, go online.
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This expression, based on how XPC affected cout, reason-
ably fit the response of cout to added protein, and how tem-
perature and XPC altered that response (Fig. 8). The
composite equation described the data well over the range
of lipid compositions from XPC ¼ 0–0.8 and temperatures
of 11–76�C. For the range of 0–3%, SP produced a roughly
linear increase in cout, which then approached a maximum
(Fig. 8). As predicted by the equation, the initial slope
was roughly proportional to XPC (Fig. 9 A) but independent
of temperature (Fig. 9 B).

The composite equation allowed extrapolation to systems
that were experimentally inaccessible because they failed to
form HII structures, such as proteins with pure DOPC, where
the effect should be greatest. For large SP,Dcout would reach
a maximum value of (a1/a2)Xpc. At XPC ¼ 1 and 39�C, using
values averaged over the range of XPC ¼ 0.5–0.8 for a1 and
a2 of 0.035 nm�1 � (% protein)�1 and 0.29 (% protein)�1,
respectively (Fig. 10), the proteins would produce a
maximum change in cout of 0.12 nm�1.
DISCUSSION

Proteins induce negative curvature

Our results show that hydrophobic surfactant proteins, when
combined with the appropriate phospholipids, increase cur-
vature (Fig. 3). This effect depends on the composition of
the lipids. As shown previously (22), with lipids that contain
only DOPE, the proteins produce no effect. With progres-
sively larger amounts of DOPC, the proteins induce a
dose-related increase in cout (Fig. 8). The effect is not subtle,
with changes produced by the proteins reaching 100%.

The change in cout almost certainly corresponds to a shift
in the spontaneous curvature. In a bent sheet with finite
thickness, curvature depends on the choice of the layer at
which the radius is measured. The HII lattice constant pro-
vides the radius at the outer surface of the phospholipid
monolayer (Fig. 1 A). Spontaneous curvature is defined
instead at the neutral plane, where the energies of bending
and area-compression uncouple, and approximated at the
more experimentally accessible pivotal plane, where the
cross-sectional molecular area remains constant during
bending (4). Generally, the pivotal plane is located at the
level of the glycerol group in the phospholipid (Fig. 1 A)
(44). Although it is unusual, factors can shift the pivotal
plane to a different location along the phospholipid (45).
Theoretically, the pivotal plane could remain at the same
radius despite a change in the outer diameter. The proteins
could therefore alter cout without affecting spontaneous cur-
vature. That possibility seems most unlikely. The changes in
the outer radius demonstrated here approach 9 nm, well
beyond the thickness of a monolayer. Our previous studies
with DOPE:DOPG demonstrated that the outer surface
was separated from the pivotal plane by ~1.1 nm (22). Using
that difference here to estimate the location of the pivotal
plane, we found that the proteins would change spontaneous
curvature by as much as 113%.

Our results support the model in which proteins promote
adsorption by changing curvature. Several observations sug-
gested that adsorption proceeds via a negatively curved,
rate-limiting intermediate that connects the adsorbing
vesicle to the interfacial film. Previously, however, direct ev-
idence that proteins can produce the structural changes that
would promote formation of the intermediate was limited
(22). Our demonstration of the proteins’ ability to produce
a large shift in curvature toward the configuration of the hy-
pothetical intermediate provides that evidence.

Our studies leave untested an alternative mechanism
by which proteins could reduce the energy of bending. For
any given spontaneous curvature,more flexible leafletswould
bend more easily to a configuration with different curvature
(4). Our experiments provide no information on whether pro-
teins affect the modulus of either simple-splay or saddle-
splay bending, and if so, how the consequences of such
changes would compare with their effects on curvature. Our
results do provide direct evidence that hydrophobic surfactant
proteins produce a large increase in negative curvature. Ac-
cording to the model of adsorption via a tightly curved inter-
mediate, these structural alterations by the proteins may well
be sufficient to explain their function.

Our results enhance the evidence that fusogenic proteins
can induce negative curvature. Several examples of proteins
that induce positive curvature have been reported (1,46), but
evidence for proteins that induce negative curvature has
been largely indirect. The structures formed by lipids with
spontaneous curvature are determined by the balance be-
tween the energies of bending and chain packing (47,48).
Several peptides with amphipathic helices, including both
the combined surfactant proteins (37) and isolated SP-B
(36), convert lamellar lipids to QII phases (49,50). Other
Biophysical Journal 109(1) 95–105



FIGURE 6 Variation of cout with XPC for the full set

of samples. Each panel gives results for a specific temper-

ature, with each curve representing the data for a specific

concentration of protein. To see this figure in color,

go online.
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FIGURE 7 Effect of the proteins on the response of cout to changes in

XPC. The slopes from linear fits to the variation of cout with XPC (Fig. 6)

are plotted against the different concentrations of protein at each tempera-

ture. To see this figure in color, go online.
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peptides with similar helical elements lower the temperature
of the lamellar-to-HII transition (6,11,49,51,52). The pep-
tides could achieve the structural changes in both the QII

and HII phases by inducing a more negative spontaneous
curvature. The transitions to both inverse phases, however,
involve chain packing as well as curvature. Neither the
dimensions of the QII phase nor shifts in transition temper-
atures measure the curvature of a leaflet. The results pre-
sented here directly confirm that surfactant proteins induce
a more negative curvature and provide quantitative informa-
tion about the extent of those effects.

Our findings suggest the location occupied by the proteins
within the lipid leaflet. To change a leaflet such that its
hydrophilic face becomes more concave, the proteins would
preferentially expand the hydrophobic side of the mono-
layer. The changes demonstrated here presumably reflect
mainly the influence of the proteins on the phospholipid
acyl chains. SP-C, with a hydrophobic sequence appropriate
to span a bilayer (53), has much less ability than SP-B to
affect adsorption (54) or induce formation of QII phases
(36). Our results imply that SP-B inserts deep within the
hydrophobic portions of the phospholipid leaflet.

The changes that occur during heating fit with the classical
view that the curvature of a monolayer reflects the effective
shape of its constituents (55–57). As reported previously
(32), higher temperature increases the intrinsic curvature
for each phospholipid, consistent with the thermal expansion
of the acyl chains and the hydrophobic cross-sectional area.
An equal expansion of the hydrophobic area for the two com-
pounds would explain why the difference between the two
intrinsic curvatures at different temperatures remains fixed
(32). Heating also has no effect on the response of curvature
to the added proteins, suggesting that their effective shape is
constant. Both SP-B and SP-C contain a high content ofa-he-
lix (58), the dimensions of which should remain unchanged
during heating. The temperature-invariant effect of the pro-
teins is at least consistent with alterations in curvature
induced by their helical segments.

Our results fit with our prior findings. The conversion by
the proteins of lamellar 1-palmitoyl-2-oleoyl phosphatidyl-
ethanolamine to cubic phases (36,37) suggests an effect on
curvature. The changes in the DOPE:DOPG cylinders (22)
were relatively small, but they demonstrated a dose-related
effect of the proteins on curvature. Stabilizing the large cy-
lindrical monolayers here required the addition of tetrade-
cane. The alkane could alter the effects of the proteins.
Together with our prior studies, which included no alkane,
our results seem most likely to reflect only the interaction
of the proteins with the phospholipids.
Dependence on lipid composition

The composition of the lipids alters the response of curva-
ture to the proteins. The mechanism of this compositional
dependence is less important than whether the effect of
the proteins extends from these model lipids to the biolog-
ical mixture. Phosphatidylcholines dominate the composi-
tion of pulmonary surfactant, constituting ~82% (mol/mol)
of the phospholipids, well above the ~3% of phosphatidyl-
ethanolamine (27). The spontaneous curvature of leaflets
formed by the surfactant lipids should be low. The ability
of the proteins to change curvature, as demonstrated here
using leaflets with low spontaneous curvature and high
levels of DOPC, should extend to the physiological system.

The mechanism by which the lipids alter the effect of the
proteins is somewhat obscure. The change induced by
the proteins should be given by Dcoutzcoutsp SPb=PL for the
low amounts of protein used here (Supporting Materials and
Methods). The extreme hydrophobicity of the surfactant pro-
teins, however, complicates any effort to establish the amount
of bound protein. Any protein that is not inserted into the cy-
lindrical monolayer is much more likely to associate with
another hydrophobic surface, such as the exterior of the HII

phase, than to remain free in the aqueous medium. Ap-
proaches commonly used to distinguish bound from free pro-
tein may well be inadequate here. This problem limits our
ability to reach hard conclusions concerning the mechanisms
bywhich the lipids alter the effect of the proteins on curvature.

In samples that contain the proteins, the response of cur-
vature to any of the variables could in theory reflect changes
in coutsp , SPb, or both. A change in the intrinsic curvature of
the proteins, however, seems unlikely. Prior studies with
other constituents produced additive effects on curvature
in which the molecular contribution remained constant
(48). The temperature invariance of the response to added
protein supports a fixed molecular shape here. We assume
Biophysical Journal 109(1) 95–105



FIGURE 8 Dependence of cout on the concentration

of protein. Each panel gives the data for a specific tem-

perature, with each trace providing results for a specific

XPC. The continuous curves give the best fit of the

equation cout ¼ hcout0 i þ a1 SP=ð1þ a2 SPXPCÞ to data

(connected by dashed lines) that included measurements

over the full range of protein concentrations. a1 and a2
are fitting parameters. hcout0 i is the average value of cout0

for a particular set of lipids, calculated from the linear

fit for that temperature in Fig. 4. To see this figure in

color, go online.
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FIGURE 9 Initial response of cout to SP. Linear fits of cout to SP (Fig. 8)

for the range of 0–3% protein provided the initial slopes. (A) Dependence

on XPC at constant temperatures. (B) Effect of temperature for samples

with fixed XPC. To see this figure in color, go online.
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FIGURE 10 Dependence on XPC of the parameters that describe the vari-

ation of cout. Fits of the data to cout ¼ hcout0 i þ a1 SP=ð1þ a2 SPXPCÞ
(Fig. 8) provided the basis for calculating (A), a1; (B), a2; (C),

(a1/a2) XPC. To see this figure in color, go online.
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that the variation of curvature in response to added protein,
and the alteration of that response with different lipids, both
reflect changes in SPb.

Binding to bilayers is commonly considered in terms of
partitioning between the membrane and the surrounding
aqueous environment (31,59–62). For our studies with the
HII phase, this approach has problems. With a partition
coefficient that remains constant, binding would not saturate
until Xsp approaches 1, well above the amounts of protein
used here. A partition coefficient that varies suitably
could, of course, cause saturation. Alamethicin provides
an example of a peptide for which the partition coefficient
varies with the spontaneous curvature of the leaflets in a
bilayer. Presumably an appropriate variation of the partition
coefficient for the HII phase and the surrounding water could
explain the behavior of our data.

The Langmuir model of binding to a limited number
of sites on a surface (43) instead explains saturation
directly. The bound protein, given by q SPm

b , will saturate
when q approaches its maximum value. Concerning the
effect of the lipids, our results suggest that their com-
position at least changes SPm

b . The model predicts that
ða1=a2ÞXPC is proportional to coutsp SPm

b (Supporting Mate-
rials and Methods). Our results show that (a1/a2) XPC in-
creases with greater XPC (Fig. 10 C). If coutsp is constant,
then SPm

b must increase at higher XPC. The larger cylinders
with lower curvature produced with larger amounts of
DOPC would accommodate greater amounts of protein.

The radius of the cylindrical monolayers provides an
obvious mechanism by which the lipids might alter the
binding capacity. Cylinders of any radius should exclude
proteins above a certain size. Contact between proteins at
adjacent sites might also limit binding to a curved surface
below the capacity of a planar monolayer. The limited infor-
mation available regarding the structure of the proteins
complicates assessment of these possibilities. The primary
sequence of SP-B (63), which is the larger of the two pro-
teins, along with its secondary structure as assessed by
vibrational spectroscopy (53) and the disulfide cross-links
within the monomers all suggest that the chain forms pairs
of antiparallel helices. The cross-link between monomers
suggests that the pairs from the two chains might be parallel,
and that a quartet of helices might determine the smallest
cross-sectional dimension. For a helical diameter of
1.1 nm (64), that smallest dimension would be ~3.1 nm.
The aqueous core should be larger. The proteins cease to
affect curvature when the outer radius reaches ~8 nm
(Fig. 3). For monolayers with the same thickness as DOPE:-
DOPG of ~1.3 nm (22), the aqueous core would have a
diameter of ~5.4 nm. Particularly in light of the
uncertainties, the consequences of the relative sizes for the
Biophysical Journal 109(1) 95–105
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cylindrical monolayer and the proteins are unclear. The gen-
eral observation remains that when the external diameter
is reduced to a certain value, whether by increasing protein
or DOPE, the proteins cease to affect curvature. Restriction
of the binding capacity by the cylindrical size provides a
reasonable but unproven explanation.

Our analysis based on the Langmuir model is tenuous.
Our experiments tested only the ability of the model to
describe the data. We consider the model useful primarily
for clarifying the different mechanisms by which the lipids
could produce their effect. Our primary result, however, is
not that the lipids alter the effect of the proteins, but that,
given the correct conditions, the proteins produce a large
change in curvature.
CONCLUSION

The relatively few reported studies that have measured how
other fusogenic proteins affect spontaneous curvature used
HII structures with approximately the diameter for DOPE
(7,9,10,12,65,66). Surfactant proteins, which double the
curvature for larger cylinders, produce no change with
DOPE. Whether other fusogenic proteins would produce
larger changes with a greater cylindrical diameter, or
whether the effect of the surfactant proteins is exceptional,
remains unknown.
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