data reports

OPEN a ACCESS

Crystal structure of *N*-deacetyllappaconitine

Xin-Wei Shi,* Qiang-Qiang Lu, Jun-Hui Zhou and Xin-Ai Cui

Xi'an Botanical Garden, Institute of Botany of Shaanxi Province, Xi'an 710061, People's Republic of China. *Correspondence e-mail: sxw@ms.xab.ac.cn

Received 14 June 2015; accepted 26 June 2015

Edited by V. V. Chernyshev, Moscow State University, Russia

The title compound, $C_{30}H_{42}N_2O_7$ [systematic name: (1S,4S,5S,7S,8S,9S,10S,11S,13R,14S,16S,17R)-20-ethyl-4,8,9trihvdroxy-1,14,16-trimethoxyaconitan-4-yl 2-aminobenzoate], isolated from roots of Aconitum sinomontanum Nakai, is a typical aconitane-type C₁₉-diterpenoid alkaloid, which crystallizes with two independent molecules in the asymmetric unit. The conformations of the two independent molecules are closely similar. Each molecule comprises four six-membered rings (A, B, D and E) including one six-membered Ncontaining heterocyclic ring (E), and two five-membered rings (C and F). Rings A, B and E adopt chair conformations, while ring D displays a boat conformation. Five-membered rings Cand F exhibit envelope conformations. IntramolecularN-H...O hydrogen bonds between the amino group and carbonyl O atom help to stabilize molecular structure. In the crystal, $O-H \cdots O$ hydrogen bonds link the molecules into zigzag chains propagating in [010].

Keywords: *N*-deacetyllappaconitine; C_{19} -diterpenoid alkaloid; O—H···O hydrogen bonding.; crystal structure.

CCDC reference: 1409115

1. Related literature

For reviews of typical C₁₉-diterpenoid alkaloids, see: Wang et al. (2009, 2010). For the isolation, idenfication and biological activity of N-deacetyllappaconitine, see: Peng et al. (2000); Romanov et al. (2008). For ring numbering, ring conformations and absolute configurations of C₁₉-diterpenoid alkaloids, see: Wang et al. (2007); He et al. (2008).

V = 5525.3 (3) Å³

Cu $K\alpha$ radiation

 $0.30 \times 0.30 \times 0.30$ mm

18595 measured reflections

8477 independent reflections

7744 reflections with $I > 2\sigma(I)$

 $\mu = 0.75 \text{ mm}^-$

T = 173 K

 $R_{\rm int} = 0.030$

Z = 8

2. Experimental

2.1. Crystal data $C_{30}H_{42}N_2O_7$ $M_r = 542.66$ Orthorhombic, P212121 a = 11.7090 (3) Å

b = 13.2040 (4) Å c = 35.7380 (9) Å

2.2. Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\rm min}=0.806,\;T_{\rm max}=0.806$

.3.	Kerinement	

$R[F^2 > 2\sigma(F^2)] = 0.042$	713 parameters
$wR(F^2) = 0.111$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
3477 reflections	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1	
Hydrogen-bond g	eometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O14-H14A\cdots O6^{i}$	0.98	2.27	2.927 (2)	123
O11-H11O12	0.84	2.40	2.944 (2)	124
$O4-H4\cdots O5$	0.84	2.33	2.914 (3)	127
$O3-H3\cdots O13^{ii}$	0.84	2.41	3.095 (2)	139
N3−H3D···O8	0.91	2.02	2.687 (3)	129
$N1 - H1A \cdots O1$	0.91	2.02	2.752 (4)	137

Symmetry codes: (i) $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, -y, z - \frac{1}{2}$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT; data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL.

Acknowledgements

This project was supported by the Science and Technology Research and Development Projects of Shaanxi Province (grant No. 2013KJXX-74), the National Natural Science Foundation of China (grant No. 31200257) and the West Light Foundation of The Chinese Academy of Sciences (grant No. 2012DF05).

Supporting information for this paper is available from the IUCr electronic archives (Reference: CV5490).

- References
- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- He, D.-H., Zhu, Y.-C. & Hu, A.-X. (2008). Acta Cryst. E64, o1033-o1034.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Peng, C.-S., Wang, J.-Z., Jian, X.-X. & Wang, F.-F. (2000). *Tianran Chanwu Yanjiu Yu Kaifa*. **12**, 45–51.
- Romanov, V. E., Shul'ts, E. E., Shakirov, M. M. & Tolstikov, G. A. (2008). *Chem. Nat. Compd.* 44, 346–351.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, F.-P., Chen, Q.-H. & Liang, X.-T. (2009). The Alkaloids: Chemistry and Biology, Vol. 67, edited by G. A. Cordell, pp. 1-78. New York: Elsevier.
- Wang, F.-P., Chen, Q.-H. & Liu, X.-Y. (2010). Nat. Prod. Rep. 27, 529-570.
- Wang, Y.-P., Sun, W.-X., Zhang, J., Liu, H.-S. & Wen, H.-H. (2007). Acta Cryst. E63, 01645–01647.

supporting information

Acta Cryst. (2015). E71, o576–o577 [doi:10.1107/S2056989015012335]

Crystal structure of N-deacetyllappaconitine

Xin-Wei Shi, Qiang-Qiang Lu, Jun-Hui Zhou and Xin-Ai Cui

S1. Comment

The title compound, *N*-deacetyllappaconitine, is produced by several species of the plant genus *Aconitum* (*A. sinomontanum*, *A. barbatum*, *A. septentrionale*, *A. leucostomum*, *A. orientale*) and its structure was confirmed by the NMR and MS data. It possesses antiarrhythmic, analgesic, local anesthetic, sedative and anti-inflammatory activity (Peng *et al.* 2000; Wang *et al.* 2009, 2010; Romanov *et al.* 2008). Herewith we present the crystal structure of *N*-deacetyl-lappaconitine (I).

The title compound (I) crystallizes with two independent molecules in the asymmetric unit (Fig. 1). The confomations of both molecules are close (Fig. 2) due to intramolecular N—H···O and O—H···O hydrogen bonds (Table 1). Each molecule is composed from six rings labelled as *A*-*F* (Wang *et al.*, 2007). Six-membered rings *A* (C1–C5/C11) and *B* (C7–C11/C17) adopt chair conformations; six-membered N-containing heterocyclic ring *E* (C4/C5/C11/C17/N2/C18) display the same chair conformation; the five-membered rings *C* (C9/C10/C12/C13/C14) and *F* (C5/C6/C7/C17/C11) form envelope conformations, in which, atoms C13 and C17, respectively, play the role of flap. The six-membered ring *D* (C8/C9/C14/C13/C16/C15) is in a boat conformation.

In the crystal, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into zigzag chains propagated in [010].

S2. Experimental

The title compound was isolated from the roots of *Aconitum sinomontanum* Nakai following the known procedure (Peng *et al.*, 2000). Colourless single crystals suitable for X-ray diffraction were obtained by slow evaporation from a methanol solution for two weeks at the room temperacture.

S3. Refinement

The hydrogen atoms were placed in calculated positions and refined as riding with $U_{iso}(H) = 1.2-1.5 U_{eq}(C, O)$. The positions of methyl and hydroxy hydrogens were rotationally optimized. In spite of acceptable value of Flack parameter of -0.07 (15) in the abscence of anomalous scatterers, the absolute configuration of the title compound has been assigned to be the same as that reported for typical natural aconitane-type C₁₉-diterpenoid alkaloids (Wang *et al.*, 2007; He *et al.*, 2008).

Figure 1

Two independent molecules in the asymmetric unit showing the atomic labeling and 30% probability displacement ellipsoids. H atoms omitted for clarity.

Figure 2

The overlay of two independent molecules.

(I)

Crystal data $C_{30}H_{42}N_2O_7$ $M_r = 542.66$ Orthorhombic, $P2_12_12_1$

Hall symbol: P 2ac 2ab a = 11.7090 (3) Å b = 13.2040 (4) Å c = 35.7380 (9) Å $V = 5525.3 (3) \text{ Å}^3$ Z = 8 F(000) = 2336 $D_x = 1.305 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54184 \text{ Å}$

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{\min} = 0.806, T_{\max} = 0.806$

Primary atom site location: structure-invariant

Refinement

Refinement on F^2

 $wR(F^2) = 0.111$

8477 reflections

713 parameters

0 restraints

S = 1.02

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.042$

Cell parameters from 7732 reflections $\theta = 3.6-66.9^{\circ}$ $\mu = 0.75 \text{ mm}^{-1}$ T = 173 KPrism, colourless $0.30 \times 0.30 \times 0.30 \text{ mm}$

18595 measured reflections 8477 independent reflections 7744 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 65.0^{\circ}, \theta_{min} = 2.5^{\circ}$ $h = -13 \rightarrow 13$ $k = -12 \rightarrow 15$ $l = -42 \rightarrow 38$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0677P)^2 + 0.5213P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.26$ e Å⁻³ $\Delta\rho_{min} = -0.19$ e Å⁻³

Special details

direct methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.2568 (2)	0.43649 (19)	0.54143 (6)	0.0422 (6)	
H1	0.3404	0.4330	0.5358	0.051*	
C2	0.2385 (2)	0.3917 (2)	0.58046 (6)	0.0505 (6)	
H2A	0.3022	0.4132	0.5968	0.061*	
H2B	0.1671	0.4198	0.5911	0.061*	
C3	0.2312 (2)	0.2773 (2)	0.58093 (7)	0.0527 (7)	
H3A	0.3069	0.2479	0.5751	0.063*	
H3B	0.2081	0.2538	0.6061	0.063*	
C4	0.1451 (2)	0.24306 (19)	0.55241 (6)	0.0401 (5)	
C5	0.1853 (2)	0.26898 (18)	0.51258 (6)	0.0359 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Н5	0.2602	0.2362	0.5067	0.043*
C6	0.0911 (2)	0.23517 (18)	0.48488 (6)	0.0388 (5)
H6A	0.1250	0.2038	0.4623	0.047*
H6B	0.0387	0.1860	0.4968	0.047*
C7	0.02808 (19)	0.33336 (18)	0.47485 (6)	0.0364 (5)
H7	-0.0564	0.3221	0.4754	0.044*
C8	0.06474 (19)	0.37144 (19)	0.43617 (6)	0.0380 (5)
С9	0.19841 (18)	0.37717 (18)	0.43412 (6)	0.0362 (5)
C10	0.25048 (19)	0.41825 (18)	0.47103 (6)	0.0369 (5)
H10	0.3308	0.3927	0.4721	0.044*
C11	0.19213 (18)	0.38589 (18)	0.50856 (6)	0.0342 (5)
C12	0.2580 (3)	0.5349 (2)	0.46378 (7)	0.0541 (7)
H12A	0.2160	0.5725	0.4834	0.065*
H12B	0.3387	0.5574	0.4640	0.065*
C13	0.2039 (2)	0.5545 (2)	0.42508 (7)	0.0503 (6)
H13	0.2413	0.6133	0.4124	0.060*
C14	0.2339 (2)	0.4561 (2)	0.40577 (6)	0.0454 (6)
H14	0.3185	0.4527	0.4022	0.054*
C15	0.0062 (2)	0.4726 (2)	0.42595 (7)	0.0480 (6)
H15A	-0.0228	0.4664	0.4000	0.058*
H15B	-0.0612	0.4803	0.4424	0.058*
C16	0.0749 (3)	0.5707 (2)	0.42826 (7)	0.0531 (7)
H16	0.0586	0.6035	0.4529	0.064*
C17	0.06348 (18)	0.40758 (17)	0.50614 (6)	0.0336 (5)
H17	0.0497	0.4792	0.4982	0.040*
C18	0.0243 (2)	0.28618 (19)	0.55827 (7)	0.0415 (5)
H18A	-0.0319	0.2410	0.5460	0.050*
H18B	0.0070	0.2875	0.5854	0.050*
C19	0.0950 (2)	0.0736 (2)	0.57788 (7)	0.0531 (7)
C20	0.3107 (4)	0.6053 (3)	0.55720 (12)	0.0920 (12)
H20A	0.3241	0.5891	0.5836	0.138*
H20B	0.2859	0.6760	0.5550	0.138*
H20C	0.3814	0.5956	0.5430	0.138*
C21	-0.0699 (4)	0.6774 (3)	0.40392 (12)	0.1110 (17)
H21A	-0.1243	0.6210	0.4037	0.167*
H21B	-0.0878	0.7241	0.3834	0.167*
H21C	-0.0751	0.7133	0.4278	0.167*
C22	0.2309 (3)	0.4802 (3)	0.34001 (8)	0.0855 (11)
H22A	0.2215	0.5538	0.3417	0.128*
H22B	0.1949	0.4556	0.3170	0.128*
H22C	0.3124	0.4635	0.3396	0.128*
C23	-0.1048(2)	0.4258 (2)	0.54681 (7)	0.0426 (5)
H23A	-0.1374	0.4002	0.5706	0.051*
H23B	-0.1514	0.3981	0.5261	0.051*
C24	-0.1135 (3)	0.5397 (2)	0.54635 (9)	0.0624 (8)
H24A	-0.0592	0.5682	0.5644	0.094*
H24B	-0.1912	0.5600	0.5532	0.094*
H24C	-0.0957	0.5648	0.5212	0.094*

C25	0.20217(18)	0.00050(10)	0.71700 (()	0.0220 (5)
U25	0.39217 (18)	0.08850 (10)	0.71788 (0)	0.0320 (5)
H25	0.4/0/	0.0942	0.7212	0.038*
C26	0.3616 (2)	0.14105 (18)	0.68090 (6)	0.0408 (5)
H26A	0.4200	0.1237	0.6619	0.049*
H26B	0.2873	0.1148	0.6720	0.049*
C27	0.3544 (2)	0.25473 (18)	0.68429 (6)	0.0399 (5)
H27A	0.3261	0.2841	0.6605	0.048*
H27B	0.4311	0.2831	0.6894	0.048*
C28	0.27342 (18)	0.28149 (16)	0.71598 (6)	0.0313 (5)
C29	0.32419 (18)	0.24848 (16)	0.75345 (6)	0.0309 (4)
H29	0.3994	0.2820	0.7582	0.037*
C30	0.2373 (2)	0.27287 (16)	0.78494 (6)	0.0364 (5)
H30A	0.2768	0.3006	0.8072	0.044*
H30B	0.1802	0.3228	0.7762	0.044*
C31	0.18008 (18)	0.17164 (16)	0.79424 (6)	0.0334 (5)
H31	0.0956	0.1804	0.7967	0.040*
C32	0.22999 (19)	0.12554 (17)	0.83008 (6)	0.0350 (5)
C33	0.36444 (19)	0.12486 (17)	0.82810 (6)	0.0338 (5)
C34	0.40731 (17)	0.09500 (16)	0.78846 (6)	0.0312 (4)
H34	0.4846	0.1263	0.7856	0.037*
C35	0.33562 (16)	0.13118 (15)	0.75396 (5)	0.0272 (4)
C36	0.42728 (19)	-0.02177(18)	0.79183 (6)	0.0383 (5)
H36A	0.3865	-0.0580	0.7716	0.046*
H36B	0.5097	-0.0376	0.7900	0.046*
C37	0.38056 (19)	-0.05397(17)	0.83042 (6)	0.0361 (5)
H37	0 4222	-0 1147	0.8401	0.043*
C38	0.41089(19)	0 03980 (18)	0.85266 (6)	0.0369(5)
H38	0.4959	0.0458	0.8539	0.044*
C39	0 17956 (19)	0.01971 (18)	0.83848 (6)	0.0391 (5)
H39A	0.1624	0.0166	0.8656	0.047*
H39R	0.1024	0.0100	0.8250	0.047*
C40	0.1039	-0.07378(17)	0.82840 (6)	0.047
U40	0.2314(2) 0.2310	-0.0047	0.82849 (0)	0.0300 (3)
C41	0.2319 0.20002 (16)	0.0947 0.10515 (16)	0.0024	0.044
U41	0.20902 (10)	0.10313(10)	0.73937 (0)	0.0284 (4)
П41	0.1999	0.0317	0.7037	0.034°
U42	0.15309 (19)	0.23520 (17)	0.71190 (0)	0.0367 (5)
H42A	0.0981	0.2770	0.7262	0.044*
H42B	0.1304	0.23/4	0.6852	0.044*
C43	0.21456 (19)	0.45045 (17)	0.69410 (6)	0.0368 (5)
C44	0.4515 (3)	-0.0713 (2)	0.69438 (9)	0.0706 (9)
H44A	0.4605	-0.0428	0.6692	0.106*
H44B	0.4286	-0.1425	0.6924	0.106*
H44C	0.5242	-0.0667	0.7079	0.106*
C45	0.4057 (3)	-0.0248 (2)	0.91444 (7)	0.0575 (7)
H45A	0.3667	-0.0890	0.9092	0.086*
H45B	0.3901	-0.0041	0.9403	0.086*
H45C	0.4882	-0.0337	0.9110	0.086*
C46	0.1203 (2)	-0.2031 (2)	0.84451 (8)	0.0578 (7)

H46A	0.0578	-0.1553	0.8490	0.087*
H46B	0.1102	-0.2630	0.8604	0.087*
H46C	0.1200	-0.2236	0.8182	0.087*
C47	0.02761 (19)	0.09681 (19)	0.72501 (7)	0.0428 (6)
H47A	-0.0084	0.1189	0.7013	0.051*
H47B	-0.0132	0.1307	0.7458	0.051*
C48	0.0124 (2)	-0.0161(2)	0.72891 (10)	0.0645 (8)
H48A	0.0617	-0.0509	0.7109	0.097*
H48B	-0.0675	-0.0339	0.7241	0.097*
H48C	0.0332	-0.0368	0.7543	0.097*
C1′	0.0897 (2)	-0.0336(2)	0.56605 (8)	0.0553 (7)
C2′	0.0381 (2)	-0.1087 (3)	0.58835 (9)	0.0642 (8)
C3′	0.0275 (3)	-0.2063 (3)	0.57384 (13)	0.0817 (11)
H3′	-0.0092	-0.2571	0.5883	0.098*
C4′	0.0689 (4)	-0.2303 (3)	0.53928 (13)	0.0997 (14)
H4′	0.0612	-0.2974	0.5300	0.120*
C5′	0.1214 (5)	-0.1580(3)	0.51803 (12)	0.1061 (15)
H5′	0.1517	-0.1752	0.4942	0.127*
C6′	0.1303 (4)	-0.0612(3)	0.53097 (9)	0.0766 (10)
H6′	0.1653	-0.0114	0.5156	0.092*
C1″	0.22222 (19)	0.55868 (17)	0.70302 (6)	0.0365 (5)
C2″	0.1771 (3)	0.6321 (2)	0.67866 (8)	0.0542 (7)
C3″	0.1854 (3)	0.7340 (2)	0.68911 (10)	0.0672 (9)
H3″	0.1571	0.7846	0.6727	0.081*
C4″	0.2335 (3)	0.7625 (2)	0.72248 (10)	0.0643 (8)
H4″	0.2361	0.8321	0.7292	0.077*
C5″	0.2778(2)	0.6908 (2)	0.74615 (8)	0.0548 (7)
H5″	0.3122	0.7106	0.7691	0.066*
C6″	0.2721 (2)	0.59137 (19)	0.73669 (7)	0.0429(5)
H6″	0.3029	0.5424	0.7533	0.051*
NI	-0.0034(3)	-0.0889(3)	0.62340 (8)	0.0928 (10)
HIA	0.0242	-0.0281	0.6312	0.111*
H1B	0.0201	-0.1384	0.6394	0.111*
N2	0.01194 (16)	0.38839 (15)	0.54309 (5)	0.0373(4)
N3	0.1290 (3)	0.6066 (2)	0.64485 (7)	0.0889 (10)
H3C	0.0735	0.6526	0.6394	0.107*
H3D	0.0974	0.5438	0.6467	0.107*
N4	0 14633 (14)	0 13030 (14)	0.72516(5)	0.0328(4)
01	0.0612 (2)	0.10686 (18)	0.60764 (5)	0.0740 (6)
02	0.14170(17)	0.13201 (13)	0.55120 (4)	0.0500 (4)
03	0.24945(15)	0.28229(13)	0.42563(4)	0.0200(1) 0.0443(4)
H3	0.2200	0.2586	0.4061	0.066*
04	0.02651(16)	0 29539 (14)	0.41009(5)	0.0487(4)
H4	0.0438	0.3130	0 3882	0.073*
05	0.17912 (16)	0.43398 (15)	0.37103(4)	0.0538(5)
06	0.0426(2)	0.63931 (16)	0.39921 (6)	0.0710(6)
07	0.22516(17)	0.54113 (14)	0.54284(5)	0.0554(5)
08	0.16607(18)	0.41487(13)	0.66696 (5)	0.0538(5)
50	0.10007 (10)	0.1110/(15)	0.00000 (0)	0.0000 (0)

09	0.26648 (14)	0.39190 (11)	0.71983 (4)	0.0373 (3)
O10	0.36612 (14)	-0.01612 (12)	0.71417 (4)	0.0407 (4)
011	0.19519 (16)	0.19342 (13)	0.85988 (4)	0.0490 (4)
H11	0.2113	0.1673	0.8806	0.059*
012	0.36556 (16)	0.05052 (14)	0.88956 (4)	0.0481 (4)
013	0.22545 (14)	-0.15629 (13)	0.85308 (4)	0.0448 (4)
014	0.41392 (15)	0.21944 (12)	0.83770 (4)	0.0441 (4)
H14A	0.3753	0.2467	0.8599	0.053*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0410 (12)	0.0460 (14)	0.0396 (12)	-0.0053 (11)	-0.0029 (10)	-0.0089 (11)
C2	0.0540 (14)	0.0645 (18)	0.0329 (12)	-0.0067 (14)	-0.0057 (11)	-0.0124 (12)
C3	0.0592 (15)	0.0672 (19)	0.0317 (12)	0.0090 (14)	-0.0042 (11)	0.0023 (12)
C4	0.0501 (13)	0.0397 (14)	0.0304 (11)	0.0055 (11)	0.0030 (10)	0.0013 (10)
C5	0.0430 (11)	0.0346 (13)	0.0300 (10)	0.0044 (10)	0.0022 (9)	-0.0028 (9)
C6	0.0528 (13)	0.0309 (12)	0.0328 (11)	-0.0056 (11)	0.0021 (10)	-0.0010 (9)
C7	0.0375 (11)	0.0377 (13)	0.0339 (11)	-0.0049 (10)	0.0020 (9)	-0.0020 (10)
C8	0.0419 (12)	0.0401 (14)	0.0319 (11)	0.0001 (10)	-0.0036 (9)	0.0001 (10)
C9	0.0404 (11)	0.0365 (13)	0.0318 (11)	0.0025 (10)	0.0049 (9)	-0.0010 (9)
C10	0.0363 (11)	0.0398 (13)	0.0346 (11)	-0.0016 (10)	0.0037 (9)	-0.0031 (10)
C11	0.0359 (10)	0.0376 (13)	0.0290 (10)	0.0020 (10)	0.0004 (9)	-0.0028 (9)
C12	0.0649 (16)	0.0497 (16)	0.0476 (14)	-0.0161 (14)	0.0096 (13)	-0.0014 (13)
C13	0.0678 (16)	0.0390 (14)	0.0440 (13)	-0.0073 (13)	0.0152 (12)	0.0097 (11)
C14	0.0482 (12)	0.0507 (15)	0.0373 (12)	0.0017 (12)	0.0070 (10)	0.0046 (11)
C15	0.0514 (13)	0.0521 (16)	0.0403 (13)	0.0120 (12)	0.0034 (11)	0.0064 (12)
C16	0.0776 (18)	0.0401 (14)	0.0415 (13)	0.0126 (14)	0.0174 (13)	0.0076 (11)
C17	0.0403 (11)	0.0304 (12)	0.0302 (10)	0.0013 (9)	0.0027 (9)	-0.0005 (9)
C18	0.0490 (13)	0.0394 (14)	0.0359 (12)	0.0039 (11)	0.0088 (10)	0.0037 (10)
C19	0.0596 (15)	0.0547 (17)	0.0449 (14)	0.0114 (14)	0.0035 (12)	0.0175 (13)
C20	0.107 (3)	0.060(2)	0.109 (3)	-0.020 (2)	-0.031 (2)	-0.026 (2)
C21	0.126 (3)	0.095 (3)	0.112 (3)	0.070 (3)	0.051 (3)	0.049 (3)
C22	0.096 (2)	0.120 (3)	0.0402 (15)	0.004 (2)	0.0096 (16)	0.0289 (18)
C23	0.0408 (11)	0.0427 (14)	0.0443 (12)	-0.0018 (11)	0.0094 (10)	-0.0046 (11)
C24	0.0607 (16)	0.0464 (17)	0.080 (2)	0.0064 (14)	0.0222 (15)	-0.0036 (15)
C25	0.0344 (10)	0.0266 (11)	0.0352 (11)	-0.0008 (9)	0.0069 (9)	-0.0022 (9)
C26	0.0531 (13)	0.0394 (13)	0.0300 (11)	-0.0009 (11)	0.0092 (10)	-0.0009 (10)
C27	0.0517 (13)	0.0338 (13)	0.0341 (11)	-0.0029 (11)	0.0052 (10)	0.0083 (10)
C28	0.0401 (11)	0.0230 (11)	0.0309 (10)	-0.0018 (9)	-0.0039 (9)	0.0014 (8)
C29	0.0367 (10)	0.0242 (11)	0.0317 (10)	-0.0015 (9)	-0.0028 (9)	-0.0022 (9)
C30	0.0543 (13)	0.0243 (11)	0.0308 (10)	0.0111 (10)	-0.0008 (10)	-0.0002 (9)
C31	0.0354 (10)	0.0297 (12)	0.0351 (11)	0.0092 (9)	0.0042 (9)	0.0005 (9)
C32	0.0416 (11)	0.0325 (12)	0.0309 (10)	0.0075 (10)	0.0079 (9)	0.0010 (9)
C33	0.0409 (11)	0.0282 (12)	0.0324 (11)	-0.0012 (10)	-0.0019 (9)	-0.0016 (9)
C34	0.0307 (9)	0.0291 (12)	0.0338 (11)	0.0006 (9)	0.0024 (8)	0.0009 (9)
C35	0.0304 (9)	0.0233 (11)	0.0278 (10)	-0.0007 (8)	0.0010 (8)	-0.0006 (8)
C36	0.0427 (11)	0.0337 (12)	0.0386 (12)	0.0092 (10)	0.0065 (10)	0.0072 (10)

C37	0.0418 (12)	0.0299 (12)	0.0367 (11)	0.0070 (10)	0.0006 (9)	0.0087 (9)
C38	0.0355 (10)	0.0406 (13)	0.0347 (11)	0.0011 (10)	-0.0011 (9)	0.0046 (10)
C39	0.0363 (10)	0.0428 (14)	0.0382 (12)	0.0029 (10)	0.0061 (9)	0.0104 (10)
C40	0.0452 (12)	0.0309 (12)	0.0337 (11)	-0.0005 (10)	-0.0017 (9)	0.0065 (9)
C41	0.0306 (10)	0.0224 (10)	0.0323 (10)	0.0010 (8)	0.0027 (8)	0.0026 (8)
C42	0.0416 (11)	0.0313 (12)	0.0372 (11)	0.0007 (10)	-0.0066 (9)	0.0037 (10)
C43	0.0458 (12)	0.0311 (12)	0.0335 (11)	-0.0012 (10)	0.0023 (9)	0.0058 (9)
C44	0.098 (2)	0.0424 (16)	0.0711 (19)	0.0198 (17)	0.0277 (18)	-0.0096 (14)
C45	0.0682 (16)	0.0618 (18)	0.0424 (13)	0.0017 (15)	-0.0074 (12)	0.0179 (13)
C46	0.0608 (16)	0.0573 (18)	0.0553 (15)	-0.0205 (15)	-0.0011 (13)	0.0116 (13)
C47	0.0357 (11)	0.0384 (14)	0.0543 (14)	-0.0030 (10)	-0.0076 (10)	0.0064 (11)
C48	0.0518 (15)	0.0461 (17)	0.095 (2)	-0.0143 (13)	-0.0165 (15)	0.0080 (16)
C1′	0.0630 (15)	0.0443 (16)	0.0587 (16)	0.0072 (14)	0.0055 (13)	0.0178 (13)
C2′	0.0569 (15)	0.064 (2)	0.0711 (19)	0.0147 (16)	0.0082 (14)	0.0300 (16)
C3′	0.078 (2)	0.049 (2)	0.118 (3)	-0.0027 (17)	0.004 (2)	0.032 (2)
C4′	0.128 (4)	0.054 (2)	0.117 (3)	-0.021 (2)	0.021 (3)	-0.001 (2)
C5′	0.168 (4)	0.050 (2)	0.101 (3)	-0.022(3)	0.044 (3)	-0.010(2)
C6′	0.106 (3)	0.054 (2)	0.070 (2)	-0.010(2)	0.0229 (19)	0.0025 (16)
C1″	0.0412 (11)	0.0269 (12)	0.0413 (12)	0.0021 (10)	0.0055 (10)	0.0039 (9)
C2″	0.0719 (17)	0.0382 (15)	0.0524 (15)	0.0052 (14)	-0.0059(13)	0.0087 (12)
C3″	0.089 (2)	0.0286 (14)	0.083 (2)	0.0108 (15)	-0.0110 (18)	0.0108 (14)
C4″	0.0712 (18)	0.0291 (14)	0.093 (2)	0.0004 (14)	-0.0004(17)	-0.0093 (15)
C5″	0.0589 (15)	0.0367 (14)	0.0689 (17)	-0.0007 (13)	-0.0072 (14)	-0.0109 (13)
C6″	0.0450 (12)	0.0373 (14)	0.0463 (13)	0.0005 (11)	0.0011 (10)	-0.0011 (11)
N1	0.115 (2)	0.087 (2)	0.0763 (19)	0.014 (2)	0.0178 (18)	0.0409 (18)
N2	0.0414 (10)	0.0371 (11)	0.0335 (9)	0.0000 (9)	0.0076 (8)	-0.0006 (8)
N3	0.145 (3)	0.0551 (16)	0.0664 (16)	0.0170 (19)	-0.0368 (18)	0.0142 (14)
N4	0.0334 (8)	0.0272 (10)	0.0378 (9)	-0.0026(8)	-0.0044 (7)	0.0050 (8)
01	0.1100 (17)	0.0679 (14)	0.0440 (10)	0.0173 (14)	0.0202 (11)	0.0133 (10)
02	0.0732 (11)	0.0378 (10)	0.0391 (9)	0.0081 (9)	0.0077 (8)	0.0060 (7)
O3	0.0529 (9)	0.0415 (10)	0.0384 (8)	0.0108 (8)	0.0026 (7)	-0.0044 (7)
04	0.0586 (10)	0.0535 (11)	0.0339 (8)	-0.0027(9)	-0.0060(8)	-0.0057(8)
05	0.0633 (11)	0.0652 (12)	0.0329 (8)	0.0044 (10)	0.0075 (8)	0.0056 (8)
06	0.0880 (14)	0.0576 (13)	0.0673 (12)	0.0311 (12)	0.0275 (11)	0.0269 (10)
07	0.0685 (11)	0.0434 (11)	0.0543 (10)	-0.0052(9)	-0.0096(9)	-0.0171(9)
08	0.0842 (13)	0.0365 (9)	0.0406 (9)	0.0002 (9)	-0.0173(9)	0.0018 (8)
09	0.0536 (9)	0.0210 (7)	0.0374 (8)	0.0001 (7)	-0.0058(7)	0.0033 (6)
010	0.0546 (9)	0.0263 (8)	0.0411 (8)	0.0031 (7)	0.0062 (8)	-0.0068(7)
011	0.0695 (11)	0.0457 (10)	0.0319 (8)	0.0154 (9)	0.0094 (8)	-0.0014 (7)
012	0.0626 (10)	0.0508 (11)	0.0309 (8)	0.0075 (9)	-0.0024 (7)	0.0074 (7)
013	0.0534 (9)	0.0359 (9)	0.0452 (9)	-0.0099(8)	-0.0054(8)	0.0136 (7)
014	0.0593 (10)	0.0344 (9)	0.0387 (8)	-0.0057(8)	-0.0036(8)	-0.0029(7)
	(10)					

Geometric parameters (Å, °)

C1—07	1.431 (3)	С29—Н29	1.0000
C1—C2	1.530 (3)	C30—C31	1.532 (3)
C1C11	1.549 (3)	C30—H30A	0.9900

C1—H1	1.0000	C30—H30B	0.9900
C2—C3	1.512 (4)	C31—C32	1.534 (3)
C2—H2A	0.9900	C31—C41	1.556 (3)
C2—H2B	0.9900	C31—H31	1.0000
C3—C4	1.504 (3)	C32—O11	1.450 (3)
С3—НЗА	0.9900	C32—C39	1.546 (3)
С3—Н3В	0.9900	C32—C33	1.576 (3)
C4—O2	1,467 (3)	C33—O14	1.419 (3)
C4—C5	1.538 (3)	C33—C38	1.526 (3)
C4—C18	1.539 (3)	C33—C34	1.554 (3)
C5-C6	1 548 (3)	C_{34} C_{36}	1.564(3)
C5-C11	1 552 (3)	C_{34} C_{35}	1.561(3)
C5H5	1,0000	C34_H34	1.0000
C6 C7	1.534 (3)	C35 C41	1.0000
C6 H6A	0.0000	C_{35} C_{41}	1.535(3) 1.543(3)
	0.9900	$C_{30} = C_{37}$	1.343(3)
$C_0 = H_0 B$	0.9900	C_{26} U_{26}	0.9900
C/-C8	1.552 (3)	С30—Н30В	0.9900
	1.544 (3)	$C_{37} = C_{38}$	1.514 (3)
C/—H/	1.0000	C37—C40	1.536 (3)
C8—O4	1.441 (3)	С37—Н37	1.0000
C8—C15	1.546 (3)	C38—O12	1.429 (3)
C8—C9	1.569 (3)	C38—H38	1.0000
C9—O3	1.421 (3)	C39—C40	1.536 (3)
C9—C14	1.511 (3)	С39—Н39А	0.9900
C9—C10	1.551 (3)	С39—Н39В	0.9900
C10—C12	1.565 (3)	C40—O13	1.432 (3)
C10—C11	1.565 (3)	C40—H40	1.0000
C10—H10	1.0000	C41—N4	1.470 (3)
C11—C17	1.536 (3)	C41—H41	1.0000
C12—C13	1.543 (4)	C42—N4	1.466 (3)
C12—H12A	0.9900	C42—H42A	0.9900
C12—H12B	0.9900	C42—H42B	0.9900
C13—C14	1.513 (4)	C43—O8	1.218 (3)
C13—C16	1.530 (4)	C43—O9	1.346 (3)
С13—Н13	1.0000	C43—C1″	1.467 (3)
C14—O5	1.427 (3)	C44—O10	1.425 (3)
C14—H14	1.0000	C44—H44A	0.9800
C15—C16	1 526 (4)	C44—H44B	0.9800
C15—H15A	0.9900	C44 - H44C	0.9800
C15—H15B	0.9900	$C_{45} = 012$	1415(3)
C16 06	1 /20 (3)	C45 H45A	0.9800
C16 H16	1.429 (3)	C45 H45R	0.9800
C17 N2	1.0000	C_{45} $H_{45}C$	0.9800
C17 - IN2	1.4/4 (3)	C45 - H45C	0.9800
$C_1 / - \Pi_1 / C_1 $	1.0000	$C_{40} = 015$	1.411 (3)
C_{10} H_{10}	1.402 (3)	C_{40} Π_{40A}	0.9800
	0.9900		0.9800
	0.9900	C40—H46C	0.9800
C19—O1	1.217 (3)	C47/—N4	1.459 (3)

C19—O2	1.343 (3)	C47—C48	1.507 (4)
C19—C1′	1.478 (4)	C47—H47A	0.9900
C20—O7	1.409 (4)	C47—H47B	0.9900
C20—H20A	0.9800	C48—H48A	0.9800
C20—H20B	0.9800	C48—H48B	0.9800
C20—H20C	0.9800	C48—H48C	0.9800
C21—O6	1.419 (4)	C1′—C6′	1.390 (4)
C21—H21A	0.9800	C1′—C2′	1.408 (4)
C21—H21B	0.9800	C2′—N1	1.368 (4)
C21—H21C	0.9800	C2′—C3′	1.395 (5)
C22—O5	1.403 (3)	C3'—C4'	1.364 (6)
С22—Н22А	0.9800	C3'—H3'	0.9500
C22—H22B	0.9800	C4′—C5′	1.366 (5)
C22—H22C	0.9800	C4'—H4'	0.9500
C23—N2	1.460 (3)	C5'—C6'	1.363 (5)
C_{23} C_{24}	1.508 (4)	С5'—Н5'	0.9500
C23—H23A	0.9900	С6'—Н6'	0.9500
C23—H23B	0.9900	C1"—C6"	1405(3)
C24—H24A	0.9800	C1"—C2"	1.105(3) 1 406(3)
C_{24} H24R	0.9800	C2''N3	1.100(3) 1.375(4)
C_{24} H24D	0.9800	C2''-C3''	1.375(4) 1 400 (4)
$C_{25} = 010$	1.421(3)	$C_{2}^{3''}$	1.400(4) 1.372(4)
$C_{25} = C_{10}$	1.421(3) 1 535 (3)	C3"_H3"	0.9500
$C_{25} = C_{20}$	1.555 (3)	$C_{4''}$ $C_{5''}$	1,372(4)
C25 H25	1.0000	C4'' = C5''	0.9500
C26 C27	1.508 (3)	$C_{7} = -11_{7}$	1.357(3)
$C_{20} = C_{27}$	0.0000	C5" H5"	0.0500
C26 H26P	0.9900	C5 —115 C6″ Ц6″	0.9500
C27 C28	1.510(2)		0.9300
$C_2 = C_2 \delta$	1.519 (5)	NI-HIA NI HID	0.9100
$C_2/-H_2/A$	0.9900		0.9100
$C_2/-H_2/B$	0.9900		0.9100
$C_{28} = C_{29}$	1.40/(2)	N3—H3D	0.9100
$C_{28} = C_{29}$	1.528 (3)	03—H3	0.8400
$C_{28} - C_{42}$	1.543 (3)	04—H4	0.8400
$C_{29} = C_{30}$	1.551 (3)		0.8400
C29—C35	1.555 (3)	014—H14A	0.9800
07-C1-C2	107.8 (2)	C31—C30—C29	105 27 (17)
07—C1—C11	108.43(19)	C31—C30—H30A	110.7
C_{2} — C_{1} — C_{11}	117.1 (2)	C29—C30—H30A	110.7
07—C1—H1	107.7	C_{31} $-C_{30}$ $-H_{30B}$	110.7
C2-C1-H1	107.7	C29—C30—H30B	110.7
C11—C1—H1	107 7	H_{30A} C_{30} H_{30B}	108.8
C_{3} C_{2} C_{1}	113 8 (2)	C_{30} C_{31} C_{32}	111 15 (18)
$C_3 - C_2 - H_2 A$	108.8	C_{30} C_{31} C_{41}	102 96 (16)
C1 - C2 - H2A	108.8	C_{32} C_{31} C_{41}	110.98 (16)
$C_3 - C_2 - H_2B$	108.8	C_{30} C_{31} H_{31}	110.50 (10)
C1 - C2 - H2B	108.8	C_{32} C_{31} H_{31}	110.5
	100.0		110.0

H2A—C2—H2B	107.7	C41—C31—H31	110.5
C4—C3—C2	109.3 (2)	O11—C32—C31	105.12 (17)
С4—С3—НЗА	109.8	O11—C32—C39	107.97 (17)
С2—С3—НЗА	109.8	C31—C32—C39	112.04 (19)
C4—C3—H3B	109.8	O11—C32—C33	108.49 (19)
С2—С3—Н3В	109.8	C31—C32—C33	110.21 (17)
H3A—C3—H3B	108.3	$C_{39} - C_{32} - C_{33}$	112.65 (18)
02-C4-C3	109.8 (2)	014 - C33 - C38	11130(17)
02 - C4 - C5	101.74(18)	014 - C33 - C34	108 18 (17)
C_{3} C_{4} C_{5}	110.8 (2)	C_{38} C_{33} C_{34}	100.10(17) 102.86(17)
$C_{3} = C_{4} = C_{3}$	110.0(2)	014 033 032	102.00(17) 113.00(10)
C_{2} C_{4} C_{18}	110.4(2)	C_{38} C_{33} C_{32}	113.09(19) 109 54 (18)
$C_{5} = C_{4} = C_{18}$	114.4(2)	$C_{36} - C_{33} - C_{32}$	109.34(18)
$C_3 = C_4 = C_{18}$	108.98(19) 108.02(10)	$C_{34} = C_{33} = C_{32}$	111.41(17)
C4 - C5 - C6	108.03 (19)	$C_{33} = C_{34} = C_{36}$	103.19 (17)
	108.83 (18)	$C_{33} = C_{34} = C_{35}$	11/.85 (16)
C6C5C11	105.32 (17)	C36—C34—C35	116.19 (18)
C4—C5—H5	111.5	С33—С34—Н34	106.2
С6—С5—Н5	111.5	С36—С34—Н34	106.2
C11—C5—H5	111.5	С35—С34—Н34	106.2
C7—C6—C5	104.39 (17)	C41—C35—C29	98.14 (16)
С7—С6—Н6А	110.9	C41—C35—C25	116.01 (17)
С5—С6—Н6А	110.9	C29—C35—C25	112.82 (16)
С7—С6—Н6В	110.9	C41—C35—C34	110.27 (16)
С5—С6—Н6В	110.9	C29—C35—C34	111.05 (16)
H6A—C6—H6B	108.9	C25—C35—C34	108.30 (16)
C8—C7—C6	110.69 (18)	C37—C36—C34	106.70 (18)
C8—C7—C17	111.72 (18)	С37—С36—Н36А	110.4
C6—C7—C17	103.77 (17)	С34—С36—Н36А	110.4
С8—С7—Н7	110.2	С37—С36—Н36В	110.4
С6—С7—Н7	110.2	С34—С36—Н36В	110.4
С17—С7—Н7	110.2	H36A—C36—H36B	108.6
04-C8-C7	105 52 (18)	$C_{38} = C_{37} = C_{40}$	113 19 (19)
04-C8-C15	108.17(18)	$C_{38} = C_{37} = C_{36}$	99 25 (18)
C7-C8-C15	111 87 (19)	C_{40} C_{37} C_{36}	110.85(18)
$C_{1} = C_{2} = C_{12}$	108.27(19)	$C_{40} = C_{57} = C_{50}$	111.0
$C_{7} C_{8} C_{9}$	100.27(19) 100.72(18)	$C_{38} = C_{37} = H_{37}$	111.0
$C_{1} = C_{3} = C_{3}$	109.72(10) 112.0(2)	$C_{40} = C_{57} = H_{57}$	111.0
C13 - C3 - C3	112.9(2)	$C_{30} - C_{37} - H_{37}$	111.0
03 - 09 - 014	110.43(18)	012 - 038 - 037	118.00 (19)
03 - 09 - 010	108.94 (18)	012 - 038 - 033	109.01 (18)
C14 - C9 - C10	102.78 (19)	$C_{3}/-C_{3}8-C_{3}3$	102.50 (17)
03-09-08	112.8 (2)	012—C38—H38	108.8
C14-C9-C8	109.8 (2)	С37—С38—Н38	108.8
C10—C9—C8	111.68 (17)	C33—C38—H38	108.8
C9—C10—C12	103.03 (19)	C40—C39—C32	118.16 (18)
C9—C10—C11	117.51 (18)	С40—С39—Н39А	107.8
C12—C10—C11	115.81 (19)	С32—С39—Н39А	107.8
C9—C10—H10	106.6	C40—C39—H39B	107.8
C12-C10-H10	106.6	С32—С39—Н39В	107.8

C11—C10—H10	106.6	H39A—C39—H39B	107.1
C17—C11—C1	116.23 (18)	O13—C40—C39	110.64 (18)
C17—C11—C5	98.06 (18)	O13—C40—C37	108.11 (18)
C1—C11—C5	112.57 (18)	C39—C40—C37	113.07 (19)
C17—C11—C10	109.21 (17)	O13—C40—H40	108.3
C1-C11-C10	108.58 (18)	C39—C40—H40	108.3
C5—C11—C10	111.92 (18)	С37—С40—Н40	108.3
C13—C12—C10	106.9 (2)	N4—C41—C35	108.80 (16)
C13—C12—H12A	110.3	N4-C41-C31	115.46 (16)
C10-C12-H12A	110.3	C35—C41—C31	100.84 (16)
C13—C12—H12B	110.3	N4—C41—H41	110.4
C10-C12-H12B	110.3	C35—C41—H41	110.4
H12A—C12—H12B	108.6	C31—C41—H41	110.4
C14—C13—C16	112.5 (2)	N4—C42—C28	113.15 (17)
C14—C13—C12	99.8 (2)	N4—C42—H42A	108.9
C16—C13—C12	111.2 (2)	C28—C42—H42A	108.9
C14—C13—H13	111.0	N4—C42—H42B	108.9
C16—C13—H13	111.0	C28—C42—H42B	108.9
C12—C13—H13	111.0	H42A—C42—H42B	107.8
O5—C14—C9	108.6 (2)	O8—C43—O9	122.2 (2)
O5—C14—C13	117.9 (2)	O8—C43—C1″	125.3 (2)
C9—C14—C13	102.86 (19)	O9—C43—C1″	112.53 (19)
O5—C14—H14	109.0	O10—C44—H44A	109.5
C9—C14—H14	109.0	O10—C44—H44B	109.5
C13—C14—H14	109.0	H44A—C44—H44B	109.5
C16—C15—C8	119.1 (2)	O10—C44—H44C	109.5
C16—C15—H15A	107.5	H44A—C44—H44C	109.5
C8—C15—H15A	107.5	H44B—C44—H44C	109.5
C16—C15—H15B	107.5	O12—C45—H45A	109.5
C8—C15—H15B	107.5	O12—C45—H45B	109.5
H15A—C15—H15B	107.0	H45A—C45—H45B	109.5
O6—C16—C15	111.0 (2)	O12—C45—H45C	109.5
O6—C16—C13	107.2 (2)	H45A—C45—H45C	109.5
C15—C16—C13	113.5 (2)	H45B—C45—H45C	109.5
O6—C16—H16	108.3	O13—C46—H46A	109.5
C15—C16—H16	108.3	O13—C46—H46B	109.5
C13—C16—H16	108.3	H46A—C46—H46B	109.5
N2—C17—C11	108.60 (17)	O13—C46—H46C	109.5
N2—C17—C7	115.47 (18)	H46A—C46—H46C	109.5
C11—C17—C7	100.71 (17)	H46B—C46—H46C	109.5
N2—C17—H17	110.5	N4—C47—C48	114.3 (2)
C11—C17—H17	110.5	N4—C47—H47A	108.7
C7—C17—H17	110.5	С48—С47—Н47А	108.7
N2—C18—C4	112.4 (2)	N4—C47—H47B	108.7
N2—C18—H18A	109.1	C48—C47—H47B	108.7
C4—C18—H18A	109.1	H47A—C47—H47B	107.6
N2—C18—H18B	109.1	C47—C48—H48A	109.5
C4—C18—H18B	109.1	C47—C48—H48B	109.5

H18A—C18—H18B	107.8	H48A—C48—H48B	109.5
O1—C19—O2	123.0 (3)	C47—C48—H48C	109.5
O1—C19—C1′	125.6 (3)	H48A—C48—H48C	109.5
O2—C19—C1′	111.4 (2)	H48B—C48—H48C	109.5
O7—C20—H20A	109.5	C6'—C1'—C2'	118.2 (3)
O7—C20—H20B	109.5	C6'—C1'—C19	119.7 (3)
H20A—C20—H20B	109.5	C2'—C1'—C19	122.0 (3)
O7—C20—H20C	109.5	N1—C2′—C3′	119.0 (3)
H20A—C20—H20C	109.5	N1—C2′—C1′	122.4 (3)
H20B—C20—H20C	109.5	C3'—C2'—C1'	118.6 (3)
O6—C21—H21A	109.5	C4'—C3'—C2'	121.3 (3)
O6—C21—H21B	109.5	C4'—C3'—H3'	119.3
H21A—C21—H21B	109.5	C2'—C3'—H3'	119.3
O6—C21—H21C	109.5	C3'—C4'—C5'	120.0 (4)
H21A—C21—H21C	109.5	C3'—C4'—H4'	120.0
H21B—C21—H21C	109.5	C5'—C4'—H4'	120.0
O5—C22—H22A	109.5	C6'—C5'—C4'	120.1 (4)
05—C22—H22B	109.5	C6'—C5'—H5'	120.0
H22A—C22—H22B	109.5	C4'—C5'—H5'	120.0
05—C22—H22C	109.5	C5'—C6'—C1'	121.7 (3)
H22A—C22—H22C	109.5	C5'—C6'—H6'	119.1
H22B—C22—H22C	109.5	C1'—C6'—H6'	119.1
N2-C23-C24	113.5 (2)	C6"—C1"—C2"	118.3 (2)
N2—C23—H23A	108.9	C6''C1''C43	120.7(2)
C24—C23—H23A	108.9	C2''-C1''-C43	120.9(2)
N2—C23—H23B	108.9	N3—C2''—C3''	119.9 (3)
C24—C23—H23B	108.9	N3—C2"—C1"	122.0(3)
H23A—C23—H23B	107.7	C3"—C2"—C1"	118.1 (3)
C23—C24—H24A	109.5	C4''-C3''-C2''	121.7 (3)
C23—C24—H24B	109.5	C4"—C3"—H3"	119.2
H24A—C24—H24B	109.5	C2''	119.2
C_{23} C_{24} $H_{24}C$	109.5	C3"—C4"—C5"	120.1(3)
$H_{24} = C_{24} = H_{24} C_{24}$	109.5	C3"—C4"—H4"	120.0
H_24B C_24 H_24C	109.5	C5"—C4"—H4"	120.0
010-025-026	108.00 (17)	C6''C4''	119.7(3)
010 - C25 - C35	109 78 (16)	Сб"—С5"—Н5"	120.1
$C_{26} = C_{25} = C_{35}$	116 81 (17)	C4"—C5"—H5"	120.1
010-025-H25	107 3	C5"—C6"—C1"	122.1(2)
$C_{26} = C_{25} = H_{25}$	107.3	C5"—C6"—H6"	119.0
C_{35} C_{25} H_{25}	107.3	C1"—C6"—H6"	119.0
C_{27} C_{26} C_{25} C_{25}	113 19 (19)	C2' - N1 - H1A	108.9
C27—C26—H26A	108.9	C2' - N1 - H1B	109.3
C_{25} C_{26} H_{26A}	108.9	H1A—N1—H1B	109.5
C27—C26—H26B	108.9	C^{23} N2 C^{18}	111 77 (19)
C25—C26—H26B	108.9	$C_{23} = N_2 = C_{17}$	114.02 (19)
H26A—C26—H26B	107.8	C18 - N2 - C17	116.80 (18)
$C_{26} - C_{27} - C_{28}$	109.07 (18)	C2''-N3-H3C	108.5
C26—C27—H27A	109.9	C2''—N3—H3D	109.0

C28—C27—H27A	109.9	H3C—N3—H3D	109.5
С26—С27—Н27В	109.9	C47—N4—C42	109.67 (17)
C28—C27—H27B	109.9	C47—N4—C41	114.24 (17)
H27A—C27—H27B	108.3	C42—N4—C41	117.19 (17)
O9—C28—C27	109.62 (17)	C19—O2—C4	124.4 (2)
O9—C28—C29	102.89 (16)	С9—О3—Н3	109.5
C27—C28—C29	110.14 (18)	C8—O4—H4	109.5
O9—C28—C42	110.62 (17)	C22	113.9 (2)
C27—C28—C42	114.03 (18)	C21—O6—C16	112.6 (2)
C29—C28—C42	108.97 (17)	C20-07-C1	114.2 (2)
C_{28} C_{29} C_{30}	108.75 (17)	C43—O9—C28	122.13(17)
$C_{28} = C_{29} = C_{35}$	109.14 (17)	$C_{25} - C_{10} - C_{44}$	113.1 (2)
C_{30} C_{29} C_{35}	104.76(17)	C32—O11—H11	109.4
C_{28} C_{29} H_{29}	111 3	C45-012-C38	112,77 (19)
C_{30} C_{29} H_{29}	111.3	$C_{46} - 013 - C_{40}$	112.77(19)
$C_{35} = C_{29} = H_{29}$	111.3	$C_{33} = 0.14 = H_{14A}$	109 3
	111.5		109.5
07 - C1 - C2 - C3	161 3 (2)	$014 - C_{33} - C_{34} - C_{35}$	-89.7(2)
$C_{11} = C_{11} = C_{22} = C_{3}$	380(3)	C_{38} C_{33} C_{34} C_{35}	152.49(18)
C1 $C2$ $C3$ $C4$	-512(3)	C_{32} C_{33} C_{34} C_{35}	152.47(10)
$C_1 - C_2 - C_3 - C_4$	1770(2)	$C_{32} = C_{33} = C_{34} = C_{35}$	-74.90(19)
$C_2 = C_3 = C_4 = C_2$	177.0(2)	$C_{20} = C_{20} = C_{30} = C_{41}$	74.90(19)
$C_2 = C_3 = C_4 = C_3$	-58.2(3)	$C_{30} = C_{29} = C_{33} = C_{41}$	41.42(19)
$C_2 = C_3 = C_4 = C_{18}$	-36.2(3)	$C_{28} = C_{29} = C_{35} = C_{25}$	47.0(2)
02-04-05-06	05.5(2)	$C_{30} = C_{29} = C_{35} = C_{25}$	164.15(17)
$C_{3} - C_{4} - C_{5} - C_{6}$	-1/8.0(2)	$C_{28} = C_{29} = C_{35} = C_{34}$	169.64 (16)
C18 - C4 - C5 - C6	-51.3(2)	$C_{30} - C_{29} - C_{35} - C_{34}$	-/4.0 (2)
02-04-05-011	1/9.17 (18)	010-025-035-041	-48.4 (2)
C3—C4—C5—C11	-64.2 (3)	C26—C25—C35—C41	74.9 (2)
C18—C4—C5—C11	62.5 (2)	010-C25-C35-C29	-160.53 (17)
C4—C5—C6—C7	101.3 (2)	C26—C25—C35—C29	-37.2 (3)
C11—C5—C6—C7	-14.9 (2)	O10—C25—C35—C34	76.1 (2)
C5—C6—C7—C8	102.43 (19)	C26—C25—C35—C34	-160.53 (19)
C5—C6—C7—C17	-17.6 (2)	C33—C34—C35—C41	-49.7 (2)
C6—C7—C8—O4	64.9 (2)	C36—C34—C35—C41	73.5 (2)
C17—C7—C8—O4	179.98 (18)	C33—C34—C35—C29	58.0 (2)
C6—C7—C8—C15	-177.73 (19)	C36—C34—C35—C29	-178.83 (17)
C17—C7—C8—C15	-62.6 (2)	C33—C34—C35—C25	-177.63 (18)
C6—C7—C8—C9	-51.6 (2)	C36—C34—C35—C25	-54.4 (2)
C17—C7—C8—C9	63.5 (2)	C33—C34—C36—C37	7.3 (2)
O4—C8—C9—O3	-31.9 (2)	C35—C34—C36—C37	-123.20 (19)
C7—C8—C9—O3	82.8 (2)	C34—C36—C37—C38	-34.7 (2)
C15—C8—C9—O3	-151.70 (19)	C34—C36—C37—C40	84.5 (2)
O4—C8—C9—C14	91.7 (2)	C40—C37—C38—O12	52.1 (3)
C7—C8—C9—C14	-153.64 (19)	C36—C37—C38—O12	169.60 (18)
C15—C8—C9—C14	-28.1 (3)	C40—C37—C38—C33	-68.0 (2)
O4—C8—C9—C10	-155.01 (18)	C36—C37—C38—C33	49.5 (2)
C7—C8—C9—C10	-40.3 (3)	O14—C33—C38—O12	71.7 (2)
C15—C8—C9—C10	85.2 (2)	C34—C33—C38—O12	-172.71 (17)

O3—C9—C10—C12	143.00 (19)	C32—C33—C38—O12	-54.1 (2)
C14—C9—C10—C12	25.9 (2)	O14—C33—C38—C37	-161.82 (18)
C8—C9—C10—C12	-91.8 (2)	C34—C33—C38—C37	-46.2 (2)
O3—C9—C10—C11	-88.4 (2)	C32—C33—C38—C37	72.4 (2)
C14—C9—C10—C11	154.5 (2)	O11—C32—C39—C40	-143.67 (19)
C8-C9-C10-C11	36.9 (3)	C31—C32—C39—C40	101.0 (2)
07-C1-C11-C17	-47.8(3)	C_{33} C_{32} C_{39} C_{40}	-23.9(3)
$C_{-C_{1}-C_{1}-C_{1}}$	74 3 (3)	C_{32} C_{39} C_{40} C_{13}	150.93(19)
07-C1-C11-C5	-15975(19)	C_{32} C_{39} C_{40} C_{37}	29 5 (3)
C_{2} C_{1} C_{11} C_{5}	-37.6(3)	$C_{38} = C_{37} = C_{40} = 013$	-105 1 (2)
07 $C1$ $C11$ $C10$	75 8 (2)	C_{36} C_{37} C_{40} O_{13}	105.1(2) 144.42(19)
$C_{2} = C_{1} = C_{11} = C_{10}$	-1621(2)	$C_{30} = C_{37} = C_{40} = C_{13}$	178(3)
$C_{2} = C_{1} = C_{11} = C_{10}$	-74.4(2)	$C_{36} = C_{37} = C_{40} = C_{37}$	-027(2)
C4 - C3 - C11 - C17	-74.4(2)	$C_{30} = C_{37} = C_{40} = C_{39}$	-92.7(2)
$C_0 = C_1 = C_1$	41.2 (2)	$C_{29} = C_{35} = C_{41} = N_4$	50 ((2)
	48.4 (2)	$C_{25} = C_{35} = C_{41} = N_4$	-50.6 (2)
	164.07 (18)	C34—C35—C41—N4	-174.11 (16)
C4—C5—C11—C10	171.08 (18)	C29—C35—C41—C31	-52.03 (17)
C6—C5—C11—C10	-73.3 (2)	C25—C35—C41—C31	-172.41 (16)
C9—C10—C11—C17	-51.6 (3)	C34—C35—C41—C31	64.05 (19)
C12—C10—C11—C17	70.7 (3)	C30—C31—C41—N4	-73.1 (2)
C9—C10—C11—C1	-179.26 (19)	C32—C31—C41—N4	167.96 (17)
C12—C10—C11—C1	-57.0 (3)	C30—C31—C41—C35	43.99 (19)
C9—C10—C11—C5	55.9 (3)	C32—C31—C41—C35	-75.0 (2)
C12—C10—C11—C5	178.2 (2)	O9—C28—C42—N4	-153.09 (17)
C9—C10—C12—C13	3.5 (2)	C27—C28—C42—N4	82.8 (2)
C11—C10—C12—C13	-126.2 (2)	C29—C28—C42—N4	-40.7 (2)
C10-C12-C13-C14	-31.2 (3)	O1—C19—C1′—C6′	179.2 (3)
C10-C12-C13-C16	87.7 (3)	O2—C19—C1′—C6′	-0.1 (4)
O3—C9—C14—O5	71.1 (2)	O1—C19—C1′—C2′	3.2 (5)
C10—C9—C14—O5	-172.86 (18)	O2—C19—C1′—C2′	-176.2(3)
C8-C9-C14-O5	-53.9(3)	C6'—C1'—C2'—N1	179.3 (3)
03-C9-C14-C13	-1632(2)	C19-C1'-C2'-N1	-46(5)
C10-C9-C14-C13	-47.2(2)	C6'-C1'-C2'-C3'	-1.6(4)
C_{8} C_{9} C_{14} C_{13}	71.8(2)	C19 - C1' - C2' - C3'	1.0(1) 1745(3)
C_{16} C_{13} C_{14} C_{15}	49.6 (3)	N1 - C2' - C3' - C4'	-1790(4)
$C_{12} = C_{13} = C_{14} = 05$	167.5(2)	C1' C2' C3' C4'	175.0(4)
$C_{12} = C_{13} = C_{14} = C_{03}$	-600(3)	$C_1 - C_2 - C_3 - C_4$	-0.3(7)
$C_{10} = C_{13} = C_{14} = C_{9}$	(3) 48 1 (2)	$C_2 = C_3 = C_4 = C_5$	0.3(7)
C12 - C13 - C14 - C9	46.1(2)	$C_{3} = C_{4} = C_{3} = C_{0}$	-1.4(8)
04-08-015-016	-140.2(2)	C4 - C3 - C6 - C1	1.0 (8)
C/-C8-C15-C16	104.0 (2)	$C_{2}^{2} = C_{1}^{2} = C_{6}^{2} = C_{5}^{2}$	-0.1 (6)
C9—C8—C15—C16	-20.4(3)	C19 - C1' - C6' - C5'	-176.3 (4)
C8—C15—C16—O6	144.3 (2)	08-C43-C1"-C6"	174.7 (2)
C8—C15—C16—C13	23.5 (3)	O9—C43—C1″—C6″	-4.4 (3)
C14—C13—C16—O6	-100.5 (3)	O8—C43—C1″—C2″	-3.5 (4)
C12—C13—C16—O6	148.5 (2)	O9—C43—C1"—C2"	177.4 (2)
C14—C13—C16—C15	22.4 (3)	C6''C1''C2''N3	178.6 (3)
C12—C13—C16—C15	-88.6 (3)	C43—C1"—C2"—N3	-3.1 (4)
C1—C11—C17—N2	-50.0(3)	C6''-C1''-C2''-C3''	0.6 (4)

C5-C11-C17-N2	70.1 (2)	C43—C1″—C2″—C3″	178.9 (3)
C10-C11-C17-N2	-173.27 (17)	N3—C2"—C3"—C4"	-179.6 (3)
C1—C11—C17—C7	-171.74 (19)	C1''-C2''-C3''-C4''	-1.6 (5)
C5—C11—C17—C7	-51.62 (19)	C2''-C3''-C4''-C5''	1.8 (5)
C10—C11—C17—C7	65.0 (2)	C3''—C4''—C5''—C6''	-1.1 (5)
C8—C7—C17—N2	167.96 (18)	C4''—C5''—C6''—C1''	0.2 (4)
C6—C7—C17—N2	-72.8 (2)	C2''-C1''-C6''-C5''	0.0 (4)
C8—C7—C17—C11	-75.3 (2)	C43—C1''—C6''—C5''	-178.3 (2)
C6—C7—C17—C11	44.0 (2)	C24—C23—N2—C18	157.0 (2)
O2—C4—C18—N2	-153.59 (18)	C24—C23—N2—C17	-67.8 (3)
C3—C4—C18—N2	82.0 (3)	C4—C18—N2—C23	176.49 (19)
C5—C4—C18—N2	-42.6 (3)	C4—C18—N2—C17	42.6 (3)
O10—C25—C26—C27	164.22 (19)	C11—C17—N2—C23	168.01 (19)
C35—C25—C26—C27	40.0 (3)	C7—C17—N2—C23	-79.8 (3)
C25—C26—C27—C28	-53.2 (3)	C11—C17—N2—C18	-59.1 (2)
C26—C27—C28—O9	179.43 (18)	C7—C17—N2—C18	53.0 (3)
C26—C27—C28—C29	66.9 (2)	C48—C47—N4—C42	165.8 (2)
C26—C27—C28—C42	-55.9 (3)	C48—C47—N4—C41	-60.4(3)
O9—C28—C29—C30	65.5 (2)	C28—C42—N4—C47	172.51 (19)
C27—C28—C29—C30	-177.69 (18)	C28—C42—N4—C41	40.2 (2)
C42—C28—C29—C30	-51.9 (2)	C35—C41—N4—C47	172.30 (19)
O9—C28—C29—C35	179.26 (16)	C31—C41—N4—C47	-75.2 (2)
C27—C28—C29—C35	-63.9 (2)	C35—C41—N4—C42	-57.4 (2)
C42—C28—C29—C35	61.8 (2)	C31—C41—N4—C42	55.0 (2)
C28—C29—C30—C31	101.63 (19)	O1—C19—O2—C4	-7.9 (4)
C35—C29—C30—C31	-15.0 (2)	C1′—C19—O2—C4	171.5 (2)
C29—C30—C31—C32	101.46 (19)	C3—C4—O2—C19	73.0 (3)
C29—C30—C31—C41	-17.4 (2)	C5-C4-O2-C19	-169.6 (2)
C30—C31—C32—O11	67.1 (2)	C18—C4—O2—C19	-54.0 (3)
C41—C31—C32—O11	-179.00 (17)	C9—C14—O5—C22	-160.9(3)
C30—C31—C32—C39	-175.93 (17)	C13—C14—O5—C22	82.7 (3)
C41—C31—C32—C39	-62.0(2)	C15-C16-O6-C21	68.2 (4)
C30—C31—C32—C33	-49.7 (2)	C13—C16—O6—C21	-167.3 (3)
C41—C31—C32—C33	64.3 (2)	C2-C1-O7-C20	81.8 (3)
O11—C32—C33—O14	-33.1 (2)	C11—C1—O7—C20	-150.6 (3)
C31—C32—C33—O14	81.5 (2)	O8—C43—O9—C28	3.2 (3)
C39—C32—C33—O14	-152.54 (18)	C1''-C43-O9-C28	-177.64 (18)
O11—C32—C33—C38	91.7 (2)	C27—C28—O9—C43	70.0 (2)
C31—C32—C33—C38	-153.70 (18)	C29—C28—O9—C43	-172.83 (18)
C39—C32—C33—C38	-27.8 (2)	C42—C28—O9—C43	-56.6 (2)
O11—C32—C33—C34	-155.17 (17)	C26—C25—O10—C44	79.8 (2)
C31—C32—C33—C34	-40.6 (2)	C35—C25—O10—C44	-151.8 (2)
C39—C32—C33—C34	85.4 (2)	C37—C38—O12—C45	64.2 (3)
O14—C33—C34—C36	140.79 (18)	C33—C38—O12—C45	-179.2 (2)
C38—C33—C34—C36	22.9 (2)	C39—C40—O13—C46	75.9 (3)
C32—C33—C34—C36	-94.3 (2)	C37—C40—O13—C46	-159.8 (2)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
014—H14A····O6 ⁱ	0.98	2.27	2.927 (2)	123
O11—H11…O12	0.84	2.40	2.944 (2)	124
O4—H4…O5	0.84	2.33	2.914 (3)	127
O3—H3…O13 ⁱⁱ	0.84	2.41	3.095 (2)	139
N3—H3 <i>D</i> ···O8	0.91	2.02	2.687 (3)	129
N1—H1A…O1	0.91	2.02	2.752 (4)	137

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x+1/2, -y+1, z+1/2; (ii) -x+1/2, -y, z-1/2.