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Introduction
There has been an increase in team science approaches 
across a spectrum of disciplines.1–5 Solutions to many of the 
previously intractable health issues facing society especially 
demand collaborative interactions of researchers from multiple 
disciplines who can bring to bear a holistic approach to solving 
these multifaceted problems. Extramural funding agencies, 
such as the National Institutes of Health, recognize the need 
for interdisciplinary, multidisciplinary, cross-disciplinary, and 
team-science initiatives. The Clinical Translational Science 
Award (CTSA) funding mechanism from the National Center for 
Advancing Translational Sciences (NCATS) is multidisciplinary 
in nature and its success demands well-orchestrated collaboration 
across the translational silos (T1–T4)6 within and between CTSAs. 
Since its inception in 2006, the number of CTSA awardees has 
steadily grown to 62 across 31 states. The University of Kentucky 
(UK) received NIH/NCATS funding in 2011. Evaluation of the 
performance and successes of institutions holding these awards is 
critical in assessing the success of the CTSA funding mechanism. 
There are several facets to the CTSA, including research, training, 
and services, encouraging novel quantitative approaches for CTSA 
evaluation that complement more classical evaluation techniques.7

Network analysis has enjoyed considerable attention from 
both the CTSA Evaluation and Informatics Working Groups under 
the broad theme social network analysis (SNA). While the former 
group investigates the choice of network analysis for evaluation, 
the latter develops tools to enhance collaboration within and 
between CTSAs (e.g., VIVO, Harvard Profiles, CTSAconnect). 
Networks are composed of nodes and edges representing the 
entities of interest and their associations. Unlike reductionist 
representations, networks have the ability to provide novel 
system-level insights on the impact of interventions as a whole. 
Interventions are usually accompanied by changes in statistical 
properties and topology of networks making them useful for 

evaluation (pre-, poststudies). Networks can be modeled from 
distinct data sources such as surveys, publications, and extramural 
grant funding.8–10 Social network analysis using surveys has been 
used by CTSAs to investigate communication patterns among 
CTSA cores/personnel. A recent study identified publications and 
grants as metrics of success in translational research and training.11 
There have also been instances where grants and publications are 
investigated together.8 Collaborative grants are an outcome of 
longstanding successful research collaboration often preceded 
by publications. Publications also serve as preliminary findings 
in a grant proposal. This study is in line with our ongoing efforts 
to better understand the temporal evolution of Biomedical 
Research Grant Collaboration (BRGC) networks9,10 in CTSA 
settings. Nodes in the BRGC network are composed of Principal 
Investigators and Co-Investigators with an edge representing 
their collaboration on an extramurally funded research grant. In 
order to establish the nexus between CTSA (intervention) and 
changes in BRGC networks (outcome), we restrict the personnel 
in BRGC networks to only those who have been involved with 
CTSA. However, it is important to note that BRGC networks are 
open systems in the sense they are prone to external perturbations 
such as institutional policies, vision, and economic slowdown. 
Temporal evolution of BRGC networks is complex, often 
accompanied by addition and deletion of nodes and edges in a 
nonuniform manner.9,10 Therefore, any conclusion on incremental 
collaboration with increasing number of nodes is neither trivial 
nor straightforward. Addition of nodes reflects involvement of 
new personnel in the CTSA efforts, whereas deletion is due to 
departure of existing personnel. Deletion of influential nodes in 
the BRGC networks can result in considerable fragmentation of 
the network into isolated clusters. Addition of an edge can be 
attributed to formation of new collaborations whereas deletion 
corresponds to termination of existing collaboration. Addition 
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and deletion of edges has the potential to connect or disconnect 
research clusters. While social network analysis metrics such as 
centrality measures are routinely used to quantify the extent of 
collaborations, this study investigates the presence of communities 
and their temporal evolution. Communities arise when groups of 
nodes are more highly connected to each other than to other nodes 
in a network12–19 and are expected across multidisciplinary research 
projects supported by the CTSA. This study uses overlapping 
community structure detection algorithms,19,20 in conjunction 
with random graph surrogates, to identify nontrivial communities 
pre- and post-CTSA. Intercommunity cross talk and its variation 
pre- and post-CTSA are also investigated in order to evaluate the 
impact of CTSA on research productivity at UK.

Methods

BRGC network abstraction
Biomedical research collaboration data sets from 2007 to 2012 
were obtained from the Offices of the Vice President for Research 
and Sponsored Projects at UK after obtaining the required 
consent. Attributes retrieved from the grant database included 
Grant ID, Personnel ID, Role, Department, College, and Year. 
Each grant is provided with a unique number represented by 
the Grant ID. A grant can have multiple personnel participating 
in various roles. These are captured by the attributes Personnel 
ID and Role. In this study, we restricted the Role to Principal 
Investigator (PI) and Co-Investigator (Co-I) in a given grant. 
PI and Co-I represent noteworthy collaborations and have 
a significant impact on the success of a grant. These roles are 
usually justified as a part of the grant submission. Restricting 
the nodes to PI and Co-I also prevents the BRGC network from 
becoming sparse and disconnected. The attributes Department 
and College correspond to Primary Academic Department and 
College affiliation since faculty can have secondary appointments 
across multiple departments. The attribute Year corresponds to the 
year in which the grant was awarded. The initial CTSA funding 
was awarded to UK in 2011. In order to investigate the impact 
of the CTSA on grant collaborations, we investigated BRGC 
networks pre- and post-CTSA. The grants considered in this 
study predominantly correspond to biomedical research grants 
including those awarded by the National Institutes of Health 
(NIH). BRGC networks by very definition are directed graphs 
where the direction is always from the Principal Investigator to 
the Co-Investigator. Since the Co-I’s existence in a given grant 
is dependent on the PI, edges in the BRGC networks can also be 
thought of as representing causal associations between the nodes. 
The degree of a node in the BRGC network represents the extent 
to which that node is connected to others. Nodes can have high 
in-degree, out-degree, or both. Nodes with large in-degree usually 
correspond to dominant Co-I’s whereas those with large out-
degree corresponds to dominant PIs. Since PI/Co-I can participate 
in multiple roles across different grants, cycles are unavoidable 
in BRGC networks. In order to strengthen the nexus between 
CTSA as a cause and the observed changes in grant collaboration 
an effect, we restricted the Personnel ID to only those that are 
involved with the CTSA, that is, they received funding, training, 
or services from the UK CTSA-funded Center for Clinical and 
Translational Sciences (CCTS). A systematic approach is presented 
to investigate the evolution of BRGC networks across six years 
(2007–2012) corresponding to pre-CTSA (2007–2010), the year 
CTSA was awarded (2011), and post-CTSA (2012).

Community structures in BRGC networks
Recent studies have clearly demonstrated the existence of inherent 
communities in BRGC networks,9,10 where the nodes in the 
network have a tendency to cluster into groups. Community 
structure detection algorithms are useful in identifying such 
inherent clustering and fall under two broad categories: (i) those 
that identify nonoverlapping communities where nodes belong to 
only a single community12 and (ii) those that identify overlapping 
communities where nodes can belong to multiple communities.14,19 
While it is tempting to partition the BRGC network into isolated 
nonoverlapping communities, such a partitioning is unrealistic 
in translational settings that demand enhanced interaction 
across groups for research, training, and services. The extent of 
overlap among communities is an indicator of interdisciplinary 
collaboration. Constraining the nodes in the BRGC network to 
be members of nonoverlapping communities undermines the 
collaborative potential of a node and can adversely affect the 
conclusions. This study investigates community structure in CTSA 
BRGC networks using link-community algorithm,19,20 where the 
edges are aggregated hierarchically, to reveal overlap between 
communities.

Communities of BRGC networks and those of random  
graphs
Previous studies have compared the evolution of CTSA and non-
CTSA groups.8 However, such a comparison can be challenging due 
to widely varying sizes of these two groups. Bootstrapping these 
groups to control for discrepancies in their size while helpful, may 
result in elimination of critical nodes and can have a pronounced 
effect on the overall topology. In this study, communities in the 
BRGC networks were compared to those generated by certain 
types of random graphs using a surrogate testing approach21–24 to 
evaluate the presence and evolution of community structures. The 
discriminant statistic in the surrogate testing approach was chosen 
as the maximum partition density.19 Two different null hypotheses 
(H0

ER, H0
ER  were investigated. H0

ER addressed the null hypothesis that 
the community structure in the BRGC networks was generated 
from classical Erdos-Renyi (ER)25 random graphs that retain 
the number of nodes and edges of the given BRGC network. 
H0

DD addresses a relatively sophisticated null hypothesis that the 
community structure in the BRGC networks was generated from 
random graphs that retains the degree distribution of the given 
BRGC network. The deviation of the community structure in the 
BRGC networks from those of its random surrogate counterparts 

were captured with S
 morig – msurr

σsurr
 where morig represents the 

estimate of the discriminant statistic on the empirical sample, 
(msurr, σsurr) represent the mean and standard deviation of the 
discriminant statistic estimated across ns independent surrogate 
realizations. The number of surrogate realizations was fixed at ns = 
99 in this study. While S > 2 is traditionally deemed significant,22,23 
we use S as a relative index to compare the extent of deviation 
from random graphs pre- and post-CTSA.

Intercommunity and intracommunity cross talk
Individuals in a BRGC network can contribute to facilitating 
collaboration within (intracommunity cross talk) as well as between 
(intercommunity cross talk) communities. We are especially 
interested in intercommunity cross talk where an investigator 
from a given department facilitates collaboration across at least 
two distinct communities. Such personnel are deemed critical 
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players in cross-fertilization of research themes with the potential 
to form new campus-wide areas of research excellence. Consider 
a BRGC network G(V, E) where V represents the number of 
nodes and E the edges or grant collaborations. Each node in G 
can belong to only one department (primary department). The 
nodes V in turn can be mapped onto departments di, i = 1 … N. 
The total number of occurrences di

tot of department di across the 
communities consists of occurrences within community di

intra 
as well as between community di

intra, that is, di
tot = di

intra + di
inter. 

Departments with di
tot = 1 are dropped from any further analysis 

since they did not facilitate cross talk.

Results
The number of nodes and edges for the 
BRGC networks over the 6 years were (2007: 
215 nodes, 136 edges; 2008: 231 nodes, 160 
edges; 2009: 277 nodes, 215 edges; 2010: 
285 nodes, 246 edges; 2011: 299 nodes, 269 
edges; and 2012: 310 nodes, 253 edges), 
reflecting increased participation in CCTS-
supported research with time. However, as 
noted earlier, increasing the number of 
nodes does not necessarily translate into 
increasing collaborations or formation of 
community structures. The BRGC networks 
were comprised of a connected component, 
isolated singleton nodes, and small isolated 
clusters. To assess collaboration, we focused 
analysis on the connected component. 
The nodes and edges of the connected 
component were (2007: 89 nodes, 123 
edges; 2008: 109 nodes, 148 edges; 2009: 
141 nodes, 196 edges; 2010: 168 nodes, 230 
edges; 2011: 169 nodes, 251 edges; 2012: 166 
nodes, 234 edges) also increased across the 
years, indicating a predominant number of 
CCTS investigators were connected either 
directly or indirectly.

Yifan-Hu visualization26 of the giant component generated 
using Gephi 0.8.2 (http://gephi.org/)27 revealed characteristic 
communities from 2007 to 2012 with more intricate structures 
post-CTSA (Figure 1). Temporal evolution of nodes corresponding 
to one of the departments (Behavioral Science) across the six years 
is also shown in Figure 1. The presence of a connected component 
and community structures pre-CTSA reflects collaborative efforts 
that were likely essential for successful execution of the CTSA 
application. Degree centrality distribution of the BRGC networks 
were positively skewed indicating the presence of a few highly 
connected nodes comprising the tail of the distribution. Highly 
connected nodes consisted of those with high indegree as well as 
those with high outdegree. While the former consisted of personnel 
who provide services across multiple grants as Co-I, such as 
biostatisticians, the latter consisted of PIs of multidisciplinary 
research grants and Center grants.

Overlapping community structures in BRGC networks
As described in the methods, this study used S estimate as the 
relative index representing the deviation of the community 
structure in the BRGC networks from those of its random 
graph surrogate counterparts. The S estimates obtained from 
ER surrogates were markedly high across the years (S2007

ER = 9.5;  
SER

2008 = 11.6; SER
2009 = 10.2; SER

2010 = 10.1; SER
2011 = 10.4; SER

2012 = 10.6), 
demonstrating inherent community structure significantly 
different from those of ER random graphs. This is to be expected 
given the positively skewed degree centrality distributions of the 
BRGC networks with a few nodes exhibiting large collaborative 
potential. A similar analysis of BRGC networks using degree 
preserving type random graph (DD) surrogates across the years 
resulting in the following S estimates (SDD

2007 = 3.6; SDD
2008 = 4.3;  

SDD
2009 = 3.6; SDD

2010 = 5.1; SDD
2011 = 6.6; SDD

2012 = 6.2). Of interest is the 
marked increase in the S estimates in 2011 and 2012 in contrast 
to pre-CTSA (2007–2010). These results confirm the formation 
of more intricate, overlapping community structures upon CTSA 

Figure 1. Formation of intricate community structures revealed by Yifan-Hu visualization of the BRGC network 
connected component from (2007 to 2012) corresponding to the pre-CTSA (2007–2010), the year CTSA was 
awarded (2011) and post-CTSA (2012). The blue circles represent the evolution of Behavioral Science depart-
ment in the BRGC network.

Figure 2. Scatter plot representing intracommunity and intercommunity cross 
talk from 2007 to 2012. The diagonal represents the line of separation between  
intracommunity and intercommunity cross talk.
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funding, shown visually in Figure 1. A scatter plot of (dintra, dinter), 
shown in Figure 2, revealed a shift towards increased inter-
community cross talk across years 2011 and 2012 in contrast to 
pre-CTSA (2007–2010).

Discussion
Beginning in 2005, the University of Kentucky (UK) made a 
substantial commitment to building/enhancing its infrastructure 
to support clinical and translational research efforts. This 
investment resulted in successful competition for a CTSA 
planning grant in 2006 to support an evolving CCTS. The 
planning grant propelled campus and state efforts culminating 
in receipt of a CTSA award in 2011. This analysis investigates the 
evolution of communities in BRGC networks pre- and post-CTSA 
at UK. The grant collaboration data were obtained through the 
UK’s Office of Sponsored Projects Administration. The study 
focused only on investigators associated with the CCTS in order 
to establish possible cause-effect between the observed changes in 
community structure and CTSA as an intervention. Our analysis 
revealed the CTSA-affiliated investigators to be organized into 
nontrivial community structures different from those that can 
be generated using random graph models. This was established 
using statistically sound surrogate testing approaches. The extent 
of deviation from random graph models was quantified by the 
parameter sigma. The extent of deviation from the classical ER 
type random graphs was pronounced pre- and post-CTSA as 
expected, rejecting ER random graph models as possible generative 
mechanisms of the observed community structures in the BRGC 
networks. Subsequently, surrogate testing also rejected the null 
hypothesis that the community structure in the BRGC networks 
was similar to those of degree preserving random graphs pre- and 
post-CTSA. However, the S estimates exhibited a marked increase 
across 2011 and 2012 (post-CTSA) indicating formation of more 
intricate communities post-CTSA. Cross talk of the departments 
within and between communities was subsequently investigated. 
A scatter plot of the intra- and intercommunity cross talk revealed 
a shift towards intercommunity cross talk post-CTSA compared 
to pre-CTSA. The dominant collaborative units across the years 
were the Markey Cancer Center Core Facility and Biostatistics 
from the Colleges of Medicine and Public Health, respectively. 
The College of Medicine’s Departments of Behavioral Science 
and Medicine were also dominant across the years; however, 
more funded collaborations extended to other departments 
through interactions with the CCTS. More importantly, faculty 
collaborating across departments covered T1 through T3 
translational areas. Examples of newly formed and overlapping 
research communities are apparent throughout the network. For 
example, in 2009, an investigator in the Sanders-Brown, Center 
on Aging had a funded collaboration with another investigator 
outside of his department, the Department of Neurology, which 
had been the case since 2007. The CCTS Clinical Services/
Regulatory Core began to support his clinical studies, and he 
was awarded a CCTS pilot award in 2011 to begin a new clinical 
trial. This has enabled him to expand his funded collaborations 
to include the Colleges of Nursing and Public Health, and has 
resulted in an initiative across academic institutions in the region 
to assess and address the health disparities related to aging and 
cognition in Appalachia. The impact of the CTSA funding was 
also apparent across networks of established investigators. A 
senior investigator in the Department of Psychology (College 
of Arts and Sciences) had a well-established collaborative 

network with faculty in the Colleges of Medicine (Behavioral 
Science), Pharmacy and Public Health from 2007 to 2009. 
Through interaction with the Drug Discovery and Development 
Core of the CCTS, by 2012, his collaborations increased with 
those units, and extended his funded collaborations to existing 
research communities in the College of Medicine’s Departments 
of Radiology, Neurology, and Anatomy. In summary, our analysis 
revealed the community structures of BRGC networks across 
CTSA-affiliated investigators to be different from those of random 
graphs. The strength of deviation from the random graphs  
and intercommunity cross talk was especially pronounced 
post-CTSA potentially as a result of increased interactions 
and environment created through CTSA funding at the  
University of Kentucky.
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