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Across the diversity of life, organisms have evolved different strategies to

thrive in hypoxic environments, and microbial eukaryotes (protists) are no

exception. Protists that experience hypoxia often possess metabolically

distinct mitochondria called mitochondrion-related organelles (MROs).

While there are some common metabolic features shared between the

MROs of distantly related protists, these organelles have evolved indepen-

dently multiple times across the breadth of eukaryotic diversity. Until

recently, much of our knowledge regarding the metabolic potential of

different MROs was limited to studies in parasitic lineages. Over the past

decade, deep-sequencing studies of free-living anaerobic protists have

revealed novel configurations of metabolic pathways that have been

co-opted for life in low oxygen environments. Here, we provide recent

examples of anaerobic metabolism in the MROs of free-living protists and

their parasitic relatives. Additionally, we outline evolutionary scenarios to

explain the origins of these anaerobic pathways in eukaryotes.
1. Introduction
Mitochondria and related organelles are ubiquitous among eukaryotes. The last

half-century of cellular and molecular evolutionary research has conclusively

shown that mitochondria are descended from an a-proteobacterial endosymbiont

that took up residence within a host cell prior to the last eukaryotic common

ancestor (LECA) [1]. However, the precise phylogenetic position of the mitochon-

drial lineage amonga-proteobacteria [2,3], as well as the nature of the host lineage

that engulfed it [4], remain active areas of debate and investigation.

Mitochondria are best known for their role in ATP synthesis by oxidative

phosphorylation. In this pathway, pyruvate from glycolysis is imported into

mitochondria where it is oxidatively decarboxylated to acetyl-CoA by pyruvate

dehydrogenase (PDH) and fed into the Krebs cycle to produce NADH and

FADH2. These reduced cofactors are oxidized by the electron transport chain

(ETC) to generate a proton gradient across the inner mitochondrial membrane

and ultimately reduce O2 to H2O. The proton motive force drives ATP synthesis

by an F1Fo-ATP synthase. However, mitochondria are known to carry out many

other metabolic and biosynthetic functions. In addition to possessing genomes

that are replicated, transcribed and translated, they function in iron–sulfur

(Fe–S) cluster generation (via the iron–sulfur cluster (ISC) system), haem bio-

synthesis and amino and fatty acid, phospholipid, vitamin and steroid

metabolism. Indeed, although the proteomes of mitochondria of model system

organisms vary in composition, they typically comprise over 1000 proteins

[5,6], which is significantly more than the coding potential of any known

mitochondrial genome [7]. Most mitochondrial proteins are therefore nucleus-

encoded, and, via targeting signals (either N-terminal or internal), are imported

into mitochondria post-translationally via a complex translocation and refolding

apparatus. A fraction of the proteins that function in mitochondria were originally
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Figure 1. Distribution of MROs across the major supergroups of eukaryotes. Organisms with parasitic ( purple), commensal (orange) or free-living (red) lifestyles are
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encoded by the a-proteobacterial endosymbiont genome

(approx. 15%) [8], and most were later transferred to the host

nuclear genome via endosymbiotic gene transfer, and

subsequently lost from the mitochondrial genome [9]. A sub-

stantial fraction (approx. 40%) of mitochondrial proteins are

found only in eukaryotes, or have non-a-proteobacterial

prokaryotic affinities (approx. 45%) [8].

A number of eukaryotic microbes (protists) from low

oxygen environments, including the parasitic microsporidia,

diplomonads and parabasalids, lack typical cristate mitochon-

dria. These organisms possess small double-membrane-bound

organelles of mitochondriate ancestry to which canonical

mitochondrial proteins are targeted [10–17]. These organelles

were variously named hydrogenosomes, mitosomes and

‘mitochondrion-like organelles’. Here, we refer to them

collectively as ‘mitochondrion-related organelles’ (MROs), to

indicate their evolutionary relationship with mitochondria.

The number of eukaryotes discovered to lack canonical

mitochondria has grown over the last few decades and most

such lineages have been placed on the latest consensus phylo-

geny of eukaryotes (figure 1). Recently, Müller et al. [18]

proposed a novel five-class scheme for mitochondria and

MROs based on the different types of energy metabolism

they possess. Although this system has practical value, it

should be noted that these classes are provisional. As we

characterize MROs from various novel protist lineages, their

metabolisms increasingly appear as a spectrum of phenotypes

that defy strict classification.

Here, we review recent progress in characterizing this diver-

sity of function in MROs of eukaryotes, focusing especially on

anaerobic ATP generation. First, we summarize what is

known about the MROs of each of the eukaryote lineages

(figures 2 and 3) that underwent modifications of their aerobic

mitochondria to function in low oxygen conditions. Then, we

provide plausible scenarios by which the anaerobic energy

metabolic pathways of these MROs could have originated.
2. Excavates
(a) Metamonada
The ‘hydrogenosomes’ of parasitic trichomonads were first

described in the 1970s [20,21] and those of the human urogen-

ital parasite Trichomonas vaginalis have become the best-studied

MROs to date. They function in several canonical mitochon-

drial processes including amino acid metabolism, oxygen

detoxification and Fe-S cluster biosynthesis, and possess two

components of complex I (CI; the 51 and 24 kDa subunits)

[22–26]. Unlike typical aerobic mitochondria, the hydro-

genosomes of Trichomonas metabolize pyruvate using an

‘extended glycolysis’ pathway, whereby pyruvate is oxidized

by pyruvate : ferredoxin oxidoreductase (PFO) to acetyl-CoA,

with the concomitant reduction of ferredoxin (figures 2

and 3). Electrons from ferredoxin (or NADH via the two sol-

uble CI subunits) are transferred to protons via an [FeFe]-

hydrogenase (HYD), ultimately generating H2. Three maturase

proteins (HYDE, HYDF and HYDG) are typically required for

correct assembly of the mature HYD protein. The CoA moiety

of acetyl-CoA is transferred to succinate via acetate : succinate

CoA transferase subtype 1C (ASCT1C). The resulting succi-

nyl-CoA can be used by the Krebs cycle succinyl-CoA

synthetase (SCS) to generate ATP by substrate-level phos-

phorylation. Trichomonas also uses the arginine dihydrolase

pathway to synthesize ATP. One of the three enzymes involved

in this pathway (arginine deiminase) is localized in the MRO,

while the other two enzymes (ornithine transcarbamylase

and carbamate kinase) are cytoplasmic [27].

The diplomonad Giardia intestinalis is a parasite of humans

that thrives in the low oxygen environment of the gastrointesti-

nal tract [28]. Giardia’s MROs do not synthesize ATP and are

thus called ‘mitosomes’. Currently, their only major known

function is Fe–S cluster biogenesis, via the ISC system [29].

Giardia also has a cytosolic extended glycolysis pathway

(figures 2 and 3). Like Trichomonas, they use a PFO/ferredoxin
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and HYD pathway to oxidatively decarboxylate pyruvate, but

in this case the acetyl-CoA is converted to acetate by an

acetyl-CoA synthetase (ACS), that generates ATP directly
[29–31]. Like Trichomonas, Giardia also synthesizes ATP by the

arginine dihydrolase pathway; however, this pathway

is entirely cytosolic in this organism [32]. The MROs of
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Spironucleus salmonicida, a related diplomonad parasite

of salmonid fish [33,34], resemble Trichomonas hydrogenosomes

in possessing a hydrogen-producing extended glycolysis

pathway, Fe–S cluster generation, and possibly glycine

metabolism. ATP is produced in these organelles by the

Giardia-like ACS system, and not the ASCT/SCS system seen

in Trichomonas [33,34].

Putative MROs have been described in many different

species of the flagellated metamonad genus Trimastix [35–38].

At least two HYD maturases are predicted to localize to the

MROs of Trimastix pyriformis. However, it is still unclear

whether other proteins linked to hydrogen production, includ-

ing HYD, and PFO, are organellar or cytosolic [39]. The

predicted proteome of the T. pyriformis MROs (based on the

presence of predicted mitochondrial targeting peptides) also

includes amino acid metabolism enzymes, and even the Krebs

cycle enzyme aconitase. To date, the exact mechanism of ATP

generation in this organism, beyond glycolysis, is unknown,

as ASCT, SCS and ACS have not been identified in T. pyriformis.
(b) Heterolobosea
In recent years, many transcriptomic or genomic sequencing

initiatives have allowed the prediction of the MRO
proteomes of heteroloboseid excavates, such as Psalteriomonas
lanterna, Sawyeria marylandensis and Naegleria gruberi. The

Psalteriomonas expressed sequence tag (EST) survey reported

homologues of HSP70, HYD, PFO and the 51 kDa subunit

of CI [40]. The larger EST survey of Sawyeria revealed

homologues of many of the proteins found in T. vaginalis
hydrogenosomes, including HYD proteins, PFO, SCS,

ASCT, chaperones, CI subunits and Fe–S cluster biosynthesis

proteins [41]. Interestingly, Sawyeria appears to encode

enzymes for a variety of canonical mitochondrial pathways

linked to amino acid metabolism that are not present in

Trichomonas, such as a full glycine cleavage system, proline,

serine and ornithine metabolism, and branched chain

amino acid degradation, although lack of complete sequences

hinders predictions of their localization [41].

Naegleria gruberi is a free-living aerobic amoeboflagellate

that can tolerate low oxygen conditions and possesses

classical mitochondria [42]. HYD, HYD maturases and

ASCT1B and 1C were identified in the genome, and were

predicted to function in mitochondria (possibly in hypoxic

conditions) based on the presence of predicted N-terminal

targeting sequences [42], although a recent report argues

that hydrogen production occurs exclusively in the

cytoplasm [43].
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3. Obazoa (opisthokonts, breviates and
apusomonads)

(a) Animals
Some platyhelminths and nematodes transiently experience

hypoxic conditions [18,44–47]. Through regulated expres-

sion of various proteins, the metabolism of the anaerobic

mitochondria of these organisms is reconfigured to generate

ATP by substrate-level phosphorylation, F1Fo-ATP synthase

and a modified respiratory chain [18,48–50]. As in aerobic

mitochondria, CI oxidizes NADH to pump protons into the

intermembrane space, fuelling ATP synthesis via complex V

(CV). However, electrons are transferred from CI to a special-

ized quinone, rhodoquinone (RQ), that has a lower redox

potential than the usual mitochondrial electron carrier ubiqui-

none. A process called ‘malate dismutation’ helps to replenish

the oxidized RQ pool using fumarase and complex II (CII),

which preferentially catalyse the reverse reactions to their

aerobic mitochondrial counterparts (i.e. malate dehydration

and rhodoquinol-dependent fumarate reduction) [51,52].

These organisms also generate ATP via propionyl-CoA-

mediated substrate-level phosphorylation, generating

propionate.

(b) Microsporidians
Microsporidia are deep-branching fungi [53–55] that are

obligate intracellular parasites of animals [56]. The MROs (mito-

somes) of these organisms are not known to produce ATP, but

participate in ISC-mediated Fe–S cluster biosynthesis [57–61].

Microsporidia typically have reduced nuclear genomes,

often lacking amino acid and nucleotide metabolism; some

even lack core sugar metabolism [57,59,62,63]. For example,

Encephalitozoon cuniculi has a significantly reduced ATP

generation machinery and must instead rely on ATP import

from the host cell into the parasite cytoplasm, and eventually

into the mitosomes, using bacteria-derived ADP/ATP trans-

locators [64,65]. The mitosomes of Antonospora locustae and

Trachypleistophora hominis encode an MRO-targeted alternative

oxidase (AOX) and glycerol-3-phosphate dehydrogenase

(G3PDH) indicating the likely presence of an electron-carrying

quinone [64,66,67]; these may contribute to cytosolic NADþ

regeneration, rather than generating energy in the mitosomes.

Two newly discovered deep-branching relatives of microspori-

dians, Rozella and Mitosporidium, have recently been shown to

have more complex MROs compared with previously studied

microsporidia (e.g. they each have mitochondrial DNA, a

Krebs cycle, complexes II–IV of the ETC and an ATP synthase

[55,68]).

(c) Chytrid fungi
Anaerobic fungi such as Neocallimastix, Piromyces and

Orpinomyces thrive in low oxygen animal rumen environ-

ments, and possess MROs that ultrastructurally resemble

those found in Trichomonas [69–73]. Previous reports have

detected activity of pyruvate formate lyase (PFL)—an oxygen-

sensitive enzyme that catalyses the non-oxidative conversion

of pyruvate to acetyl-CoA—in the MROs of Neocallimastix and

Piromyces, and HYD and PFO activity in Neocallimastix species

[69,74–76]. The Orpinomyces MRO is predicted to function in

hydrogen production, pyruvate metabolism using PFL, and

ATP generation using the ASCT/SCS system [77]. However, it
also appears to have an F1Fo-ATP synthase, suggesting

Orpinomyces may rely on an organellar proton gradient for

ATP synthesis. We have identified previously unreported

MRO-targeted homologues of PFO, HYDE, HYDF, HYDG, as

well as enzymes of amino acid metabolism and other pathways

summarized in figure 2 in the Orpinomyces genome.

(d) Breviates
The breviates are a recently described lineage of microaerophilic/

anaerobic amoeboid flagellated protists that branch sister to

Opisthokonta (animals and fungi) and Apusomonada [78].

To date, a detailed prediction of MRO metabolism has only

been performed for Pygsuia biforma [79]. The Pygsuia genome

encodes MRO-targeted proteins involved in protein import

and folding, amino acid, fatty acid and lipid metabolism.

Pygsuia has an extended glycolysis pathway that localizes to

the MRO and the cytoplasm; however, the HYD maturases

are only predicted to function in the MRO (figures 2 and 3).

Within the organelle, Pygsuia uses ASCT1C and SCS to generate

ATP by substrate-level phosphorylation like T. vaginalis,
although it may also generate ATP in the cytosol using ACS

(a putative cytosolic ACS homologue is present in the Pygsuia
transcriptome [78]). Interestingly, it also encodes an MRO-

targeted ASCT1B and some components of the propionyl-CoA

carboxylase pathway, suggesting it might use this pathway to

synthesize ATP. Unlike many other MROs, Pygsuia encodes

a large selection of MRO-targeted quinone-using enzymes

including CII, electron-transferring flavoprotein (ETF) dehydro-

genase, G3PDH and AOX but no other components of the ETC,

suggesting that Pygsuia has an ETC that does not appear to func-

tion in proton transport or energy generation. The ISC system for

the biosynthesis of Fe–S clusters of Pygsuia has been replaced by

a methanoarchaeal SUF biosynthesis system that was acquired

by lateral gene transfer (LGT) [79].
4. Amoebozoa
(a) Archamoebae
The mitosomes of the human parasite Entamoeba histolytica are

the best-studied MROs in the supergroup Amoebozoa [80,81].

As in Giardia, the extended glycolysis and ACS-catalysed ATP

synthesis pathway of Entamoeba is localized exclusively in the

cytoplasm. However, the ISC system for the biosynthesis of

Fe–S clusters has been lost in this organism, and replaced

with a homologous system called the nitrogen fixation (NIF)

system that was acquired by LGT from e-proteobacteria

[82–84]. While initial reports suggested that the NIF system

is dually localized to the cytoplasm and mitosomes [84],

more recent proteomic studies have been unable to detect

NIF system components in the organelle, calling into question

the widely held notion that the main reason for maintaining

MROs is the biosynthesis of Fe–S clusters [80]. Currently, the

only known function of the MROs of Entamoeba is ATP

import via mitochondrial carrier proteins [85] and sulfate

activation for the generation of sulfated compounds [80,86].

Mastigamoeba balamuthi is a free-living relative of Entamoeba
that inhabits low oxygen freshwater environments [87].

Mastigamoeba balamuthi was the first non-parasitic organism

in which MROs were characterized [88]; these participate in

pyruvate oxidation, hydrogen evolution, sulfate activation

and amino acid metabolism [89]. Like the Spironucleus



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20140326

6
organelles, the MROs of Mastigamoeba generate ATP using

extended glycolysis and an ACS. Mastigamoeba encodes some

proteins linked to the respiratory chain and electron transport

(CII and ETF) but none of the canonical proton-pumping com-

ponents; therefore, it is unclear if the M. balamuthi MROs have a

proton gradient across their inner membranes. Mastigamoeba
uses the e-proteobacterial-derived NIF system for the bio-

synthesis of Fe–S clusters; two copies are present, one of

which is localized in the MROs and the other in the cytoplasm

[90].

Recent studies have identified other anaerobic/microaer-

ophilic protists that are members of the archamoebae,

including Iodamoeba and Rhizomastix, that lack typical cristate

mitochondria [91,92], but have MRO-like organelles in

electron micrographs.

(b) Discosea
Acanthamoeba castellanii inhabits a range of environments,

including soil bacterial biofilms or human contact lenses

[93]; it shows a preference for low oxygen conditions [94].

The ultrastructure and general metabolism of Acanthamoeba
mitochondria resemble those of classical aerobic organelles

[95]. However, like Naegleria, Acanthamoeba possesses enzymes

involved in the extended glycolysis pathway and ATP

generation via SCS and ASCT1B. All of these proteins have

predicted N-terminal mitochondrial targeting sequences.

PFO, a HYD maturase and ASCT were shown experimentally

to localize to the mitochondria of Acanthamoeba [96].
5. SAR clade
(a) Stramenopiles
The Blastocystis genus comprises strictly anaerobic unicellular

stramenopile parasites that inhabit animal intestines [97].

Genomic and transcriptomic data available for different

subtypes of Blastocystis show that these organisms express

multiple acetyl-CoA generating proteins including PDH,

PFO and pyruvate : NADPþ oxidoreductase (PNO; a special-

ized PFO with a C-terminal P450 reductase domain)

[98–100]. However, to date, only PNO activity has been

detected biochemically within the MROs of Blastocystis sp.

subtype 7 [98]. The acetyl-CoA generated by this reaction is

predicted to be used by ASCT1B and 1C to generate propio-

nyl-CoA or succinyl-CoA, which is a substrate for SCS

or the propionyl-CoA pathway to generate ATP, much like

the anaerobic mitochondria from facultative anaerobes

(Acanthamoeba or Ascaris). While hydrogen production has

not actually been detected in the MROs of Blastocystis sub-

types 1 and 7, genomic and transcriptomic evidence

suggests that there are multiple MRO-targeted HYDs that

are fused to flavodoxin domains [99]. The unique domain

composition of the Blastocystis HYDs might explain the

inability to detect activity biochemically as the enzymatic

assays used are designed for canonical HYD proteins [98];

it is even possible these enzymes do not produce H2 but

instead shuttle electrons to some other electron carrier.

Analysis of the genome sequence of Blastocystis subtype 7

indicates that its MRO participates in a variety of pathways

including amino acid metabolism, Fe–S cluster biogenesis,

reactive oxygen species (ROS) defence and fatty acid

biosynthesis [100] (figures 2 and 3).
(b) Alveolates
The MRO of the ciliate Nyctotherus uses PDH to generate

acetyl-CoA and malate dismutation to generate succinate by

oxidizing RQH2 [101]. The organelles use ASCT (subtype 1A)

and SCS to generate ATP from acetyl-CoA [101,102].

These MROs use a specialized HYD that uniquely possesses

C-terminal modules that are most closely related to domains

of bacterial [NiFe] HYDs, and are distant homologues of the

51 and 24 kDa subunits of CI [103]. This enzyme presumably

oxidizes NADH by reducing protons to generate H2, thus

replenishing the NADþ pool under anaerobic conditions.

Interestingly, rumen ciliates including Nyctotherus are often

observed in symbiotic relationships with methanogenic endo-

symbiotic archaea that specifically associate with the MROs,

consuming H2 produced by the organelle [104,105]. Additional

functions of these MROs include amino acid metabolism and

ROS defence. H2-producing MROs of anaerobic ciliates

appear to have evolved multiple independent times from cano-

nical mitochondria in ciliate evolution [106], although most of

these organelles have not been investigated in detail.

The apicomplexan coccidians Cryptosporidium parvum and

Cryptosporidium muris are intracellular parasites of different

animals including (but not limited to) humans and rodents.

While the MROs of both species are predicted to synthesize

ATP by substrate-level phosphorylation, only the MROs of

C. muris are predicted to synthesize ATP via oxidative phos-

phorylation [107–111]. Both C. muris and C. parvum have

relict ETCs composed of AOX, malate : quinone oxidoreductase

and an alternative NADH dehydrogenase (NDH2). Cryptospor-
idium muris encodes ATP synthase, SDH and a Krebs cycle,

whereas C. parvum encodes a partial F1Fo-ATP synthase.

Reports suggest that the C. parvum organelle imports ATP (gen-

erated in the cytoplasm by PNO and ACS) using an ADP/ATP

carrier [111,112].
(c) Rhizaria
The rhizarian Mikrocytos is an intracellular parasite of oysters

[113,114]. In a recent transcriptomic survey, the authors were

only able to identify ISC system components and not genes

that encode typical mitochondrial proteins (e.g. protein import

and folding) or proteins of an extended glycolytic pathway.

This suggests the mitosomal metabolism of Mikrocytos is highly

reduced and streamlined for Fe–S cluster biogenesis. There

are no obvious non-glycolytic candidates for ATP-generating

enzymes in the transcriptome of Mikrocytos, suggesting it relies

exclusively on fermentative metabolism or another ATP gener-

ation mechanism and/or the parasite imports ATP from host

cytoplasms like other intracellular parasites [65,115].
6. Anaerobic metabolism: ancestral or acquired?
The evolutionary origin(s) of the aforementioned pathways of

anaerobic energy generation have been debated in recent

years [116–118]. Two general kinds of evolutionary accounts

have been articulated. The first suggests that the ancestor of

all extant eukaryotes was facultatively anaerobic and that

the mitochondrial endosymbiont was ancestrally capable of

respiring both aerobically and anaerobically, depending on

the availability of oxygen [116]. The second suggests that

various genes related to anaerobic metabolism were acquired
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multiple times in different eukaryote lineages via LGT

[34,41,89,90,99,118–121].
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(a) Hydrogen hypothesis
In 1998, Martin & Müller [116] proposed the ‘Hydrogen

hypothesis’ in which they argued that the ancestor of mito-

chondria was a H2-producing, facultatively anaerobic

a-proteobacterium that formed a syntrophic relationship with

a H2-dependent methanogenic archaeon. In an anaerobic

environment, the a-proteobacterium produced ATP by the

anaerobic extended glycolysis pathway discussed above, pro-

ducing H2, CO2 and acetate as waste products that were

consumed by the methanogen. Over time, the host archaeon

maximized surface area contact with the symbiont (without

phagocytosis) to acquire these waste products. At that point,

the host–symbiont system could exist in anaerobic and aerobic

environments. This proto-eukaryote had an archaeal cytoplasm

and a H2-producing ‘organelle’ also capable of oxygen-

dependent respiration. Later, after the major lineages of extant

eukaryotes diverged from the LECA, aerobic and anaerobic

metabolisms were differentially lost in anaerobic and aerobic

lineages, respectively, generating the diversity of energy

metabolism and the MROs that we see today.

Although this hypothesis has received much attention, sev-

eral of its predictions are not straightforwardly compatible

with current data. Most importantly, there is no direct evidence

supporting an a-proteobacterial symbiotic origin of genes

encoding anaerobic enzymes of energy metabolism within

eukaryotes [34,41,89,90,99,118,119]. Although all recent phylo-

genies of the pyruvate metabolizing enzymes associated with

anaerobes (PFO, PNO and PFL) show eukaryotes as monophy-

letic, the closest related prokaryotic homologues to eukaryotes

are never a-proteobacterial; instead, they are sequences from

d-, 1-proteobacteria or firmicutes, although the relationships

among bacterial groups in these trees are often mixed up

[79,89,96,119]. Phylogenies of HYD resolve at least two phylo-

genetically distinct eukaryotic clades affiliated with sequences

from separate bacterial groups. To date, a-proteobacteria

homologues do not branch sister to either of these eukaryo-

tic groups in these analyses. Furthermore, inter-eukaryotic

relationships observed in the phylogeny of HYD are incongru-

ent with known organismal relationships and some of these

inconsistencies are clearly the result of eukaryote-to-eukaryote

LGT [79,96,118]. Finally, it is important to note that the vast

majority of modern-day a-proteobacterial genomes do not

encode these enzymes for anaerobic metabolism, and those

that do appear to have recently acquired them from other

bacterial lineages by LGT [79,96,118].

To reconcile these observations with an endosymbiotic

mitochondrial origin of these enzymes, it has been argued

that their phylogenetic affinities have been obscured by ram-

pant LGTs among prokaryotes since the endosymbiosis; the

genomes of original endosymbionts that gave rise to the mito-

chondrion were therefore very different from the modern-day

a-proteobacteria [18]. This is, of course, possible. However,

many typical endosymbiont-derived genes associated with

aerobic metabolism that are encoded either on mitochondrial

genomes (e.g. cytochrome oxidase 1) or in the nucleus

(e.g. PDH) have not had their origins obscured by LGT in

this way; a-proteobacterial homologues are, phylogenetically,

their closest relatives [122]. It would seem a strange coinci-

dence, then, that all of the eukaryotic enzymes that function
exclusively in anaerobic metabolism discussed above lack the

characteristic a-proteobacterial affinity of mitochondrial

proteins. Even if LGT has completely obscured the phyloge-

netic origins of these enzymes in eukaryotes, given that

prokaryote-to-eukaryote LGT is now a well-established

phenomenon [123–126], there is no strong reason to suspect

they originated from the mitochondrial symbiont genome

rather than some other bacterial source.

(b) Laterally acquired anaerobic metabolism
Here, we propose an LGT model whereby genes encoding

enzymes that exclusively function in anaerobic ATP metab-

olism in eukaryotes were initially acquired from anaerobic

bacteria (possibly food or transient endosymbionts) by one

or more eukaryotic lineages, and subsequently transferred

between eukaryotes after the diversification of extant eukar-

yotes. The selective advantage was the ability to continue to

produce acetyl-CoA and ultimately ATP from pyruvate

(and/or malate) under hypoxic conditions commonly

encountered by free-living and anaerobic protists. The

model rests on the general assumption that, in adapting to

new environments, protists can acquire and express genes

from prokaryotic or eukaryotic donors that allow them to

better thrive. LGT in eukaryotes has been extensively docu-

mented for more than a decade and often these gene

acquisitions are adaptive [127–129]. Furthermore, the trans-

fer patterns observed are consistent with known ecological

co-occurrences of the protist recipients and the bacterial

donors [130–132], as observed in cases of prokaryotic LGT

[133]. Various specific mechanisms by which LGT can

occur in eukaryotes have also been proposed and discussed

[134–136], but will not be elaborated in detail here.

Support for an LGT-based model comes primarily from

the patchy distribution of the enzymes across the eukaryotic

tree, heterogeneous bacterial affinities of the eukaryotic

homologues and the unusual inter-eukaryote relationships

sometimes observed in phylogenies of the HYD, ASCT,

ACS, PFO, HYD and PFL enzymes [34,79,96,118,119,137].

Curiously, eukaryotes are recovered as monophyletic in

the most recent phylogenies of PFO, PFL and the HYD

maturases. This can be explained in two ways: (i) these

enzymes were acquired prior to LECA, and then vertically

inherited [118,120] and lost many times in distinct eukaryote

lineages, or (ii) they were acquired by one eukaryote lineage

(post-LECA) and then passed among eukaryotes via LGT.

The latter is plausible if genes acquired from other eukaryotes

were more frequently expressed and retained than those

acquired from prokaryotes because their cis-acting signals

and regulatory elements (e.g. promoters, polyadenylation

signals, etc.) were more ‘compatible’ with the recipient

genome. In the case that multiple proteins are required to per-

form a function, LGT-based models are more plausible if

these genes were transferred in a single event. This can be

accomplished by transfers of: (i) operons in the case of bac-

terial donors, and (ii) adjacent or fused genes for eukaryote

donors (e.g. [79,119]).

(c) A new scenario
The previous sections aimed to highlight both the remarkable

diversity and the extensive similarities in the metabolisms of

MROs across the tree of eukaryotes. Although MROs have

evolved independently in dozens of lineages, they show
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functional similarities because several different ‘anaerobic’

enzymes of energy metabolism co-occur in MROs of different

lineages. Using modules made up of laterally acquired and

ancestral proteins, the MROs of anaerobic protists have

convergently acquired similar mechanisms to metabolize pyr-

uvate, generate hydrogen and synthesize ATP. Below, we

elaborate rationales for the ordering of events that occur

during these evolutionary transitions.

(i) Reduction of the electron transport chain in response to
hypoxia

During transient hypoxia, the subunits of CIII and CIV of the

ETC are typically downregulated in the mitochondria of many

organisms [48,138] including mammalian cells [139–141].

Therefore, in adapting to hypoxia as a permanent condition, it

seems likely that an organism would no longer express CIII

and CIV subunits, and, over time, the lack of purifying selection

would ultimately lead to their loss from the nuclear and mito-

chondrial genomes. In this scenario, the first four enzymes of

the Krebs cycle (citrate synthase to SCS) would still function to

convert citrate to succinate and NADH. However, the remaining

enzymes of the Krebs cycle were probably functioning in reverse

in the malate dismutation pathway, transforming malate to

fumarate, as they do in anaerobic mitochondria and some

cancer cells [18,48]. In this situation, CI continues to oxidize

NADH and pump protons fuelling ATP synthesis via ATP

synthase. However, the lack of CIII and CIV results in a build-

up of ubiquinol generated by CI. This build-up of ubiquinol

and fumarate would have favoured the functioning of CII in

reverse as a fumarate reductase, to regenerate ubiquinone.

This scenario is plausible, as some CIIs of aerobes perform

fumarate reduction with sufficient concentrations of substrate

[142]. Metabolically, this organelle would resemble the mito-

chondria of some animals (e.g. Ascaris) when functioning in

hypoxic conditions [18]. In some lineages of eukaryotes, the abil-

ity to synthesize and use RQ by the acquisition of an enzyme like

RQUA [143] or an analogous protein by LGT would have

greatly increased the efficiency of the fumarate reductase

activity of CII.

(ii) Hydrogenase and complex I
Curiously, organisms that encode PFO always possess a HYD

homologue. However, the converse is not true: the genomes of

some organisms such as Naegleria, Neocallimastix, Piromyces
and Nyctotherus (figure 3) encode only HYD, suggesting that

this enzyme need not rely on reduced ferredoxin produced

by PFO activity. Studies have shown that the Thermotoga
HYD forms a trimeric complex with the NuoE/24 kDa and

NuoF/51 kDa subunits of CI to simultaneously oxidize both

ferredoxin and NADH using a unique electron bifurcation

mechanism [144]. This is consistent with studies of T. vaginalis
hydrogenosomes that showed that homologues of these CI

subunits (responsible for oxidation of NADH) can reduce ferre-

doxin that is then oxidized by HYD [23] or possibly even

shuttle electrons directly to HYD [24]. Interestingly, other

anaerobic protists with MRO-targeted HYDs have retained

the same two subunits of CI (figure 3), and in Nyctotherus bac-

terial homologues of these proteins are fused to HYD [103].

This suggests that coupling of NADH oxidation with H2 pro-

duction (ferredoxin) could also occur in these organisms [18].

In this scenario, once HYD was acquired by a protist, the

NuoE and F subunits could have had dual roles. Under aerobic
conditions, they would be predominantly bound to the mem-

brane-embedded subunits functioning as part of CI.

However, under low oxygen conditions when the ETC is func-

tioning less efficiently, NuoE and F could instead mediate

electron transfer from NADH to HYD, ultimately generating

hydrogen gas and regenerating NADþ required by multiple

mitochondrial pathways. In some lineages, most CI subunits

appear to have been completely lost, along with ATP synthase,

and only the NuoE and F subunits were retained to carry out

this putative HYD-related function. It is unclear why a full CI

persists in organisms that lack ATP synthase, such as Blastocys-
tis and Nyctotherus; it may be related to maintaining a proton

gradient required for protein import [145], small molecule

transport (e.g. SLC25 carrier proteins [146]) and NADH/

NADPH exchange (for review, see [147]).

(iii) Changes to pyruvate metabolism and ATP generation
When aerobic organisms experience hypoxia, the ETC becomes

inefficient causing NADH levels to rise, inhibiting PDH via

negative allosteric regulation and phosphorylation by PDH

kinase [148,149]. Under these conditions, the energy output of

mitochondria decreases [150] and limits the efficiency of

pathways that rely on acetyl-CoA as a substrate (e.g. long-

chain fatty acid biosynthesis [151]). For organisms adapting to

hypoxia, acquiring an NADH-insensitive pyruvate-oxidizing

enzyme such as PFO would be selectively advantageous.

In this scenario, electrons from PFO-mediated pyruvate oxi-

dation could be ferried directly to the HYD via ferredoxin.

The MRO would then possess both PDH and a PFO/HYD

system as found in Blastocystis sp. [99] and Acanthamoeba [96].

Once PFO and HYD were acquired, as long as the organism

was living under predominantly hypoxic conditions (as PFO

is an oxygen-sensitive enzyme [152]), PDH would become

unnecessary and eventually be lost.

At this point, the hypothetical MRO had a partially func-

tioning ETC (CI and CII), PFO, HYD and a partial Krebs

cycle and, possibly, mtDNA; it synthesized ATP via CV and

ultimately excreted succinate (propionate and/or acetate) as

the end product of metabolism. It is possible that, at this

stage in the evolutionary transition of the MRO, succinate

could be directly converted to succinyl-CoA by an ASCT. The

timing of the acquisition of one of the subtypes of these

enzymes is unclear as ASCT homologues are present in

MROs of a number of anaerobically adapted organisms includ-

ing those with or without the PFO and/or HYD enzymes [18].

In any case, ASCT allows the synthesis of succinyl-CoA as sub-

strate for SCS to generate ATP independent of the Krebs cycle.

A reduction in NADH production (because of loss of

PDH and/or reduced output from the partial Krebs cycle)

and lowered proton motive force (because of loss of CIII

and CIV) probably led to a reduced efficiency, and eventual

loss, of the F1Fo-ATP synthase, as observed in Blastocystis
[99] and Nyctotherus [102].

(iv) Loss of complex I, mtDNA and malate dismutation
The loss of the majority of CI subunits and the Krebs cycle

would yield an MRO resembling that of P. biforma
(figure 2)—an organelle lacking a mitochondrial genome,

and retaining only CII, two CI subunits, PFO, HYD, ASCT

and SCS. Eventually, the CII (and thus malate dismutation)

could have been lost if succinate (the substrate for ASCT)

was imported (or generated by an alternative mechanism), as
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presumably occurs in T. vaginalis hydrogenosomes. Instead of

acquiring ASCT, some lineages acquired ACS and generated

ATP directly from acetyl-CoA in their MROs (e.g. M. balamuthi
[89] or S. salmonicida [34]). Interestingly, Mastigamoeba has

a mysterious combination of enzymes; its genome encodes

only the four subunits of CII and not ASCT, SCS or a

MRO-targeted fumarase.

A final step in organelle reduction has occurred in those

lineages that have MROs that do not function in ATP syn-

thesis (i.e. mitosomes). In such lineages, ATP is either

synthesized in the cytoplasm (by PFO, HYD and ACS in

Giardia and Entamoeba) (figure 2) or imported from host

cells (in Microsporidia) [64,65].
 rans.R.Soc.B
370:20140326
7. Final remarks
Above, we have discussed a set of evolutionary transitions

that could lead to the metabolic diversity seen in anaerobic

protists today. It is likely that the true evolutionary pathways

that led to MRO diversity in extant anaerobes were more

complex than the foregoing scenarios might suggest. We

advance these hypotheses only to stimulate further investi-

gation into, and discussion of, the evolutionary events and

selective forces leading to adaptation of mitochondria

to hypoxia.

Although we have focused predominantly on ATP and

carbohydrate metabolism, we observe the general pattern

that MROs of free-living organisms tend to maintain more ana-

bolic pathways than those of parasites, which presumably rely

on the host to fulfil these needs. For instance, the organelles
of Pygsuia have retained a variety of lipid and amino acid meta-

bolic pathways not found in those of parasites like Trichomonas,

Giardia or Entamoeba. Furthermore, the MROs of free-living

organisms (e.g. Pygsuia, chytrids, Mastigamoeba) often express

several different enzymes with redundant functions; for

example, many encode several enzymes that convert pyruvate

to acetyl-CoA (PFL, PFO and/or PNO). This contrasts with the

more streamlined metabolism found in parasites (e.g. Tricho-
monas, Spironucleus, Entamoeba and Giardia, in which PFO is

the only acetyl-CoA-producing enzyme). This observation is

harder to reconcile with respect to reliance on a host. It is poss-

ible that since free-living organisms tend to occupy dynamic

environments (compared with parasites), several enzymes

with different cofactor dependencies could provide meta-

bolic versatility. More information on the regulation of these

various enzymes under different conditions is needed to deter-

mine how they might allow these organisms to adapt

to changing environments.
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