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A Simple Network Architecture Accounts for Diverse Reward
Time Responses in Primary Visual Cortex

Marco A. Huertas,! “Marshall G. Hussain Shuler,? and Harel Z. Shouval!
'Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, Texas 77030, and 2Department of Neuroscience, Johns Hopkins
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Many actions performed by animals and humans depend on an ability to learn, estimate, and produce temporal intervals of behavioral
relevance. Exemplifying such learning of cued expectancies is the observation of reward-timing activity in the primary visual cortex (V1)
of rodents, wherein neural responses to visual cues come to predict the time of future reward as behaviorally experienced in the past.
These reward-timing responses exhibit significant heterogeneity in at least three qualitatively distinct classes: sustained increase or
sustained decrease in firing rate until the time of expected reward, and a class of cells that reach a peak in firing at the expected delay. We
elaborate upon our existing model by including inhibitory and excitatory units while imposing simple connectivity rules to demonstrate
what role these inhibitory elements and the simple architectures play in sculpting the response dynamics of the network. We find that
simply adding inhibition is not sufficient for obtaining the different distinct response classes, and that a broad distribution of inhibitory
projections is necessary for obtaining peak-type responses. Furthermore, although changes in connection strength that modulate the
effects of inhibition onto excitatory units have a strong impact on the firing rate profile of these peaked responses, the network exhibits
robustness in its overall ability to predict the expected time of reward. Finally, we demonstrate how the magnitude of expected reward can
be encoded at the expected delay in the network and how peaked responses express this reward expectancy.
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Heterogeneity in single-neuron responses is a common feature of neuronal systems, although sometimes, in theoretical ap-
proaches, itis treated as a nuisance and seldom considered as conveying a different aspect of a signal. In this study, we focus on the
heterogeneous responses in the primary visual cortex of rodents trained with a predictable delayed reward time. We describe
under what conditions this heterogeneity can arise by self-organization, and what information it can convey. This study, while
focusing on a specific system, provides insight onto how heterogeneity can arise in general while also shedding light onto mech-
anisms of reinforcement learning using realistic biological assumptions. j

ignificance Statement

and Barto, 1998; Gershman et al., 2014), then the brain must have
evolved strategies to not only associate predictive cues with future

Introduction
Many actions performed by animals and humans depend on an

ability to precisely predict and produce temporal intervals. This is
particularly relevant when these intervals relate to the time of
expected rewards because inaccurately estimating and producing
these intervals can decrease the total amount of rewards obtained.
If, as assumed in many reinforcement learning approaches, ani-
mals are agents trying to maximize these future rewards (Sutton
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behavioral outcomes but also to represent the duration of time
between these cues and the delayed reward. These strategies must
also account for the fact that behavioral outcomes are often tem-
porally displaced from predictive cues, which might introduce an
ambiguity as to which cue or action is predictive of the delayed
reward, a problem known as the temporal credit assignment
problem (Sutton and Barto, 1998; Dayan and Abbott, 2005;
Worgotter and Porr, 2005). Although the ability to represent
temporal intervals is behaviorally evident, the neural mecha-
nisms underpinning this ability to estimate, represent, store, and
produce time intervals, which may span different scales from
microseconds to hours (Mauk and Buonomano, 2004), is not
well understood.

Prominent lines of inquiry have centered on the role played by
the basal ganglia and its dopamine innervation in interval timing
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(Buhusi and Meck, 2005; Merchant et al., 2013), including com-
putational models based on reinforcement learning approaches
(Montague et al., 1996; Alexander and Brown, 2011, 2014; Ger-
shman et al., 2014). However, timing on the scale of hundreds to
thousands of milliseconds can also be represented in primary
sensory areas (Super et al., 2001; Moshitch et al., 2006). Further-
more, cued delayed rewards have been observed to modify V1
neuronal responses to image features (Goltstein et al., 2013) and
reward timing can be represented in primary visual cortex, both
in vivo (Shuler and Bear, 2006; Chubykin et al., 2013; Liu et al.,
2015) and in slice (Chubykin et al., 2013). Moreover, recent ex-
perimental results indicate that the activity of these neurons may
directly inform timing behavior (Namboodiri et al., 2015).

Of relevance here is the observation that training, in which a
brief visual stimulation is paired with a reward occurring 1 or 2 s
later, modifies the responses of V1 neurons such that many of
them represent expected reward time. The responses of these
neurons are heterogeneous and can be organized into three qual-
itatively distinct classes, namely, sustained increase (SI), sus-
tained decrease (SD), and peaked (P) (Shuler and Bear, 2006;
Chubykin et al., 2013; Liu et al., 2015) (see Figure 1).

Inaprevious publication (Gavornik etal., 2009), we presented
amodel that used reward-modulated synaptic plasticity of lateral
excitatory connections to account for the SI responses. Here we
build on this approach by showing how the introduction of
inhibitory neurons and simple connectivity rules give rise to a
diversity of interval-timing response profiles mimicking reward-
timing responses observed experimentally. In doing so, we pro-
vide a detailed accounting of the important role played by
inhibitory elements in shaping these responses. Additionally, the
present model exhibits robustness against variations in key pa-
rameters, such as the strength of the static synaptic weights, and
the presence of noise. We also analyze the emergent network
structure and simplify it to obtain intuition into its operation,
gaining insight into how the network achieves its robustness and
suggesting additional experimental tests of the purported mech-
anism. Finally, we show that the network can also represent re-
ward magnitude at the expected delay and that the P response
might be specialized for this representation.

Materials and Methods

Model. Previously (Gavornik et al., 2009; Gavornik and Shouval, 2011),
we developed a model network consisting of excitatory neurons with
recurrent plastic synaptic connections in an effort to understand how, in
principle, such a network could learn to associate a cue with a delayed
reward, and, in so doing, generate the temporal interval to the expected
reward. Such a model was able to capture, nontrivially, the main charac-
teristics of one response type observed experimentally, namely, the SI
response. However, that work did not aim at explaining all the diverse
forms of reward-timing responses observed experimentally. Moreover,
the model lacked a biological realism, in that it did not also include the
effects of inhibitory neurons.

The present model builds upon our previous work and addresses spe-
cific questions regarding the role played by inhibition in shaping the
responses of the excitatory population. Specifically, it addresses ques-
tions regarding network architecture, both its structure and strength of
synaptic connections, as well as the robustness of the responses to
changes in key parameters pertaining to the effects of inhibition. Impor-
tantly, it explores how inhibition extends the capabilities of the network
itself to not just reporting when to expect a reward but critically, to
reporting its expected magnitude as well.

Therefore, our present model includes both representations of ex-
citatory and inhibitory units, which, as before, are described as con-
ductance based integrate-and-fire neurons. This simple model,
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although not capturing all properties of V1 neurons, does account for
key properties.

One such property is the dynamics of the membrane potential, being
described by a leak current that, in the absence of synaptic input, will
keep the neuron at its resting membrane potential of —60 mV and that
has a characteristic membrane time constant of 20 ms. In the presence of
synaptic input, changes in the membrane potential are described by the
following equations:

dv’
CT; =g(E — V})) + gi(Ep — V) + 8B — VF) (1)

dsk 1
Fri Esk + p(1 = s Z &(t — tg;?e—spikes) (2)

pre-spikes

where 1} represents the membrane potential of the i-th neuron in pop-
ulation p, which can be either excitatory (E) or inhibitory (I), and where
s, is the synaptic activation of the k-th presynaptic neuron. Other param-
eters are as follows: membrane capacitance (C); leak, excitatory, and
inhibitory conductances (g gg; ) leak, excitatory, and inhibitory
reversal potentials (E; Ey E); percentage change of synaptic activation
with input spikes (p) and time constant for synaptic activation (7),
where we have used here as in our previous model (Gavornik et al., 2009)
a value of 80 ms for recurrent excitatory NMDA currents. In the present
model, we consider only fast inhibitory synapses with a time constant of
10 ms. The 8 function in Equation 2 indicates that these changes occur
only at the moment of the arrival of a presynaptic spike at tg?e,spikes from
the k-th presynaptic neuron.

The total excitatory and inhibitory conductances are computed from
the individual outgoing synaptic activations, s;, and the synaptic
strength, ();,, between the postsynaptic neuron i and the presynaptic
neuron k. Thus, for both excitatory and inhibitory currents, we have the
following:

8ei = Eka S (3)
k

8i = Eﬂ}k Sk (4)
k

where the index k runs over all presynaptic neurons (either from the
excitatory or inhibitory populations accordingly) contacting the post-
synaptic neuron i, which for g ; is either an excitatory or an inhibitory
neuron and for g ; is an excitatory neuron.

As described in prior experimental observations (Shuler and Bear,
2006; Chubykin et al., 2013; Liu et al., 2015), only one visual stimulus was
presented before the delivery of the reward; thus, our simulations mimic
this experimental condition. The stimulus was modeled as feedforward
excitation delivered by simulated spikes that arrive from the lateral genic-
ulate nucleus as the result of a full-field visual stimulation (compare
Gavornik et al., 2009).

In an effort to introduce the least number of assumptions into our
model, we consider that the only plastic synapses are those associated
with recurrent excitation, which have been implicated in the role of
modulating feedforward inputs (Lamme and Roelfsema, 2000). All other
synapses are consider static. Thus, in the text, we will differentiate the
various connections (QE-/ ), as Ly, for those that are plastic, and as Wi, for
those that are static. Plasticity in inhibitory synapses cannot be ruled out
(Holmgren and Zilberter, 2001; Haas et al., 2006; Vogels et al., 2011;
Wang and Maffei, 2014). Although there is evidence for the role of ACh
in depressing inhibitory synapses in the auditory cortex (Froemke et al.,
2007), the effects of ACh in synapses involving interneurons in V1 are not
as clear as for excitatory synapses (Gulledge et al., 2007; Alitto and Dan,
2013), and thus will not be modeled here.

Changes in the recurrent excitatory synaptic weights occur only at the
time of reward, and the changes are computed following the reward-
dependent expression (RDE) of synaptic plasticity (Gavornik et al.,
2009). Briefly, RDE assumes the existence of synaptic biochemical pro-
cesses, which we will refer to as “synaptic eligibility traces” (the term
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“proto-weight” was used in our previous work) that are driven by the
coactivation of presynaptic and postsynaptic neurons. These traces are
equivalent to the “eligibility traces” used in reinforcement learning algo-
rithms (Sutton and Barto, 1998; Gershman et al., 2014); however, here we
emphasize the term synaptic to stress the locality of these traces to the
synapse, differentiating other ways in which eligibility traces could man-
ifest in biological systems (Pan et al., 2005). In the absence of neuronal
activity, these traces decay with a slow time constant (7,). Changes in
synaptic weights depend on the activity level of the synaptic eligibility
traces at the moment of the reward (for another formulation, see Izhikev-
ich, 2007).

Mathematically, the dynamics of these “synaptic eligibility traces” at
the synapse between the presynaptic neuron j and the postsynaptic neu-
roni, Lf-’j, where p indicates that this is a potentiating trace, are described
by the following differential equation:

dr, o The = I
Tp dl’ = _Lij+ T H(R,-, Rj) (5)

‘max

where 7, represents the slow decay time constant (here we use 5000 ms)
and I is a saturating value. This addition limits the maximum value of
the synaptic eligibility trace. The last term represents the trace’s depen-
dence on neuronal coactivation. In all simulations, we use a rate-based
Hebbian expression, which under some conditions is a valid representa-
tion of spike-time-based learning rules (Kempter et al., 1999), composed
of the presynaptic and postsynaptic firing rates R;, R;, respectively. Spe-
cifically, we use the function H(R;, R;) = R; (R; — 0), with 6 a firing rate
threshold. This threshold is set at a value of 10 Hz and was included to
prevent activation of the synaptic eligibility traces by the spontaneous
activity of the network, which was ~5 Hz. The firing rates R; are window
estimates and are computed using the following equation:

dR,'
T™Wir Eﬁ(t —t) — R; (6)
ti

where 7,, = 50 ms, and ¢; stands for the time of occurrence of a spike.

As described above, in RDE, the rate of change of the synaptic weights
(for recurrent excitation) is proportional to the magnitude of the synap-
tic traces at the time of reward. Mathematically, these changes are ex-
pressed by the following equations (one for every pair of presynaptic and
postsynaptic neurons):

dL;
dt = nLZ(t)(TO - BR1)8(t - Trcward) (7)

where r, represents the magnitude of the reward, R, is the postsynaptic
firing rate of neuron 7, B is a scaling factor, and 7 is the learning rate. The
effect of neuromodulators in long-term potentiation is not typically ad-
dressed in physiological studies, less so in in vivo studies; however, there
is evidence of their effect when these are bath applied and timed with the
induction protocols (Cassenaer and Laurent, 2012; Chubykin et al., 2013;
Yagishita et al., 2014). Regarding the mechanism of the suppression of
synaptic plasticity, as in Equation 7, there is little or no evidence to either
support or reject the assumption that high cortical activity at the time of
reward can suppress changes in synaptic strength.

In all simulations, reward is assumed to be received at a single point in
time; thus, the presence of the é function in Equation 7. In most cases, the
magnitude of the reward is considered uniform for all neurons in the
excitatory population, although different values can be assigned for dif-
ferent excitatory subpopulations, as described in Learning expected re-
ward magnitude at the expected delay, below.

Although spurious releases of the neuromodulator (i.e., ACh) pro-
posed to convey the rewarding signal can, in principle, occur between the
presentation of the stimulus and the delivery of the reward, here we are
implicitly assuming that the amount released during reward is significant
to activate (Kuczewski et al., 2005) the receptors mediating plasticity (i.e.,
muscarinic ACh receptors) (Chubykin et al.,, 2013).

To prevent unbounded increases of synaptic strength, we could have
considered saturating synaptic weights L;; as in Izhikevich (2007); how-
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ever, this approach will in most cases saturate at the upper allowed value
and will fail to convene to the appropriate L;; and thus will not represent
the appropriate temporal delay (compare Fig. 6). In contrast, and draw-
ing from the reinforcement learning literature (Montague et al., 1996;
Sutton and Barto, 1998), changes in synaptic weights stop when the
“expected reward,” being proportional to the firing rate at the time of
reward (BR,;), equals the “actual reward” magnitude (r,) as in Equation 7.
This implies that learning will stop when the firing rate reaches the target
value (i.e., R = r,/B). The dependence on high firing rates to stop the
effects of the rewarding signal might suggest a possible feedback mecha-
nism for inhibiting the rewarding nucleus. However, this hypothesis has
not been experimentally verified in the case of the cholinergic system.
Together, Equations 5 and 7 define the RDE learning rule.

Network architecture. Regarding network architecture, we use two
qualitatively different but related models, which we will refer to as the
“nonspecified neural architecture” (NNA) and “core neural architec-
ture” (CNA). Both architectures entail sparse connections with fixed
and finite probabilities of contacting a postsynaptic neuron, and in
neither of these are recurrent connections included between inhibi-
tory neurons.

In the NNA model, we consider two cases regarding the distribu-
tion of projections from the inhibitory units back to the excitatory
units: (1) we assign a 50% probability of connecting one inhibitory
neuron to an excitatory neuron, which results in a narrow, binomial
distribution (narrow distribution); and (2) the number of inhibitory
projections each excitatory neuron receives is drawn from a gamma
distribution, I'(k, 0), with shape parameter k = 10 and scale param-
eter 6 = 7.5 (broad distribution).

In the CNA model, the excitatory population is divided into three
subpopulations that will represent neurons with specific response types
corresponding to SI, SD, and P responses. Cells between these subpopu-
lations are connected in a predefined way, based on the converged net-
work architecture obtained from the NNA model with a broad inhibitory
strength distribution achieved after training (see Fig. 4’s legend). In this
case, the distribution of inhibitory projections to the excitatory popula-
tion is again chosen to be narrow.

The CNA model represents a simplification of the NNA model. It
contains only the strongest connections between neurons exhibiting the
different response types and the inhibitory population, and its justifica-
tion is done a posteriori. Because of its simplified form, it is mathemati-
cally more tractable and will be used to study the properties of the
network.

Classification procedure. After the NNA model has been trained to
report a time interval between stimulus and reward (compare Figs. 2
and 3), neurons in the excitatory population are classified according
to their response type: SI or SD until expected reward time, or peak
firing (P) at expected reward time. The classification uses the trial-
averaged firing rate of each neuron. Between the stimulus offset and
the arrival of the reward, the trial-averaged firing rate is described
by the function f(t). We calculate the time-averaged value of f(t)
during the first half of the interval between the stimulus offset and the
reward, (f(t));, and during the second half, (f(t)),. Neurons are then
classified using the following criteria:

LSLif(fl)), > (fih, > fyor

2.8D, if (f{t)), < fu or

3.P, if(f(t)>l < <f(t)>2 and <f(t)>z > fo
where fj; is the time-averaged firing rate before the stimulus onset, or
equivalently its baseline firing rate. The same criteria were used to segre-
gate the neuronal responses shown in Figures 2 and 3. Neurons corre-
sponding to the SI population will be denoted as SI neurons, and
similarly for neurons pertaining to the populations of the other response
types.

Results

Previously (Gavornik et al., 2009), we proposed a formal model
demonstrating how cued interval timing can arise in a recurrent
excitatory network as a consequence of our learning rule (i.e.,
RDE of synaptic plasticity). The model network consisted of ex-
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Figure1. Cue-evoked responses following optogenetic conditioning. Examples of Sl (left), SD (middle), and P (right) response forms. The response profiles develop in V1 after pairing a visual cue
with a laser pulse 1000 ms later (blue bar) that activated axon terminals projecting from nucleus basalis. Vertical green bars represent cue presentations. Figure adapted from Liu et al. (2015) with
permission.

itat ith t plasti . .
citatory neurons with recurrent plastic A Stimulus Reward B Stimulus Reward
synaptic connections, designed to address 100
how, in principle, such a network could & __ L W 150
learn to associate a cue with a delayed re- cc»§ 80
ward and generate the temporal interval = 3 3
to the expected reward when presented 8% 60 §100
with the predictive cue. The model exhib- 98 0 c
ited only one response type, namely, the SI § o 120180 S

o= Inhibitory strength S~ @ 50
response, although SD responses couldbe ~ ®F 20 z
. o e N
accounted for, butin a trivial, ad hoc way = == prr-e-peeceeen i e e
as explained below. = 0k :
Here, to move toward greater biologi- 0100 1100 1900 ) 11
. . Time (ms) Time (ms)

cal realism, we expand upon this model by
adding inhibitory elements and simple Figure2.  Network of excitatory neurons with feedback inhibition trained to report a time interval under a narrow distribution

connectivity rules. By adding a small
number of assumptions, we aim to do the
following: (1) replicate the full diversity of
reward-timing responses observed exper-
imentally (Fig. 1); (2) derive a minimal or
“core” network architecture; and (3) ex-
plain how such a network learns to ex-
press not just when to expect reward, but
how much to expect following a predic-
tive cue. In addition, we provide insight into the critical role
played by inhibition in shaping the P responses by perturbing the
dynamics of inhibitory neurons.

Together, these computational observations motivate future ex-
perimental work probing the capabilities of cortical circuits as well as
addressing what particular circuit elements are thought to do.

Learning interval timing in a recurrent network with
excitatory and inhibitory neurons

To increase the biological realism of our model, we begin by
adding a population of inhibitory units (labeled I) that provide
feedback inhibition to an excitatory population (labeled E), both
of which consist of 150 units each. The full network was then
trained to report an expected time of reward that was delayed by
1000 ms after the stimulus offset. We assume that connections
between excitatory and inhibitory neurons are random, with a
50% connection probability. This results in a narrow distribution
of inhibitory synaptic strengths converging onto excitatory neu-
rons with a mean of 120 uS and an SD of 1.8 uS. The schematic of
the model and the distribution of inhibitory strengths are shown

of inhibitory projection strengths. A, Trial-averaged firing rate after training to report a 1000 ms time interval between stimulus
(green bar) and reward (blue bar). Black and blue traces represent neurons identified as producing Sl and SD responses, respec-
tively. Orange trace represents neurons responding only to the visual cue. Cyan trace represents the firing rate of the inhibitory
population. Shaded areas represent the level of variability over trials: upper and lower bounds correspond to 1 SD from the
mean, respectively. For clarity, we have omitted the large variability of the inhibitory neurons. Only SI and SD responses show a
clear difference with baseline firing rate. Inset on left, Network architecture (E, Excitatory population; I, inhibitory population).
Inset on right, Distribution of the strength of inhibitory projections. B, Raster plot represents an example of the spike times of the
activity of the excitatory population (E) in the last trial of training. Neuron responses show little heterogeneity in their response.

as insets in Figure 2A. The architecture of this model will be
referred to as the NNA.

The first question to be addressed was whether the addition of
inhibitory elements would break the ability of the network to
learn (using RDE) the interval to the expected reward time given
apredictive cue. The addition of an inhibitory population did not
change the ability of the excitatory neurons to learn to report a
time interval, as illustrated by the black trace in Figure 2A repre-
senting an S response. The traces plotted here represent the trial-
average firing rate over 30 trials, and the shaded area represents
the trial-by-trial variability of the response: upper and lower
boundaries correspond to adding and subtracting 1 SD, respec-
tively. The trial-averaged firing rate of the inhibitory population
is also shown (cyan), which has a profile similar to that of the SI
(we have omitted, for clarity, the corresponding shaded areas
illustrating the large variability in the inhibitory response).

As described in Materials and Methods, changes in synaptic
strength stop when the firing rate reaches a target value that is
proportional to the magnitude of the reward (see Eq. 7). In this
simulation, this corresponded to 15 Hz and is indicated in Figure
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Network trained to report a time interval under a broad distribution of inhibitory projection strengths. Network
architecture similar to thatin Figure 24 (inset). 4, Trial-averaged firing rate of three emerging subgroups of neurons corresponding
to Sl (black), P (red), and SD (blue) responses. The average firing rate from the inhibitory subpopulation (cyan) is also shown. Inset

0 ~5700 learn cued interval timing (mostly of the

SI type), did not, however, contribute to
the emergence of the heterogeneous activ-
ity seen in Figure 1. This suggests that in-
hibition alone is not sufficient to account
for the observed responses in V1.

in top panel, Comparison between the narrow (black histogram) and broad (gray histogram) distributions of inhibitory projection

strength. The broad distribution is drawn from a gamma probability density function (dashed line). B, Example raster plot at the
end of a trial during training. The responses of the neurons that were identified are color coded as in A and have been rearranged
accordingly for clarity. €, Examples of single-neuron trial-averaged responses showing SI, P, and SD profiles.

2A (horizontal dotted line). We assert that training has converged
when the trial-average firing rate crosses this target at the time of
reward (in individual trials, this firing rate fluctuates about this
time), as illustrated by the black trace at 1100 ms.

To assess whether excitatory neurons exhibited a response
profile that matched the qualitative features of those observed
experimentally, as in Figure 1, we applied the classification pro-
cedure described in Materials and Methods to each trial-averaged
neuronal response and plotted each result in a different color.
Thus, from 150 neurons in the excitatory population, 86% exhib-
ited a SI profile (black trace). Additionally, we observed simulta-
neously the emergence of a population of neurons with a firing
rate that resembles the SD response (blue trace). The mean firing
rate of the SD neurons goes below baseline, which is indicated by
the horizontal black dashed line at ~5 Hz. Finally, the orange
trace, which corresponds to 5% of the neurons, exhibited activity
that is similar to baseline soon after the stimulation period; these
neurons did not change their dynamics as a result of training.

Our previous work (Gavornik et al., 2009) was designed to
produce SI response types. Other response types, like the SD
response, could only be accounted for by ad hoc changes to the
original network. Specifically, a separate excitatory population
that received feedforward inhibition from the original SI neurons
through an added inhibitory population produced the SD re-
sponse. This additional excitatory population received no excit-
atory drive other than feedforward background activity.
However, these changes to the model did not contribute to ex-

Provided an inhibitory connectivity
with a broad distribution of strength,
all experimentally observed response
types develop

In this section, we examine the effect of broadening the distri-
bution of inhibitory connectivity, and determine that it is
sufficient to give rise to all three reward-timing response pro-
files observed experimentally. The distribution of projections
connecting inhibitory to excitatory units (described in Mate-
rials and Methods) results in a net inhibitory drive with the
same mean as before (120 uS) but with a larger SD (40 uS)
(Fig. 3A, inset). Such a broad distribution, rather than the
narrow one used in the previous section, is consistent with
distributions of IPSCs recorded in rat visual cortex (Xue et al.,
2014). The network is robust against this change in that it is
still capable of learning to report the time interval between
stimulus and reward; however, there now emerges a third pop-
ulation of neurons that exhibit a peak-like response as ob-
served experimentally (compare Fig. 1). In Figure 3A, the trial-
average firing rate of three populations of neurons is shown,
corresponding to SI, P, and SD responses. The firing rate of the
inhibitory population is shown in cyan in Figure 3A. We used
here the same classification scheme used in Figure 2A. A raster
plot of the networks response after training for a single trial is
shown in Figure 3B, grouping neurons according to their re-
sponse type classification and color-coded as in Figure 3A (i.e.,
black, SL red, P; and blue, SD). The proportion of excitatory
neurons in each response group, in this example, was as fol-
lows: SI (78%), P (17%), and SD (7%). When a different, but
also broad, distribution of inhibitory projection strengths is
used, we obtain similar fractions of neurons in each response
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emergence of the three response types ob-
served in experimental recordings (Fig.
1). Although the specific fraction of
neurons in each subpopulation might be
dependent on other details of the distri-
bution of inhibitory projections, quan-
tification of this effect lies outside the
scope of the present manuscript, and here
we concentrated on establishing plausible
conditions that could give rise to such dy-
namics. It is important to emphasize that
the emergence of response types occurs
naturally during training and is not the
result of a priori knowledge of which neu-
rons will evolve into each of the response

types.
Figure 4.

A simplified CNA

In the last two sections, we have shown
that inhibition contributes to the emer-
gence of heterogeneous responses in a
network of excitatory neurons trained to
report a time interval between a stimulus
and its delayed reward. Moreover, in the
last section, we showed that one key char-
acteristic of the inhibitory input in pro-
ducing the peak response profile is a broad distribution of
inhibition strengths acting on the excitatory neurons. Here we
investigate the characteristics of the circuit architecture that
evolves as a consequence of the RDE learning rule.

Figure 4A, B shows the cumulative distribution of the inhibi-
tory strengths used to obtain the results shown in Figures 2 and 3,
respectively. The insets in each panel are meant to indicate that,
except for the characteristics of the inhibitory connections, both
model architectures are the same, namely, both are of the NNA
type. In Figure 4B, the gray trace corresponds to all inhibitory
connections, whereas the black solid and dotted traces represent
the cumulative distributions of total inhibitory input to excit-
atory units that exhibited ST and P response types, respectively. As
a comparison, the distribution plotted in Figure 4A is replotted
here (black dot-dashed trace). However, the scales for the ab-
scissa in Figure 4A, B are different.

The distribution of inhibitory projection strengths onto SI
neurons (Figure 4B, black line) is slightly shifted to the left,
whereas those of connections onto P neurons are shifted signifi-
cantly to the right, suggesting that peak responses arise in part
from a stronger inhibitory input (median is 34% larger than that
onto SI neurons).

The emergence of subpopulations of neurons within the ex-
citatory population after training suggests that the strengths of

-~ W
LSI—SI ‘ | SQ

W

SD-I

Evolved and core network architectures. A, B, Cumulative distribution function (CDF) of inhibitory projection
strengths used in simulations. Insets, Network architecture. A, (CDF used in Figure 2. B, CDF used in Figure 3, where the gray trace
represents the distribution of all inhibitory projections and the black solid and black dotted traces represent the inhibitory projec-
tions that specifically synapse onto Sl and P neuronal populations, respectively. The distribution in the latter case is shifted toward
higher values with a mean that is ~309% larger than that of the gray trace. For comparison, the trace shown in A is also plotted in
B (dot-dashed); note, however, the change in scale. C, Evolved network architecture after training using the RDE rule, which results
in the emergent subpopulations: SI, P, and SD. Numbers indicate relative strength of connection: L - connections are normalized to
the SI-to-Sl strength, W, connections to the I-to-SI strength (underlined numbers), and W, connections to the SI-to-I strength
(bold italic numbers). D, Core neural network architecture that retains the strongest connections between subpopulations.

the recurrent excitatory connections might also become diversi-
fied. The network architecture used in the previous sections does
not assume any internal subpopulations or impose any distribu-
tion of excitatory projection strengths.

During training, the excitatory population rearranges into
subpopulations, as shown in Figure 3. This post-training classifi-
cation suggests a more detailed representation of the final trained
architecture as shown in Figure 4C (RDE evolved architecture).
Here, the simple recurrent loop of the lateral connection Lgg
(Figure 4 A, B, insets) (i.e., the synaptic weight of recurrent excit-
atory connections) has been expanded to show explicitly the in-
teractions between SI, P, and SD populations. Similarly, the
connections Wy, and Wy, (i.e., excitatory-to-inhibitory and
inhibitory-to-excitatory, respectively) have been expanded to
show explicitly the projections between these subpopulations
and the inhibitory neurons.

When the magnitudes of the recurrent excitatory connections
are compared, we observe a nonuniform distribution of synaptic
strengths as the result of the learning rule (thick solid lines). By
normalizing the average magnitude of the excitatory connection
strengths between populations to that of the recurrent SI-to-SI
connection (1), we find that some subpopulations become
weakly connected: SI-to-SD (0.03), SD-to-SI (0.03), P-to-SI
(0.03), SD-to-SD (0.04), and SD-to-P (0.06). Here we attempt to



Huertas et al. @ Network Accounts for Diverse Reward Time Responses

timul
A 15 Stimulus Reward
/,\\‘100
T
= 80
()
Q
S 60
2
= 40
i
20
0 0 100 11oo 1500
Time (ms)

Trial 1

Trial 70

J. Neurosci., September 16, 2015 + 35(37):12659 12672 12665

B Stimulus

Reward

1100 1500

N

W

~120

H
-
o
S

Trial 96

D
o O

Firing rate (
N A
o O

N

[y

o

Mean synaptic weight X 1073 (uS) O

o

0 . ~100 1100 100 200 300 400
Time (ms) Time (ms) Trial No.

Figure 5.

Core neural architecture network exhibits main response types. 4, Trial-averaged mean population firing rate after training to report a 1000 ms time interval. Black, red, and

blue traces represent the SI, P, and SD populations, respectively. The extension of the shaded areas indicates the variability of responses over trials after training (1 SD). Horizontal
dotted line indicates the target firing rate value for learning cessation (15 Hz for both Sl and P populations). The trial-averaged traces cross the target values at the time of reward. B,
Example raster plot showing the spontaneous activity of each population and their responses during stimulus and before the arrival of reward, after which all populations return to the
basal firing rate. Colors correspond to those shown in A. €, Population firing rate of excitatory and inhibitory neurons during different trails while learning to report a 1000 ms time. Colors
identify populations as in A. Cyan trace represents the activity of the inhibitory population. Horizontal dotted lines indicate the firing rate target level. D, Time evolution of the plastic

synaptic weights L, ¢, Lp_p, and Lp_g; (Fig. 4D) over the training period.

simplify the network architecture by removing these weak con-
nections, as illustrated in Figure 4D, to derive a simplified net-
work architecture. Although a more rigorous mathematical
approach could be applied, this pruning process is justified, a
posteriori, based on the ability of the new network to produce the
three response types.

A similar comparison can be applied to the excitatory projec-
tions from E to I (i.e., dashed lines) and, when the magnitude of
these connections is measured relative to the strength of the SI-
to-I connections (numbers in bold italics), we find that projec-
tions from P and SD neurons to inhibitory neurons are weaker.
Hence, we could further simplify the architecture by eliminating
these projections as illustrated in Figure 4D. Because the number
of projections from the excitatory to the inhibitory neurons is
uniform, the relative strengths shown in the trained network (Fig.
4C) reflect the fractional number of excitatory neurons present in
each subpopulation. Finally, looking at the strengths of the con-
nections between the I and E populations (i.e., Wy;), we find that
the relative strengths to the three subpopulations show less vari-
ation (underlined numbers).

As shown previously in Figures 2 and 3, the presence of inhib-
itory input does not prevent the network from exhibiting the SI
response; therefore, we will assume that the I-to-SI connection

can be ignored without affecting the overall qualitative character-
istics of the various responses, leaving only the remaining two
connections. Indeed, the presence of the inhibitory input to the SI
neurons only affects the final learned synaptic strengths, al-
though the temporal profile of the SI firing rate can be overall
smaller (compare SI response in Figs. 3 and 5). Removing this
connection leaves the SI subpopulation with only its recurrent
excitatory connections, which is the original architecture used in
our previous efforts (Gavornik et al., 2009).

A final simplification can be made by comparing the net ex-
citatory and inhibitory input into each subpopulation. As noted
above, the inhibitory input is very similar in magnitude: 1, 1.34,
and 1.05; however, the total excitatory drive is highest for the SI
and P populations, 1.06 and 1.17, respectively, compared with
0.19 onto the SD neurons. Therefore, the net input on the SD
subpopulation is inhibitory; we will thus neglect the P-to-SD
connection. The final reduced network architecture is depicted in
Figure 4D.

A simplified network architecture can thus be derived from
the relative strengths of connections evolved by the RDE learning
rule. This simplified circuit will be referred to as the CNA. Figure
5 shows the result of a simulation of neurons using the CNA. In
this case, because the populations of neurons with specified re-
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sponse types have been predefined, there is no need for a broad
distribution of inhibitory projections and so those projections to
the P and SD subpopulations are now chosen from a narrow
distribution (i.e., as the one illustrated in Fig. 2A, inset). These
results show that the main response types (SI, SD, and P) ob-
served experimentally in rodents can arise from this CNA.

Figure 5A shows the trial-average response, and Figure 5B
shows a raster plot during one selected trial. In contrast to the
raster plot shown in Figure 3B, there are equal numbers of neu-
rons in each population because now the network architecture
has been specified rather than emerging naturally during
training.

Figure 5C shows the average population firing rate as a func-
tion of time during the course of one trial for four selected trials
during the training process. The different traces correspond to
the SI (black), P (red), SD (blue), and I (cyan) populations. The
horizontal black dashed lines indicate the value of reward (or
equivalently, the target firing rate) for the SI and P populations,
respectively. When the network is naive (Trial 1), the population
activity responds only to the feedforward drive from the stimulus
and then decays quickly as the stimulus ends. As the training
progresses (Trials 70-399), lateral connections between excit-
atory neurons (e.g., Lgg;) are strengthened, causing the firing
rate of SI neurons to extend for a longer duration due to rever-
berations between reciprocally connected neurons. This process
continues over many trials and stabilizes when the firing rate
reaches the target value at the time of reward (Trial 399) as in
Gavornik et al. (2009). Simultaneously, the inhibitory neurons
(cyan) also exhibit a sustained activity due to the feedforward
drive from the SI population. Their firing rate returns to baseline
earlier than that of the SI population because of the particular
value chosen for the parameter W,_g; (see next section) and the
time constant of inhibitory conductances.

While the inhibitory neurons are sufficiently active, they sup-
press the P neurons, causing them to become silent after the
stimulus offset. As the firing rate of these inhibitory neurons
decreases, the activity of the P neurons rises due to the excitatory
drive from SI neurons (Lp_g;). The height of the peak firing rate of
these neurons depends on the strength of their reciprocal connec-
tion Lp_p. At Trial 96, the SI population has nearly stabilized, but
the population of P neurons is still very active right after the
stimulus. By Trial 399, the population activity of the P neurons
after the stimulus has been completely silenced. During the inter-
mediate trials, the magnitude of L,_, is adjusted so that the firing
rate of P neurons matches the target firing rate represented by the
horizontal black dashed line. Once this target has been reached,
no further changes in synaptic strength occur (see Eq. 7).

Finally, Figure 5D shows the evolution over trials of the aver-
age synaptic weights Lg; g, Lp_p, and Lp_g;. The different traces
correspond to the average value of the synaptic weight associated
with a particular presynaptic and postsynaptic neuron connected
between the SI and P populations. Initially, all synaptic weights
increase rapidly. Once the SI population approaches its target
value at the reward time (which occurs between Trial 100 and
Trial 150), further adjustments to the synaptic weights progress
more gradually, slowing to converge to their final values. These
results show the interplay between the dynamics of the inhibitory
population and the dynamics of the excitatory drive from the SI
population that gives rise to the peak response. Similar results are
obtained when the network is trained to different target times.

Figure 6 shows a superposition of the trial-averaged popula-
tion firing rates corresponding to the three response types, SI
(black), SD (blue), and P (red), after training for different time
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Figure 6.  Core neural network trained to report different time intervals. The network of
neurons was first trained to report a 500 ms time interval after the stimulus offset. The trial-
averaged population firing rates are shown, corresponding to SI (black), SD (blue), and P (red)
responses. The network was then trained to report a 1000 ms time interval, using the same cue,
and starting from the previously learned synaptic weights. The firing rates corresponding to
these new reported times are shown in lighter colors. Finally, the network was trained to learn
a 1500 ms time interval, starting also from the network conditions corresponding to 500 ms.
These firing rates are plotted in a lighter shade. Black dotted line at 15 Hz indicates the target
value. Vertical blue bars represent the actual reward times used to train the network. Green bar
represents the duration of the stimulus.

intervals. Lighter shades represent longer times. Darker colors
represent the results of training to 500 ms. In this set of simula-
tions, the network was first trained to report this time, then train-
ing continued to report the 1000 and 1500 ms intervals, using as
initial conditions the learned synaptic weights corresponding to
the 500 ms interval. As can be observed here, as the expected
reward was further delayed, the firing rate profile of the SI pop-
ulation extended in time, which is reflected also in the increase of
the strength of the recurrent excitation. The median of the distri-
bution of synaptic strengths corresponding to Lg;_¢; went from
3.87 wS (at 500 ms), to 3.98 (at 1000 ms), to 4.05 (at 1500 ms),
whereas those corresponding to Lp_p and to Lp_g; were approxi-
mately the same for the three times (3.4, 3.4, 3.34 uS, and 3.07,
3.10, 3.06 wS, respectively). This further emphasizes the role
played by the SI population in driving the dynamics of the full
network, and thus could function as time keepers (see below).
The changes in Lg;_g; when the network trains from 500 to 1000
ms are larger than from 1000 to 1500 ms, which is in agreement
with the theoretical predictions made previously (Gavornik and
Shouval, 2011; their Fig. 5).

In summary, the simplified CNA, which is more amenable to
analysis, captures the main features of the trained NNA architec-
ture, reproduces the three response types observed experimen-
tally, and learns to report different time intervals. Therefore, in
addition to deepening an understanding of how distinct classes of
cellular dynamics are generated, the CNA can be used to (1)
investigate network robustness, (2) predict response behavior
under selective element perturbation, and (3) propose additional
capabilities, such as reporting the expected reward magnitude at
the expiry of the delay, as addressed in the following sections.

Robustness against variation in synaptic weights to and from
inhibitory neurons

The population of P neurons exhibits its characteristic response
(Fig. 5A) after training through changes in the excitatory weights
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Core neural architecture model exhibits robustness against changes in magnitude of static synaptic weights. Model network exhibits qualitatively similar responses for different values

of the strength of the projections from excitatory-to-inhibitory (W,_g,) and from inhibitory-to-excitatory populations (W,_,) (inset). Results show the converged solution to training for 1000 ms for
selected values of these synaptic weights (==20% of standard parameters). Black, red, and cyan traces represent the firing rate of SI, P, and | populations, respectively. 4, Response corresponding
to reference parameters that lead to Sl and P responses. B, €, Results obtained by varying W,_g, by 20% (B) and —20% (C). D, E, Results obtained by varying IW,_g by —20% (D) and 20% (E).

(Lp.g; and Lp_p), which are modified according to the RDE learn-
ingrule. The response of the P neurons, however, depends also on
the magnitude of the static synaptic weights connecting the ex-
citatory (SI neurons) to the inhibitory population (W_g;), and
connecting the inhibitory to the excitatory (P neurons) popula-
tion (Wp_;) (Fig. 7, diagram inset). Here we explore the depen-
dency of the P neurons response on these parameters. For this, we
reduce the CNA illustrated in Figure 4D by removing the SD
population, as we are interested only in the peak response, and
this population does not contribute to its dynamics in this con-
text. Furthermore, we remove the spontaneous activity of the
neurons necessary for observing the SD but not the P response.

The response of the resulting network model shows robust-
ness against variations of these parameters (W,_g; and Wp_;) as
clearly illustrated in Figure 7. Static weights were varied by
+20%, and in each case the network responded in a qualitatively
similar way in that it continued to terminate at the expected
delay. The parameters used in generating the firing rate traces
shown in Figure 7A are the same as those used in generating the
results in Figure 5.

Changes in W|_g; modify the response of the inhibitory popu-
lation by controlling the strength of the excitatory drive from SI
neurons, thus influencing the decay in firing rate for the P pop-
ulation after the end of the stimulus. As the magnitude of Wy _g;
decreases in the sequence B-A-C in Figure 7, the firing rate of the
inhibitory population decays faster to baseline (cyan trace). In

Figure 7C, this effect is more pronounced with the inhibitory
population, causing only a small dip in the P population firing
rate; however, one can still distinguish a broad peak response.
Clearly, Figure 7C lies close to the maximum decrease of Wy_
that would still produce peak responses.

Changes in W, control the strength of the inhibitory input
into the P population. In this case, changes by +£20% do not
exhibit significant qualitative changes in the response as the
amount of inhibitory strength is already large enough to produce
a noticeable reduction in the P neurons firing rate after the stim-
ulus. Significantly larger changes to these parameters still leave
the dynamics of the trained network qualitatively unchanged,
although the height of the peak firing rate response varies.

It is important to note that, although the neural dynamics are
robust to these variations, the final values of the plastic weights
(L;) in each case are different, showing how, through the RDE
rule, the system adjusts and compensates for different values of
Wi_gt and Wp,_. These results demonstrate that the RDE learning
rule robustly compensates for the changes in the static connec-
tions to obtain similar temporal dynamics.

Learning expected reward magnitude at the expected delay

In our previous model (Gavornik et al., 2009; Gavornik and
Shouval, 2011), we focused on the basic mechanism that could
explain how cued interval timing can arise in a recurrent excit-
atory network due to the arrival of reward using RDE as the
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Encoding and reporting expected reward magnitude by differential reward sensitivity of Sland P populations. All traces correspond to population firing rates obtained from the network

architecture shown in Figure 7 (inset). Black represents response of SI population. Red represents response of P population. The activity of the inhibitory population has been omitted for clarity. 4,
The sensitivity to the magnitude of the reward is uniform for neurons in the Sl and P populations. As the magnitude of the reward is increased from an equivalent target firing rate of 10 Hz (small
reward) to 40 Hz (medium reward) and to 50 Hz (large reward), the SI response becomes bistable and cannot follow these changes. B, If there is a differential reward sensitivity, with SI neurons
responding to a fixed equivalent target rate of 10 Hz, and P neurons to increases in reward magnitude, from 10 Hz (small reward) to 50 Hz (medium reward) and 70 Hz (large reward), then these
neurons are capable of encoding differencesin expected reward magnitude. In this case, the magnitude of the firing rate for the P population can surpass the limit of 50 Hz observed in 4 (black dashed

line).

learning rule describing synaptic changes. In that model, reward
magnitude was used to reflect the target firing rate that the SI
response should achieve at the time of the expected reward (see
Eq. 7), such that reaching this target firing rate prevented further
changes in synaptic weight. In this sense, this target firing rate was
arbitrary, and in that model it was chosen to be close to the
baseline firing rate in correspondence to the experimental obser-
vations (Figure 1).

However, this approach, which is also used in the present
model, poses a potential conflict in the sense that, if different
reinforcement signals scale with the reward magnitude, these sig-
nals would translate into different firing rate targets at the time of
reward, leading to responses that do not predict the reward delay.
Here we propose a mechanism to solve the problem of encoding
the delay and the magnitude of the expected reward.

In Figure 8A, we illustrate the problem that arises if both SI
and P neurons are equally sensitive to the reward magnitude.
Black and red traces represent the population firing rate repre-
senting SI and P responses, respectively. In these simulations, the
magnitude of the reward, as experienced by the SI and P popula-
tions, is the same, as reflected by the same target firing rate that is
indicated by the black dashed line. The different panels show
increasing reward magnitudes from an equivalent target value of
10 Hz (small reward) to 40 Hz (medium reward) to 50 Hz (large
reward).

As the magnitude of the reward increases, the network’s re-
sponse adjusts to match the new target values; however, in doing
s0, the SI neurons return to baseline several hundreds of millisec-
onds past the time of reward (see medium reward), whereas the P
neurons increase their peak response to match this new target
value. For a small reward, the P neuron firing rate crosses the
target value after the maximum has been reached; however, as the
magnitude of the reward increases, they cross the target level
before they reach the peak. This occurs because the firing rate of
the inhibitory population also decays later due to the feedforward
drive from SI neurons, delaying the rise in the response of the P
population.

When the size of the reward is further increased (large re-
ward), this overshooting continues until the network response
transitions into a new stable regimen that is characterized by a
continuous firing rate with no return to baseline. P neurons,
which are driven by the SI population, exhibit also a steady firing
rate. The response of the SI population is consistent with the
analysis shown previously (Gavornik and Shouval, 2011) in
which the SI population can operate in a bistable mode, where
one of the stable solutions corresponds to a steady, non-zero,
firing rate. In this sequence of simulations, it becomes clear that
the network loses its ability to represent the delayed reward.

In contrast to this situation, in Figure 8B we show results of
simulations where SI and P neurons have different sensitivity to
the reward magnitude. Here we assume that the SI population is
insensitive to changes in reward magnitude and its target firing
rate to be fixed at 10 Hz (which is indicated by the horizontal
black line), whereas the P population is sensitive to changes in
reward magnitude, reflected in the different target firing rate val-
ues from 10 (small reward), to 50 (medium), to 70 Hz (large). In
this case, the response of the P population is able to track the
increases in reward magnitude beyond the value of 50 Hz ob-
served in Figure 8A, where the bifurcation occurred, whereas the
SI responses remained unchanged.

These results suggest that, if ST and P neurons show this dif-
ferential sensitivity to the magnitude of the reward, then these
two populations of neurons might work together to signal not
only the delayed reward but also convey information about its
magnitude and the expiry of the expected delay. It is unclear at the
moment which biophysical mechanisms could be involved in
differentiating between these two populations of neurons.

Effects of perturbing inhibition

A central theme in this paper is the role played by inhibition in the
emergence of heterogeneous neuronal responses in a network
trained to represent reward timing using reinforcement learning.
Although increases in GABA concentration in the visual cortex
can have an influence in the perceived duration of subsecond
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Perturbations of the inhibitory population modify P responses in a trained network. 4, Results correspond to simulations showing the P response (black) after the network has been

trained to report a 1000 ms time interval for the network model in Figure 3. Orange and yellow traces represent the changes in P response after inactivating 20% of the inhibitory neurons during a
300 ms interval: (@), 100 ms after the stimulus offset; (b), during the last 300 ms before the arrival of the reward. In these simulations, the network is prevented from learning (i.e., n = 0in Eq. 7).
B, Changes in individual responses of P neurons in A. Panels represent the response of individual neurons in the P population after silencing the inhibitory neurons either after the stimulus offset (a)

or before the arrival of the reward (b) (compare Fig. 3().

intervals, as observed in humans (Terhune et al., 2014), it is alto-
gether unclear how inhibition might influence not only the re-
ported time, but the value of the reward. Specifically, there is no
experimental evidence of how changes in inhibitory activity
might modify the diverse types of single-neuron responses ob-
served (i.e., SI, P, and SD).

Here we explore the consequences of perturbing inhibition, in
a trained network, after the presentation of the cue. The purpose
is to assess the key role played by inhibition in the emergence of
the peak response. However, an overall decrease in inhibition, as
could be achieved by a bath application of a neuromodulator,
might not be a suitable manipulation of the network in this case.
The main reason is that the strength of the recurrent excitation,
obtained during training, also reflects the amount of inhibitory
strength acting on the excitatory neurons; thus, reducing inhibi-
tion globally without further training will lead to an epileptic state
in which neurons exhibit a sustained and permanent activity
without returning to baseline, similar to that shown in Figure 8A
for large reward (for a discussion, see also Gavornik et al., 2009;
Gavornik and Shouval, 2011). To avoid this, we simulated a more
subtle manipulation of silencing only 20% of the inhibitory neu-
rons. This was achieved by clamping their membrane potential to
a fixed voltage of —80 mV during a 300 ms interval. In these
simulations, we first hold constant the converged values of the
synaptic strengths, that is, we make the learning rate equal to zero
(m = 0in Eq. 7), to prevent further synaptic changes. The results
are presented in Figure 9.

In Figure 9A, the black trace represents the P response of the
network shown in Figure 3 after training to represent a 1000 ms
timing reward. The orange trace shows the changes in the P re-
sponse after silencing the inhibitory neurons 100 ms after the
stimulus offset (see orange line on top). This perturbation of
inhibition causes an immediate increase in the firing rate of the P
neurons eliminating the initial dip in activity observed after the
stimulus offset, clearly demonstrating that the P response is in
part due to the effect of a stronger inhibition. The increase in
activity is a consequence of breaking the balance between the
continuous excitatory drive from other excitatory units and the
reduction of the effectiveness of inhibition.

Another consequence of this perturbation is a broadening of
the P response. After the perturbation interval is over, the firing
rate does not immediately follow the course observed in the con-
trol case (black trace), but the activity returns to baseline later.
This broadening arises because SI neurons overshoot the target
time (data not shown) since they also receive now less inhibition
than during the control case, resulting in driving the P population
beyond the expected reward time. As a consequence of this over-
shooting, the network loses its predictive power to report the
learned interval time between stimulus and reward (compare Fig.
8, medium reward, although the mechanism here is different).

The effect of applying the perturbation of inhibition 700 ms
after the stimulus offset (yellow bar) is represented by Figure 9A
(yellow trace). This delay in the application of the perturbation
has no effect on the initial dip in activity seen before but still
causes an increase of firing rate which, as before, leads to an
overshooting and broadening of the P response.

Figure 9B shows examples of the firing rate of individual neu-
rons from the trained network (black) and compares them with
their responses after the described perturbation; columns (a) and
(b) show the cases of an early (orange) and late (yellow) silencing
of the inhibitory neurons, respectively. The neurons selected as
examples are the same as those presented in Figure 3C, the het-
erogeneous response of these neurons in each case. The effect of
the perturbation in these neurons is notably different; however,
one can clearly observe the initial increase in firing rate in the
early perturbations (a) and a significant broadening for the later
perturbation (b).

The above results indicate at least two direct effects of a reduc-
tion in inhibition: (1) the network will be unable to accurately
predict the timing of reward interval for which it was trained;
specifically, it will report a longer delay; and (2) if the P response
conveys information about magnitude of reward (as discussed in
the previous section), then it will report either a smaller magni-
tude if the perturbation occurs early (orange trace) or a higher
one if it occurs later (yellow trace). Therefore, if the timing en-
coded by this network (i.e., V1) informs downstream centers
controlling behavior, as recently suggested in rats (Namboodiri et
al., 2015), perturbation of the inhibitory signal, which might be
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implemented using optogenetic methods to target inhibitory in-
terneurons, will cause a delayed action and a reevaluation of the
expected reward.

Discussion

The ability to forecast the occurrence of an expected reward based
on prior predictive cues is important to the survival of animals
and humans. For this, the brain evolved strategies at the network
and synapse level to represent the duration of temporal intervals.
Alarge effort been placed in the medial prefrontal cortex (mPFC)
for its role, among others, in control of action timing (Narayanan
and Laubach, 2006, 2009; Singh and Eliasmith, 2006; Bekolay et
al., 2014) and during two-stimulus-interval discrimination tasks
(Machens etal., 2010), and in general theoretical models inspired
in reinforcement learning theories to account for its outcome
predicting capabilities (Alexander and Brown, 2011,2014). How-
ever, temporal representations are also expressed in primary
sensory cortices (Super et al., 2001; Moshitch et al., 2006); specif-
ically, neurons from the primary visual cortex (V1) in rodents can
become predictive of the expected time of a reward (Shuler and
Bear, 2006; Chubykin et al., 2013; Liu et al.,, 2015).

Previously, we presented a theoretical framework of how the
SIresponse could arise from potentiating synapses of lateral con-
nections (Gavornik et al., 2009; Gavornik and Shouval, 2011), via
an RDE of synaptic plasticity. Our model, in contrast to much of
the timing literature, is closely related to physiology; however, it
is not a detailed biophysical model, and some of its components
may not have complete experimental support. As in most work-
ing memory models (Wang, 1999; Wang et al., 2013), we use
relatively long excitatory time constants associated with NMDAR
type currents. Although this assumption makes our model
more robust, it is not fully experimentally justified. Specifi-
cally, the time constant of the synaptic conductances modified
by the reinforcement signal in our experimental system is cur-
rently unknown.

Our approach contains elements similar to those used in re-
inforcement learning models. For instance, changes in synaptic
strength are proportional to the magnitude of the synaptic eligi-
bility trace and the prediction error term (r, — BR; in Eq. 7). This
term compares the expected reward (here equated to the net-
work’s activity, R;) with the actual reward (r,) at the reward time.
However, it differs from temporal difference (TD) models like
those implemented, for example, for mPFC (e.g., Alexander and
Brown, 2014), where it is very difficult to formulate how different
variables are mapped onto a physiological process. Moreover, in
these models, a temporal representation is assumed and not
learned. Typically, a unique state vector is postulated at each time
step (Montague et al., 1996), but its meaning is less clear for a
neural system. Indeed, much work has been done to make TD
more biologically plausible. In the work surveyed by Gershman et
al. (2014), it is assumed that a whole set of temporal basis func-
tions exists in the brain, presumably residing in the striatum. In
contrast, in our formulation, there are no assumptions of preex-
isting basis functions; instead, the network learns the temporal
representations.

In our system, the main neuromodulator conveying the re-
warding signal is not dopamine but ACh (Wilson and Rolls, 1990;
Santos-Benitez etal., 1995; Chubykin etal., 2013). Althougha TD
model could in principle be implemented using ACh, as noted
above, it alone cannot account for the emergence of the types of
cortical dynamics explored here, unless two conditions are met as
follows: (1) the cholinergic signal represents a reward prediction
error; and (2) there exist temporal basis functions arising from
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other cortical areas that are used to learn these dynamics. How-
ever, because these dynamics can also be learned in slice, the
option of external basis functions is ruled out. Furthermore,
these temporal representations can be learned when the cholin-
ergic signal is activated externally, conveying reward and not pre-
diction error information. Thus, at least in V1, it seems that the
TD approach is inconsistent with existing experimental data, and
a direct comparison between our present approach and those
models is difficult and in general inappropriate.

Recordings in mPFC in rodents show that neurons have a
differential response during a trial based on whether the previous
one was rewarded or not (Narayanan and Laubach, 2006, 2009;
Bekolay et al., 2014), suggesting that this information is encoded
in their activity and serves to make corrections from previous
errors. In the experiments modeled here, animals were trained to
report the expected time of reward by rewarding only 50% of the
trials. Clearly, the reported activity of V1 neurons in probe trials
showed the same distinct time representation of the cue-reward
interval, suggesting that synaptic weights did not vary in unre-
warded trials. In our model, changes in synaptic weight would be
in the direction to correct any overshooting or undershooting of
the target time, thus adjusting for errors (data not shown).

A central finding of this paper is that the addition of feedback
inhibition, by itself, is insufficient to produce the variety of re-
sponses observed in the experiments. However, allowing a broad
distribution of inhibitory projection strengths, some being stron-
ger than the rest, the resulting network is then sufficient to pro-
duce heterogeneous responses as demonstrated in Figure 3,
mimicking the SI, SD, and P responses observed experimentally.
The presence of P responses seemed to require a stronger in-
hibitory influence, which these broad distributions provide.
This was demonstrated by silencing 20% of inhibitory units
early after the stimulus offset, which reduced significantly the
initial dip in firing rate seen in the control case, demonstrating
the role of the strong inhibitory input. Such manipulations
could be further explored experimentally using optogenetic
methods and silence interneurons at specific times and ob-
serve the effects on P responses.

The CNA, derived from the evolved network when combined
with the RDE learning rule, reproduces the three response types.
From it, we extract that SI neurons act as drivers of the rest of the
dynamics such that increases in the strength of the recurrent
excitation leads to longer reported times. The CNA shows robust-
ness against variations (=20%) in W,_g; and W;,_; that control the
strength of the inhibitory drive to the excitatory P neurons, illus-
trating also that the RDE learning rule is flexible. Although not
explored here, variations in the strength of connection between
the inhibitory to SI population (i.e., Wy ;) could impose new
boundaries to this parameter study. For instance, an increase in
Wy.; would produce a lower overall SI firing rate, which in turn
will be less effective in recruiting inhibitory neurons, thus making
the emergence of a peak response more difficult, without further
changes in either W_g; and Wy, .

The correlation between the strength of the recurrent excita-
tion in SI neurons and the reported time suggests that this pop-
ulation could be encoding only timing information, regardless of
reward magnitude. However, if SI and P neuronal populations
have different sensitivities to the reward magnitude (e.g., from
variations in the dynamic range for sensing the presence of neu-
romodulator), then they could convey different aspects of the
reward expectancy: expected reward delay and magnitude. As
illustrated here, if SI neurons are insensitive and if P neurons are
sensitive to the amount of reward received, then these popula-
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tions can separately provide for the timing and the amount of
reward expected. The differential sensitivity to the reward mag-
nitude might hint to a possible role for each response type (i.e.,
the network uses different populations of neurons to keep track
of “when” and “how much” reward is to be received). This would
be in contrast to the results obtained by Machens et al. (2010)
where the time information contained in the stimulus discrimi-
nation data recorded from mPFC is better explained by consid-
ering this to come from external sources and is not computed by
the network. In our model, on the other hand, the same network
would provide both the “when” and the “how much” through the
different neuronal responses. Perhaps the timing signal provided
to the mPFC arises from mechanisms similar to those presented
here.

In conclusion, we have shown how an elementary network
architecture of excitatory and inhibitory neurons with a broad
distribution of inhibitory strengths, combined with the RDE
learning rule, can give rise to a spontaneous breakup of the neu-
ronal activity into the main response types observed in rodent V1
neurons trained to report the expected time of reward. The model
exhibits robustness against variations in static synaptic strengths
and noise and thus shows flexibility in learning to report time.
Additionally, we propose that different neuronal responses could
also convey information on the magnitude of the rewarding sig-
nal and that differential sensitivity to reward magnitude might
playarole. Finally, we suggest that a reduction of inhibition could
lead to an overestimation of the reported time and thus could
lead to change in actions taken by the animal downstream (Nam-
boodiri et al., 2015). Together, these observations advance an
understanding of how simple connectivity and plasticity rules can
sculpt a network so that the network comes to report expected
reward magnitudes at their expected delays.
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