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Adaptation pathways of global 
wheat production: Importance of 
strategic adaptation to climate 
change
Akemi Tanaka1, Kiyoshi Takahashi1, Yuji Masutomi2, Naota Hanasaki3, Yasuaki Hijioka1, 
Hideo Shiogama3 & Yasuhiro Yamanaka4

Agricultural adaptation is necessary to reduce the negative impacts of climate change on crop yields 
and to maintain food production. However, few studies have assessed the course of adaptation 
along with the progress of climate change in each of the current major food producing countries. 
Adaptation pathways, which describe the temporal sequences of adaptations, are helpful for 
illustrating the timing and intensity of the adaptation required. Here we present adaptation 
pathways in the current major wheat-producing countries, based on sequential introduction of the 
minimum adaptation measures necessary to maintain current wheat yields through the 21st century. 
We considered two adaptation options: (i) expanding irrigation infrastructure; and (ii) switching crop 
varieties and developing new heat-tolerant varieties. We find that the adaptation pathways differ 
markedly among the countries. The adaptation pathways are sensitive to both the climate model 
uncertainty and natural variability of the climate system, and the degree of sensitivity differs among 
countries. Finally, the negative impacts of climate change could be moderated by implementing 
adaptations steadily according to forecasts of the necessary future adaptations, as compared to 
missing the appropriate timing to implement adaptations.

There are various options of agricultural adaptation to climate change. To reduce the negative impacts of 
climate change and obtain greater benefits, not only autonomous adaptations (e.g., shifting the planting 
date, switching crop varieties) but also planned adaptations that require substantial investment (e.g., 
development of new crop varieties, expanding irrigation infrastructure) are needed1,2. For example, the 
Canadian and U.S. governments have invested in research leading to many innovations in wheat vari-
eties3. From the viewpoint of international food security, it is important to identify which regions in 
the world are vulnerable to climate change and in need of such investment for adaptation. Analyses of 
climate risks in multiple regions of the world were conducted in response to this concern1. In addition, 
it is also important to consider how major food-producing countries should adapt to climate change in 
order to maintain the food supply to meet global food demand.

Recent studies have analyzed climate-change impacts and the benefits of adaptation on crop yields4. 
However, many of them assessed the situation while assuming that the adaptations are fully implemented 
or not implemented at all, especially at the global scale, and that adaptation is completed immediately. 
Few studies have assessed the course of adaptation along with the progress of climate change in each of 
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the current major food-producing countries. Information on the course of adaptation, which shows the 
timing and intensity of future adaptations, will be useful for adaptation planning. At least during the 
planning phase, adaptation steps should be regarded as irreversible so as not to spend funds in vain; and 
future adaptations must be forecast because substantial time is required from planning to the introduc-
tion and dissemination of an adaptation5. For example, a new crop variety usually takes between 8 and 
20 yr to deliver6.

An effective way to examine the timing and intensity of adaptations is to describe the temporal 
sequences of the adaptations. The concept of describing a sequence of adaptation options over time, 
termed “adaptation pathways,” was recently proposed7,8 and applied to assessing regional adaptation9,10. 
In the previous studies, the adaptation pathways showed potential sequences of actions under climate 
change and social changes in order to explore robust adaptive plans. Here, however, we focus on describ-
ing adaptation pathways by sequential implementation of the minimum necessary adaptation. The result-
ing pathways reveal the timing and intensity of adaptations required to meet the challenges of climate 
change.

In this study, we present nation-wise adaptation pathways for the global production of wheat, which is 
a staple crop worldwide. We developed adaptation pathways for the current major wheat-producing coun-
tries (China, India, the United States, Russia, France, Canada, Germany, Turkey, and Pakistan)11 from the 
2010 s (2011–2020) to 2090 s (2091–2100) based on sequential implementation of adaptation measures to 
maintain the levels of yield in the 1990 s (1991–2000). We employed multiple climate models to analyze 
the uncertainties of climate-change projections: MIROC-ESM12, MPI-ESM-LR13, and CSIRO-Mk3-6-014 
from the Coupled Model Intercomparison Project Phase 5 (CMIP5)15. We also used available model 
ensemble runs because the natural variability of the climate system is another source of uncertainty 
in addition to model uncertainty16,17; three runs each from MPI-ESM-LR and CSIRO-Mk3-6-0 were 
employed. We used all models and ensemble runs (i.e., 7 projections) for analyzing uncertainties arising 
from climate-change projections, and we primarily used MIROC-ESM in other analyses.

For MIROC-ESM, we used two extremely different radiative forcing scenarios of the Representative 
Concentration Pathways (RCPs): the RCP8.5 scenario18 and the RCP2.6 scenario19. The RCP8.5 scenario 
corresponds to the highest greenhouse gas emissions scenario, leading to the greatest increase in global 
mean temperature, whereas the RCP2.6 scenario corresponds to a mitigation scenario aiming to limit the 
increase in global mean temperature in the 21st century to 2 °C from the pre-industrial level. We used 
the RCP8.5 scenario throughout the analyses, and then used the RCP2.6 scenario for comparison. For 
the other models and ensemble runs, we used the RCP8.5 scenario.

We considered two adaptation options: (i) expanding irrigation infrastructure, with 13 intensity levels 
of adaptation (hereafter referred to as “adaptation levels”; see Methods); and (ii) switching crop varieties 
and developing new heat-tolerant varieties, with 6 adaptation levels. We estimated country-based yield 
for all combinations of adaptation option and adaptation level (hereafter referred to as “adaptation set”), 
and then developed adaptation pathways by implementing a stronger and minimum-necessary adapta-
tion set to avoid a yield decrease from that of the 1990 s (hereafter “current yield”) in each decade (see 
Methods). When examining planned adaptation, we assumed that adaptation levels are irreversible: once 
a certain level of adaptation is taken, then the lower adaptation levels cannot be used. For simplicity, we 
did not consider adaptation costs or socio-economic changes such as the change in demand, economic 
growth, and technological progress. In order to construct adaptive plans optimized for each country, 
region-specific adaptive capacity and criteria of decision-making need to be considered, which is beyond 
the scope of this study.

Results
Adaptation pathways to maintain current wheat yields.  Without adaptation (i.e., Level 0 both 
for irrigation and crop variety), wheat yields will fall below the current level in most countries in the 
21st century under the RCP8.5 scenario (Fig. 1a, Supplementary Fig. S2). This is common to all of the 
climate models and ensemble runs. We found that only a limited number of the adaptation sets could 
maintain wheat yield near the current level (yield change ≈  ±  10%); late implementation of adaptation 
leads to a large yield decrease, and early implementation leads to an unnecessary yield increase possibly 
linked with overinvestment (Fig. 1a).

When the minimum-necessary adaptation set (i.e., the adaptation set that is expected to attain the 
minimum increase in yield from the current yield) is implemented incrementally in each decade, the 
adaptation pathways under the RCP8.5 scenario of the MIROC-ESM projection result in the dark blue 
lines in Figs 1 and 2. These pathways indicate the time sequences of necessary adaptation, and they are 
also assumed to be the results of timely implementation of necessary adaptation; thus, we refer to these 
pathways as the “timely case.” Adaptation pathways in the timely case are quite different among the 
countries with regard to the amount and timing of adaptation required (Figs 1,2). In China and India 
stronger adaptations will be required over time, whereas in the United States and France, the adaptation 
needs to be implemented only in the earlier decades and could be kept constant later. The pathways in 
the United States and Russia could maintain yields near the current level just by switching to existing 
crop varieties (crop variety Level 1) and increasing the irrigated area ratio by 10% (irrigation Level 1). In 
contrast, both new heat-tolerant varieties (i.e., crop variety Levels 2 to 5) and increasing the irrigated area 
ratio by ≥  50% (i.e., irrigation Levels 5 to 12) will be required to maintain current yields in China, India, 
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Germany, and Pakistan (see Methods). In China, India, and Pakistan, crop land in which the current 
irrigated area ratio is relatively high ( >  ~50%) is widely distributed, such that the irrigated area ratio 
in the currently irrigated region may reach the upper limit (100%). Expansion of irrigation into current 
rain-fed crop lands (i.e., irrigation Levels 11 and 12) will be required in India and Pakistan (Figs 1,2). In 
Germany, most crop lands are rain-fed, but a substantial expansion of irrigation into the rain-fed areas 
will be required to maintain current yield (Fig. 2).

Adaptation pathways developed based on multiple climate-change projections.  In addition 
to using the MIROC-ESM model, we also developed adaptation pathways in the timely case under the 
RCP8.5 scenario with the other climate models and ensemble runs. Although at first glance the path-
ways appear quite different among the models and ensemble runs, we did find some common features 
in the selected options in several countries (Fig. 3, Supplementary Fig. S3): (i) changing crop varieties 
is preferable to expanding irrigation in Russia and Canada, whereas a large expansion of irrigation is 
chosen in France and Turkey without the development of new crop varieties; (ii) high adaptation levels 
for both irrigation and crop variety are required in India; (iii) all models and ensemble runs projected 
that the wheat yield will fall below the current level in Pakistan even if the highest levels of adaptation 
are implemented in the late 21st century; and (iv) in Germany, though the wheat yield can be maintained 
via the adaptation through the 21st century, except under the MIROC-ESM projection, most projections 
indicate that irrigation needs to be expanded into current rain-fed crop land (i.e., irrigation Levels 11 
and 12). (Note that because we assumed irrigation could be expanded into current rain-fed crop land 
only at irrigation Levels 11 and 12 [see Methods] and the maximum irrigated area ratio is limited [i.e., 
50% at Level 12], necessary adaptation levels might be high in those regions where most crop lands are 
rain-fed, as in Germany).

The timing of the adaptation varies widely among the models and ensemble runs in these simulations. 
With regard to the benefit of adaptation, there are large uncertainties arising from climate model uncer-
tainty and natural variability of the climate system (Supplementary Fig. S4), which leads to differences 
in the adaptation pathways among models and ensemble runs. For example, the attainable wheat yield 
for each adaptation level appears to be similar among the projections in India; but adaptation levels 
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Figure 1.  Adaptation pathways and yield change from the current level in the timely case and in the 
non-forecast case in China (CHN), India (IND), and the United States (USA) under the RCP8.5 scenario 
of the MIROC-ESM projection. (a), Time evolution of yield change for all adaptation sets (13 irrigation ×  6 
variety) and adaptation pathways. The thin black broken lines represent 0% change. (b), Adaptation 
pathways and yield change extracted from (a).
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Figure 2.  Adaptation pathways and yield change from the current level in the timely case and in the 
non-forecast case in Russia (RUS), France (FRA), Canada (CAN), Germany (GER), Turkey (TUR), and 
Pakistan (PAK) under the RCP8.5 scenario of the MIROC-ESM projection. 
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climate projections in Germany (GER), India (IND), and Pakistan (PAK) under the RCP8.5 scenario. 
The descriptions “run1”, “run2”, and “run3” correspond to r1i1p1, r2i1p1, and r3i1p1 of the CMIP5 
simulations, respectively.
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required to maintain the current wheat yield fluctuate due to natural variability, leading to differences in 
the adaptation pathways (Fig. 3). In Germany, both uncertainty caused by climate model and uncertainty 
caused by natural variability are quite large, leading to large differences both in adaptation pathways and 
in attainable wheat yields (Fig. 3).

Effects of adaptation strategies and emissions scenarios.  Because we considered multiple adap-
tation options (i.e., expansion of irrigation and crop variety alteration), multiple pathways of necessary 
adaptation could be described by prioritizing one of the adaptation options. In this section, we show 
effects of these adaptation prioritization strategies on the adaptation pathways, focusing on the results 
of MIROC-ESM. We also show the adaptation pathways under the different emissions scenario (i.e., the 
RCP2.6) based on the MIROC-ESM projection in the latter half of this section.

The timely case previously mentioned is a non-prioritization case: the adaptation set that achieves the 
minimum increase in yield from the current level is chosen regardless of the kind of adaptation option. 
If either irrigation or crop varieties is preferentially chosen (the prioritized cases; see Methods), the 
resulting adaptation pathways differ from the timely case (Fig. 4a, Supplementary Fig. S5). For example, 
in the United States and Russia, although a combination of switching to existing crop varieties and a 10% 
increase in irrigation could maintain the current yields (timely case), introduction of new heat-tolerant 
crop varieties will be required if irrigation is not expanded (prioritize variety case). The current yield 
will be maintained by the adaptation assumed in this study in the timely case and/or prioritized cases 
in all countries except Germany and Pakistan under the RCP8.5 scenario (note that the wheat yield in 
Germany is projected to be maintained by the other climate models and ensemble runs; see the previous 
section). However, the adaptation pathways include a large expansion of irrigation or development of 
new-heat tolerant varieties in some cases, and the timing of the required adaptation varies with the pri-
oritization of the adaptation options. Decision-makers have to examine adaptations by considering the 
country-specific adaptive capacity or strategy.

The necessary adaptation levels tend to be lower under the RCP2.6 scenario than under the RCP8.5 
scenario, except in the United States and France (Fig. 4b, Supplementary Fig. S6). In Russia and Canada, 
the adaptation levels are lower and the timing of implementing adaptation is later than under the RCP8.5 
scenario. In China, the yields could be maintained at the current level by switching to existing crop 
varieties and expanding the irrigated area ratio; the development of new varieties that is required under 
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Figure 4.  Adaptation levels of irrigation and crop variety for each decade from the 2010s to 2090 s 
(adaptation pathways) in three cases (timely, prioritize irrigation, and prioritize variety cases) under 
the MIROC-ESM projection. The countries shown are China (CHN), the United States (USA), and 
Germany (GER). The numerals within graphs indicate decades in the 21st century when the adaptation set 
is implemented (e.g., “10 s” represents the 2010 s). (a), Under the RCP8.5 scenario. (b), Under the RCP2.6 
scenario.
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the RCP8.5 scenario may not be necessary under the RCP2.6 scenario. Unlike the RCP8.5 scenario, 
the yields could be maintained in Germany and Pakistan under the RCP2.6 scenario. If irrigation is 
expanded into current rain-fed crop lands (i.e., irrigation Levels 11 and 12) in Germany, the yield could 
be maintained just by switching to the existing crop varieties. In Pakistan, although new varieties (i.e., 
crop variety Levels 2 to 5) will be needed even if irrigation is expanded into currently rain-fed crop 
lands, the likelihood of maintaining the current yield by adaptation would be higher under the RCP2.6 
scenario than under the RCP8.5 scenario. In these countries, future climate change will be particularly 
important for adaptation planning. In other words, climate mitigation policy matters more there. In the 
United States and France, the adaptation levels are not necessarily lower under the RCP2.6 scenario than 
under the RCP8.5 scenario. The possible reasons are that under the RCP2.6 scenario either a high level 
of irrigation or a high level of crop variety is selected in the early decades instead of a combination of 
adaptation options, and water stress would be higher under the RCP2.6 scenario than under the RCP8.5 
scenario in several decades.

Consideration of step-by-step adaptation pathways.  Thus far we have developed adaptation 
pathways to maintain current yields as the timely case and prioritized cases, and we have discussed the 
effects of climate-change uncertainties, adaptation strategies, and emissions scenarios on the adaptation 
pathways. Here we look at them from the viewpoint of performing a series of adaptation processes. In 
the cases examined above, we assumed that a large amount of adaptation could be promptly implemented 
within a decade. However, we must consider the feasible rate of adaptation, because planned adaptation 
requires both significant investment and substantial time to be developed. We should also consider the 
lead time to implement an adaptation, which means the time lag between the planning and the imple-
mentation of adaptation. Here we consider step-by-step adaptation pathways, which are those described 
by gradual implementation of the adaptation and considering a lead time to implement an adaptation. 
In this case, full adaptation would not be achieved immediately under an abrupt climate change, such 
that adaptation forecasts will become important. In the following, we discuss the advantage of forecasting 
necessary adaptations.

If no forecast is conducted (i.e., adaptation to be implemented in the next decade is determined by the 
yield change in the current decade) and the amount of adaptation implemented is limited to one level per 
decade each for irrigation and crop variety, the adaptation pathways without prioritization result in the 
red dashed lines in Figs 1 and 2 (referred to as “Non-forecast” in the figures), under the MIROC-ESM 
projection. In India, Germany, and Pakistan, in which a large amount of adaptation (multiple increments 
of levels) is required over a short period in the timely case, a substantial yield decrease occurs in the 
non-forecast case; the negative impact of not forecasting is remarkable. However, the decreases in yield 
could be moderated if forecasts of 10 yr ahead were conducted (see Methods), even if the amount of 
adaptation implemented is limited (Fig. 5; 10-yr-forecast case). If a forecast to 20 yr ahead is available, 
further yield decreases may be moderated. In India, forecasting to 20 yr ahead could achieve a yield 
comparable to that in the timely case without implementing a high level of adaptation in a short period 
(Fig. 5; 20-yr-forecast case).

The efficacy of forecast is obvious in all nine countries and in all models and ensemble runs (Fig. 6). 
In China and Canada, the 10-yr-forecast case is nearly equal to the timely case in the multi-projection 
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average of accumulated yield decrease during the 21st century (the 2010 s to 2090 s); the yield decrease 
from the current level could be avoided by forecasting 10 yr ahead. Even in India and Pakistan, the yield 
decrease could be moderated by forecasts. Therefore, forecasting the adaptation necessary in the future is 
important to achieve the benefit of the adaptation; in other words, the negative impacts of climate change 
could be moderated by implementing adaptations steadily according to forecasts of the necessary future 
adaptations, as compared to missing the appropriate timing to implement adaptations.

Toward future research.  In this study, we developed adaptation pathways in the current major 
wheat-producing countries, based on sequential introduction of the minimum adaptation measures 
necessary to maintain current wheat yields through the 21st century. The adaptation pathways revealed 
that the timing and intensity of adaptations required differs markedly among countries. The adaptation 
pathways are sensitive to both climate model uncertainty and natural variability of the climate system, 
and the degree of sensitivity differs among countries. In addition, we showed that forecasts of necessary 
adaptations are important to achieve the benefit of the adaptation pathways. Here we discuss several 
issues that must be considered to improve the approach proposed and adopted in this study, as well as 
the robustness of the results.

First, analyses synthesizing multiple climate projections will be required. Although we employed mul-
tiple climate models and ensemble runs to show the impacts of their uncertainties on the adaptation 
pathways, we need both more projections and more comprehensive analyses to identify robust adaptation 
pathways that can overcome the uncertainties.

Second, the availability and accessibility of adaptation levels assumed in this study include uncertain-
ties. For example, the pathways in this study indicate when new crop varieties are required in addition 
to the existing crop varieties; however, it is uncertain whether the assumed new varieties will become a 
reality. Regarding irrigation, in the adaptation levels we included a large expansion of irrigation that may 
not be adopted due to economic limitations. The assumptions underlying the selectable adaptation levels 
need to be refined based on further empirical evidence.

Third, under the given adaptation sets we assumed that farmers are always able to attain the highest 
yield by optimizing planting dates and wheat varieties. However, the rate at which farmers will adapt is 
uncertain20. Better representation of farmers’ decision-making will be needed for more in-depth analy-
ses. With respect to the effect of climate change on crop yield, we did not consider the impacts of pests 
and diseases (we considered only their indirect impacts by assuming that the risk of pests and diseases 
varies with the length of the growing period). Because pests and diseases affect crop yield and need to 
be adapted to, more precise analyses will be needed regarding this point.

Fourth, we also assumed that maintaining the current yield will be the target in the future as well, but 
the amount of yield required would vary with changes in socio-economic conditions (e.g., global food 
production necessary in 2050 is projected to be 60% higher than that of 2005/200721). If an increase in 
the demand for food is expected due to population increase, for example, the adaptation pathways in 
this study may be insufficient. In addition, we accounted for neither adaptation costs nor technological 
progress in wheat production. Linkage with socio-economic projections will enable us to analyze adap-
tation pathways more comprehensively.

Although there is certainly room for improvement, this study is a useful first step in quantifying the 
temporal dimension of adaptation for global food production. Further research will enable us to develop 
more robust adaptation pathways, which would provide useful information for adaptation planning in 
each country.

Methods
Model and definition of adaptation levels.  We calculated wheat yield with the M-GAEZ crop 
model22. In this model, yield for each grid is determined not only by biophysical conditions including 
climate (1° ×  1°) but also by management conditions including water management (rain-fed or irrigated) 
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and input level, which is a collective indicator incorporating factors that affect yield (e.g., fertilization 
level, technological development level)22. The input climatic variables are monthly mean temperature 
(°C), precipitation (mm/day), solar radiation (W/m2), wind speed (m/s), and diurnal temperature range 
(°C). The spatial resolution of final output yield is 2.5′ ×  2.5′. To develop adaptation pathways, we aggre-
gated grid-based yield into country-based yield.

The M-GAEZ model calculates wheat biomass based on the climatic variables, and it calculates wheat 
yield by imposing several constraints (e.g., a moisture constraint) and the harvest index on the biomass. 
The model also calculates the growing period of wheat based on the variety-specific growth cycle and 
climatic conditions, and judges whether the crop is able to grow or not based on the temperature profile 
in the grid cell during the growing period. In the M-GAEZ model, crops are assumed to be free from 
water stress when irrigation is applied; the negative impacts of a moisture deficit (related to evapotran-
spiration) can be fully avoided. (See Fischer et al.23 for further information of the model calculation.) 
Therefore, expanding the irrigated area as an adaptation has the potential to moderate a yield decrease. In 
addition, because the growth characteristics and suitable temperature profile differ among crop varieties, 
increasing the number of selectable varieties as an adaptation will increase the likelihood of attaining a 
higher yield.

At irrigation Level 0 (corresponding to no adaptation), the irrigated area is maintained as it is at 
present. To set irrigation from Levels 1 to 10, we increased the irrigated area ratio by 10% per adaptation 
level for crop lands where the present irrigated ratio is above zero. For Levels 11 and 12, in addition to 
increasing the ratio by 100% for crop lands where present irrigated ratio is above zero, we increased the 
ratio by 20% (for Level 11) and 50% (for Level 12) for presently non-irrigated crop lands (Supplementary 
Table S1).

The M-GAEZ model originally had 16 varieties of wheat, which are classified into four major cul-
tivars (winter wheat, spring wheat, wheat in subtropics, and wheat in tropics), each of which has four 
minor varieties that differ in growth period. At variety Level 0, only four minor varieties of the current 
optimal cultivar (defined as the major cultivar that most frequently produced the highest yield from 
1991 to 2000) are selectable to obtain the highest yield. At variety Level 1, all the 16 original varieties 
are selectable. To assume new heat-tolerant varieties, we conducted a sensitivity analysis by relaxing the 
limitations of high temperatures for the 16 varieties. From Levels 2 to 5, a set of 16 new varieties become 
selectable when the level rises to the next one. We removed the limitations of high temperatures at Level 
5 (Supplementary Table S1); wheat is assumed to be free from the limitations of high temperatures within 
the suitable climatic zones. For all the calculations, the planting date was variable to produce the highest 
yield under the given adaptation set. The effect of CO2 fertilization was taken into account by applying 
multipliers to the yield according to the mean atmospheric CO2 concentration in each decade, in a way 
similar to Masutomi et al.22. (Note that the extent of the CO2 fertilization effect has large uncertainties.)

Analyzed cases.  In the timely case, the adaptation set that has the minimum yield change from 
the current level is chosen in each decade from among the adaptation sets in which yield change is 
maintained at or above zero. In case there are only adaptation sets in which the yield change is below 
zero, the set that minimizes the yield decrease from the current level is chosen. The prioritized cases 
(prioritize irrigation case and prioritize variety case) are the same as the timely case except that the 
prioritized adaptation option continues to be chosen until the yield changes at any adaptation levels fall 
below zero, while the level of the other option is fixed. If the yield changes at any levels are below zero, 
then the other option rises by one level, and the process is repeated. In case there are only adaptation 
sets in which the yield change is below zero, the set that minimizes the yield decrease from the current 
level is chosen regardless of the options. In the forecast cases (non-forecast case, 10-yr-forecast case, and 
20-yr-forecast case), we assumed that the lead time to introduce an adaptation after planning is 10 yr. In 
the non-forecast case, the adaptation set required in a decade is implemented in the next decade, because 
the adaptation starts to be developed in the current decade. In the 10-yr-forecast case, the adaptation 
set required in the next decade is forecast (and starts to be developed) and is implemented in the next 
decade. In the 20-yr-forecast case, the adaptation set required in the two decades ahead is forecast (and 
starts to be developed) and is implemented in the next decade. Even though implementation of adapta-
tion is not necessary two decades ahead, the adaptation set is implemented if it is required in the next 
decade. The non-forecast case, 10-yr-forecast case, and 20-yr-forecast case are limited in the amount of 
adaptation implemented to one level per decade. The assumed cases mentioned above are summarized 
in Supplementary Table S2. We show the conceptual diagram for the forecast cases in Supplementary 
Fig. S7.

Data.  Throughout the analyses, crop land area was fixed at the current condition24. The current irri-
gated area was based on MIRCA200025. The calculation period was each decade (mean climate for 10 
yr) for the present (1991–2000) and from the 2010 s (2011–2020) to 2090 s (2091–2100). We used three 
climate models: MIROC-ESM, MPI-ESM-LR, and CSIRO-Mk3-6-0, and we also employed three ensem-
ble runs each of MPI-ESM-LR and CSIRO-Mk3-6-0. For MIROC-ESM, we used the projection under 
the RCP8.5 and RCP2.6 scenarios. For the other models and ensemble runs, we used the RCP8.5 sce-
nario. The climate scenarios were downscaled to 1.0° ×  1.0° gridded data by linear interpolation and 
used after bias correction with data derived from the Climate Research Unit26,27. The overall framework 
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of developing pathways is presented in Supplementary Fig. S1. We assessed adaptation pathways for the 
top nine wheat-producing countries between 1991 and 201011.
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