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Abstract Recent experimental studies have revealed that

up and down transitions exist in membrane potential of

neurons. This paper focuses on the neurodynamical

research of these transitions in a single neuron since it is

the basic to study the transitions in the neural network for

further work. The results show there exists two stable

levels in the neuron called up and down states. And tran-

sitions between these two states are bidirectional or uni-

directional with the values of parameters changing. We

also study the periodic spontaneous activity of the transi-

tions between up and down states without any inputting

stimulus which coheres with the experimental results.

Keywords Up and down transition � Bistability �
Spontaneous activity � Ion channel model

Introduction

Different behavioral states of the animal are characterized

by distinct patterns of global brain activity (Cheng-yu et al.

2009). Neural electrophysiology experiments show that

during slow-wave sleep in the primary visual cortex of

anesthetized animals (Anderson et al. 2000; Lampl et al.

1999; Steriade et al. 1993) and during quiet wakefulness in

the somatosensory cortex of unanesthetized animals (Pet-

ersen et al. 2003), the membrane potentials make

spontaneous transitions between two different levels called

up and down states (Parga and Abbott 2007).

A hallmark of this subthreshold activity is a bimodal

distribution of the membrane potential, with peaks at the

mean potentials of depolarized and hyperpolarized states.

Transitions between up and down states can also been

evoked by sensory stimulation (Anderson et al. 2000;

Petersen et al. 2003; Haider et al. 2007; Sachdev et al.

2004). Interestingly, patterns of sensory evoked activity are

similar to those produced spontaneously. Studies in rats

and cats report another interesting feature, the response to

the stimulus depends on the state of the spontaneous fluc-

tuations (Petersen et al. 2003). The effect appears to be

dependent; in rats, if a sensory stimulus is applied when the

recorded neuron is in a down state, responses are stronger

than if it is applied during an up state (Petersen et al. 2003;

Sachdev et al. 2004). In contrast, in cats, the stronger

response occurs during the up state (Haider et al. 2007).

Why these transitions occur and whether this sponta-

neous activity engages in brain functions or not still

remains unclear. In fact, we know little about expressions

of neuron membrane potentials and interactions between

neural networks, especially the relationship between neural

coding modes and cognitive behaviors. So according to the

view of reductionism, we start our research on up and down

transitions from one single neuron, which is undoubtedly

an effective method and the first step to study the mecha-

nism of neural information processing. On the other hand,

due to the limited technical means of the electrophysiology

experiments, it is hard to record the data of large neural

clusters in the same time. However, data of one single

neuron is easy to be measured. So, obviously, figuring out

the dynamics of a single neural up and down transitions is a

basic for us to learn network activities and cognitive

behavior.
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Recent findings show that activation of a single cortical

neuron can significantly modulate sensory perception and

motor outputs (Brecht et al. 2004; Houweling and Brecht

2007; Cheng-yu et al. 2009). Furthermore, repetitive high-

frequency burst spiking of a single rat cortical neuron could

trigger a switch between the cortical states resembling

slow-wave and rapid-eye-movement sleep (Cheng-yu et al.

2009). This is reflected in neural activity of the stimulated

neuron changing from high frequency and low amplitude

oscillations to low frequency and high amplitude ones or

vice versa. At the same time, cortical local field potential

(LFP) changes over time. Local field potential (LFP) is

always used to describe the state of the whole cortex

(Wang et al. 2009, 2008; Wang and Zhang 2007; Liu et al.

2010). Therefore, the up and down states of single neuron

reflect distinct global cortical states, which resemble slow-

wave and rapid-eye-movement sleep, respectively (Cheng-

yu et al. 2009; Steriade et al. 1993; Destexhe et al. 1999;

Gervasoni et al. 2004). All of these results point to the

power of single cortical neurons in modulating the

behavior state of animals (Cheng-yu et al. 2009).

This paper will report three characteristics, bistability,

directivity and spontaneity, of up and down transitions,

using the dynamical model of one single neuron. Bistability

is regarded as key in understanding basic phenomena of

cellular functioning. The importance of bistability and the

related up and down transitions has been emphasized in

different fields of research (Zheng and Zhang 2013; Araki

2013; Jia and Huaguang 2012; Njap et al. 2012), including

spatial coherence resonance (Perc 2005, 2006; Perc and

Marhl 2006). The insights have also been applied to bio-

chemical (Gosak et al. 2007) and calcium (Perc et al.

2007).

Biophysical model

The single neural dynamic model based on H–H equations.

H–H model is considered as an example to explain the

ionic mechanisms underlying the initiation and propagation

of action potential. Many other papers have considered the

dynamics of H–H model in various aspects, including

channel noise (Sun et al. 2011), spike latency (Ozer et al.

2009), spatial coherence (Sun et al. 2008), stochastic res-

onance (Ozer et al. 2009 et al).

In this paper, this dynamic model (Loewenstein et al.

2005) consists of the following three ionic currents: an

instantaneous, inward current (sodium current), a slow h-

like current, an outward current (a potassium current and a

leak current). According to the numerical simulation of this

models, we obtained results of up and down transitions and

gave the analysis in view of ionic movement. Fortunately,

some of the results are similar to ones observed in

electrophysiology experiments. The current equation for

the model is:

C
dV

dt
¼ �ðINa þ Ih þ IK þ Il þ IstimÞ: ð1Þ

where,

INa ¼ gNam1ðV � VNaÞ; ð2Þ

Ih ¼ ghhðV � VhÞ; ð3Þ

IK ¼ gKbðV � VKÞ; ð4Þ

Il ¼ glðV � VlÞ: ð5Þ

where, m1 ¼ ð1þ exp�
V�Tm

rm Þ�1
.

Two types of persistent inward, persistent sodium and

persistent calcium, have been characterized in Purkinje

cells (Llinas and Sugimori 1980, 1980). Somatic Purkinje

cell bistability has been associated with persistent sodium

(Llinas and Sugimori 1980) whereas dendritic bistablity

has been shown to result from persistent calcium conduc-

tance (Llinas and Sugimori 1980). Here we use persistent

sodium in our model for simplicity but it is likely that it is

the combination of these two currents that enables the bi-

stablity (Loewenstein et al. 2005).

There are two dynamic variables: membrane potential

and inactivation term of the h-current, when we discuss the

bistability and directivity. But when study on the sponta-

neity, we add another variable called the inactivation term

of potassium current to the model. They are called two-

dimension-model and three-dimension-model, respec-

tively. The dynamics of the inactivation terms of h-current

and potassium current are:

dh

dt
¼ h1 � h

sh

; ð6Þ

db

dt
¼ b1 � b

sb

; ð7Þ

where, h1 ¼ ð1þ exp
V�Th

rh Þ�1
, sh ¼ 1

aþb, a ¼ aaVþba

1�exp
�Vþba=aa

ka

,

b¼ abVþbb

1�exp
�

Vþbb=ab
kb

, b1¼ð1þexp
�V�Tb

rb Þ�1
, sb¼s0

b�sechðV�Tb

4rb
Þ.

In these equations, V represents membrane potential of

the neuron, while INa; Ih; IK ; Il replace a sodium current, a

slow h-like current, a potassium current and a leak current,

respectively. Similarly gNa; gh; gK ; gl respectively represent

the sodium conductance, the slow h-like conductance, the

potassium conductance and the leak conductance, and

VNa;Vh;VK ;Vl are the corresponding reversal potentials.

The inactivation terms of the sodium current, the h-like

current, the potassium current are described by m1; h1; b1
and dynamic variables h and b, with the time constant sh; sb.

And Tm; rm; Th; rh, Tb; rb; aa; ba; ka; ab; bb; kb are constants.

The values of these parameters are showed in Table 1.
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Results

Bistability

Transitions between up and down states can be induced by

two different kinds of stimuli. One is to add brief outward

current pulses, another is to improve the sodium conduc-

tance to a certain value instantaneously.

Figure 1 (with two-dimension-model, b = 1) presents a

brief outward input current 0.1s, 7.2 l A/cm2 which is

added every two seconds (top) and the up (about -45 mV)

and down (about -65 mV) transitions of the membrane

potential provoked by the input stimulation (bottom).

Figure 2 (with two-dimension-model, b = 1) shows a

stimulation which increases the sodium conductance from

0.06 to 1.2 mS/cm2 instantaneously (top) and the up (about

-45 mV) and down (about -65 mV) transitions of the

membrane potential triggered by this kind of stimulation

(bottom). These transitions are a little bit complex: the

membrane potential rises up over 0 mV instantaneously but

then drops quickly. In fact, here are the action potentials.

So from above two results, we find that this dynamic

model can describe the bistalility of the up and down

transitions of neural membrane potential. That means there

are two stable states for membrane potential. The neuron

can stay at any one of the two without input. When the

neuron is stimulated, which destroys its original stability, it

can switch its state from one to another to adjust itself to a

new balance. These two states are called up state and down

state respectively. That is to say, the up and down transi-

tions can be modulated by external stimulations.

The ionic movement in and out of the membrane may be

the mechanism of the transitions. In the situation of Fig. 2,

when sodium conductance increases to a certain level, it

causes slight depolarization, activating the sodium channel

with sodium ions moving into cells, which increases

membrane potential over than the threshold, leading to

much more sodium ions moving into cells. When the

Table 1 Values of the constants

Constant Values Unit

C 1 lF/cm2

gNa 0:06 ms/cm2

VNa 55 mV

Tm �53:8 mV

rm 3 mV

gh 0:2 ms/cm2

Vh �30 mV

Th �76:4 mV

rh 20 mV

aa �2:89 /(mV s)

ba �445 /s

ka 24:02 mV

ab 27:1 /(mV s)

bb �1024 /s

kb �17:4 mV

VK �85 mV

Tb �54 mV

rb 5 mV

s0
b

3000 ms

gl 0:1 ms/cm2

Vl �70 mV
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membrane potential arrives to the peak value, the sodium

channel is inactivated. While the potassium ions flow out

of the cells, which leads to repolarization of the membrane

potential. Then the repolarization activates the h-like

channel, which involves the sodium and potassium ions

going through, leading to sodium ions moving into cells. At

the same time, potassium ions continue moving out of the

cells, a new balance between the outflow of potassium and

the inflow of sodium begins.

In another situation of Fig. 1, when we add outward

current pulses, a kind of hyperpolarized stimulus, the h-like

channel is activated, accompanying with sodium ions

moving into cells. The slight depolarization is too small to

trigger an action potential, so that the moving in and out

ions get into balance with the membrane potential belows

threshed. So the membrane potential stays in a stable state.

However, if we add a little depolarized stimulus to the cell

in down state, there’s only parts of the sodium channels

opening up with little sodium ions moving into cells. Also with

the moving out of the potassium ions, membrane potential

stays in an up stable state under the threshold. But from the up

state, the little depolarized input is not enough to induce an

action potential, so the membrane potential just returns back to

up state after the movement of ions. As a result, bistability

absents in this case. So as the case of large depolarized input.

There will be action potential, but no phenomenon of bista-

bility. In short, there is no bistability under the depolarized

stimuli, whether the level of depolarization is little or much.

Directivity

In the given model, directivity of the transition is modu-

lated by potassium conductance. Figures 3, 4 and 5 (with

two-dimension-model, b = 1) present different transition

modes adjusted by different values of potassium conduc-

tance. The tops of these three figures are membrane

potential V , while the bottoms are phase planes for the two

dynamic variables h and V in the model. The line (red,

solid) shows all the points that _h ¼ 0, another line (blue, ?)

shows all the points that _V ¼ 0, and the intersection of

these two lines is stable point of the system. In other words,

the two points marked by black circles are stable points,

and other points in the plane are unstable. That means, the

system will stay in any one of the two stable points after a

long run. The green solid line in the figure presents the

transition process from one stable point to another.

Figure 3 shows that when gK ¼ 0:1 mS/cm2, membrane

potential can transit from the down state to the up state by

adding a stimulation that increases sodium conductance

instantaneously. With the same stimulation, it also can

transit from the up state to the down state. So the transi-

tions are bidirectional on condition that gK ¼ 0:1 mS/cm2.

The h� V phase plane further shows that the system

transmits between the two stable states.

We can observe other phenomena by making some

changes on the potassium conductance.

Figure 4 presents that when gK ¼ 0:09 mS/cm2, mem-

brane potential can transit from the down state to the up

state by adding a stimulation that increases sodium con-

ductance instantaneously. But with the same stimulation,

the membrane potential always stays in the up state without

any change. In other words, the transitions are unidirec-

tional from the down state to the up state in the
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Fig. 3 Membrane potential V and h� V phase plane when gK ¼ 0:1
mS/cm2. (Color figure online)
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Fig. 4 Membrane potential V and h� V phase plane when gK ¼ 0:09

mS/cm2. (Color figure online)
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circumstance that gK ¼ 0:09 mS/cm2. The h� V phase

plane also shows that the system can only vary from the

lower membrane potential stable point to higher one and

then move around the higher one periodically.

Figure 5 reveals that when gK ¼ 0:105 mS/cm2, mem-

brane potential can transit from the up state to the down

state by adding a stimulation that increases sodium con-

ductance instantaneously. However, with the same stimu-

lation, the membrane potential always stays in the down

state without any change. In other words, the transitions are

unidirectional from the up state to the down state under the

circumstance that gK ¼ 0:105 mS/cm2. The h� V phase

plane also presents that the system can only vary from the

higher membrane potential stable point to lower one and

then move around the lower one periodically.

The above three results reveal that this dynamic model

can describe the bidirectional or unidirectional character-

istic of up and down transitions of neural membrane

potential. That means the transitions can be both directions

from the up state to the down one, and vice verse. Obvi-

ously, the transitions may be single direction from the up

state to the down one, or only another direction from the

down state to the up one.

To explain the mechanism of the bidirectional or uni-

directional characteristic, we introduce the ionic movement

again. When the level of potassium conductance is in an

appropriate range, the case is the same as we illustrated in

the bistability before.

When we improve the sodium conductance to induce the

transitions, in the repolarization period, if the potassium

channels are opened too less, there is less potassium ions

flowing out. At the same time, the sodium ions move

through the h-like channels into the cells. So there will be

quick balance just after a little level of repolarization. So

the stable state is always in the high membrane potential.

On the contrary, if the potassium channels are opened

too much in the repolarization period, which means too

much potassium ions flow out of the cells, there should be

much more extent of the repolarization to stay at stable

point. So the membrane potential is more likely to stabilize

at down state.

Spontaneity

External stimulations are necessary when we discuss bi-

stability and directivity of the up and down transition. Can

the neuron still do transitions without any input? In fact,

both in vivo and in vitro recordings indicate that neuronal

membrane potentials can make spontaneous transitions

distinct between up and down states (Parga and Abbott

2007). Therefore, we need further investigation in the

spontaneity of the given model.

We add a new dynamic variable namely the inactivation

term of potassium current to the given model since the

former given model with only two dynamic variables is too

simple for us to study spontaneity.

The calculation results are shown in Fig. 6. The top one

shows that membrane potential presents spontaneous

periodic transitions without any external stimulation. And

the bottom one is the distribution of membrane potential,

from which we can also find that the membrane potential

almost stays in one of the up state and down state.

Then we add a stimulation which increases the sodium

conductance from 0.06 to 1.2 mS/cm2 instantaneously to

this three-dynamic-variable model. The results are showed

in Figs. 7 and 8.

Figure 7 indicates that in the presence of synaptic input

(top, increases the sodium conductance from 0.06 to 1.2

mS/cm2 instantaneously), the membrane potential transi-

tions are more complex than before. Although most state

transitions are triggered by synaptic input (green arrows), a

minority of the transitions occur spontaneously (black

arrows) and a minority of complex spikes in one state do

not trigger a transition to another state (red arrows). This is

due to the neuron that can do spontaneous transitions itself

has own stability. The external inputs destroy this stability,

so the neuron will make corresponding adjustment imme-

diately, transmitting to another stable state or coming back

to original stable state. An interesting phenomenon is that

the neuron in the down state is more likely but not abso-

lutely to be triggered by synaptic input than in the up state.

Figure 8 exhibits bimodal distribution of the membrane

potential, which also reflects the bistability.
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Fig. 5 Membrane potential V and h� V phase plane when gK ¼
0:105 mS/cm2. (Color figure online)
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Above results indicate that the three-dynamic-variable

model can describe periodic spontaneous transitions

between the up and down states in the absence of synaptic

input. And in this case, the fact that the neuron responses to

stimulation has a certain relationship with which state the

neuron stays. If a stimulus is applied when the neuron is in

a down state, responses are stronger than if it is applied

during an up state, as observed in experiments (Petersen

et al. 2003; Sachdev et al. 2004).

Conclusion

This paper indicates three characteristics, bistability,

directivity and spontaneity, of up and down transitions,

using the dynamical model of one single neuron. The main

conclusions are as follows:

• This dynamic model can describe the bistalility of up

and down transitions of neural membrane potential. The

neuron can stay any one of the two without input. When

the neuron is stimulated, it can switch its state from one

to another to adjust itself to a new balance. These two

states are called up state and down state respectively.

That is to say, the up and down transitions can be

modulated by external stimulations.

• The dynamic model can describe the bidirectional or

unidirectional characteristic of up and down transitions

of neural membrane potential. That means the transi-

tions can be both directions from the up state to the

down one, and vice verse. Obviously, the transitions

may be single direction from the up state to the down

one, or only another direction from the down state to

the up one. In these cases, the potassium conductance

plays a key role to modulate the directivity.

• The three-dynamic-variable model can describe peri-

odic spontaneous transitions between the up and down

states in the absence of synaptic input. And in this case,

the fact that the neuron responses to stimulation has a

certain relationship with which state the neuron stays. If

a stimulus is applied when the neuron is in a down

state, responses are stronger than if it is applied during

an up state.
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The above calculation results are very similar to experi-

mental results observed (Anderson et al. 2000; Petersen

et al. 2003; Parga and Abbott 2007; Haider et al. 2007;

Sachdev et al. 2004), which illustrates our research on up

and down transitions of neuronal membrane potential is

successful and effective. To study up and down transitions

of neural population and network, and to understand the

role that a single neuron plays in the coupled neural net-

works are our next goals, as well as the foundation of

knowing neural dynamic mechanism of network behaviors.
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