Skip to main content
. 2014 Jun 11;48(4):278–286. doi: 10.1007/s13139-014-0283-3

Table 1.

Texture Parameters

Texture features Formula or assumption
1. Histogram-based features Assumption) p(i) is a normalized histogram value for a pixel intensity I. μ  is mean value.
Variance (σ 2) σ2=i=1Niμ2pi
2. Absolute gradient-based parameters Assumption) x(i,j) is a pixel intensity at (i,j) position
Absolute gradient value [G(i,j)]
for 5 × 5 matrix of M elements
Gij=xi+2,jxi2,j2+xi,j+2xi,j22
Mean of G(i,j), (GrMean) GrMean=1Mi,jROIGij
Variance of G(i,j), (GrVariance) GrVariance=1Mi,jROIGijGrMean2
Ratio of non-zero G(i,j) matrix elements, (GrNonZeros) Ratio of non-zero G(i,j) values
3. Run-length matrix-based parameters a
4. Co-occurrence matrix-based parameters Assumption) p(i,j) is the joint probability of co-occurring pixel intensity values i and j. N x is a number of pixel intensities.
px+yk=i=1Nxj=1Nxpij,i+j=k
pxyk=i=1Nxj=1Nxpij,|ij|=k
Angular second moment (AngScMom) AngScMom=i=1Nxj=1Nxpij2
Entropy Entropy=i=1Nxj=1Nxpijlogpij
Inverse difference moment (InvDfMom) InvDfMom=i=1Nxj=1Nx11+ij2pij
Sum of squares (SumOfSqs) SumOfSqs=i=1Nxj=1Nxiμx2pij
Sum entropy (SumEntrp) SumEntrp=i=12Nxpx+yilogpx+yi
Sum average (SumAverg) SumAverg=i=12Nxipx+yi
Sum variance (SumVarnc) SumVarnc=i=12NxiSumAverg2px+yi
Difference entropy (DifEntrp) DifEntrp=i=1Nxpxyilogpxyi
Difference variance (DifVarnc) DifVarnc=i=0Nx1iμxy2pxyi
5. Autoregressive model-based parameters a

a No texture feature with significant value in this study; cf. Table 3.