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For vertebrates, annual cycles are organized into a series of breeding and

non-breeding periods that vary in duration and location but are inextricably

linked biologically. Here, we show that our understanding of the fundamental

ecology of four vertebrate classes has been limited by a severe breeding season

research bias and that studies of individual and population-level responses

to natural and anthropogenic change would benefit from a full annual cycle

perspective. Recent emergence of new analytical and technological tools for

studying individual and population-level animal movement could help

reverse this bias. To improve understanding of species biology and reverse

the population declines of many vertebrate species, a concerted effort to

move beyond single season research is vital.
1. Introduction: periods of the annual cycle are inextricably
linked

Physical cycles as significant as the rotation of the tilted Earth around the Sun

entrain living things into cycles. The ecology and evolution of vertebrates are

organized into annual cycles that include reproductive, non-breeding and

migration/dispersal periods that vary in duration and location. Spotted salaman-

der (Ambystoma maculatum) breeding occurs over several days in early spring

when adults migrate to vernal ponds, mate and lay eggs [1]. Soon after mating,

spotted salamanders return to terrestrial foraging areas, where they remain for

more than 95% of the annual cycle. Leatherback sea turtles (Dermochelys coriacea)

spend most of their adult life at sea, moving vast distances in search of jellyfish.

Every few years, individuals mate at sea then females lay eggs on beaches [2].

Ovenbirds (Seiurus aurocapilla) are on breeding areas from May until August,

during which time they raise young. Pair bonds then disintegrate, and individuals

moult and migrate to tropical wintering areas where they spend more than 70% of

the annual cycle [3]. Although there is enormous variation in annual cycles across

vertebrate taxa, what is consistent is that the breeding period composes a

relatively small proportion of the cycle.

The duration and location of annual events depend on a multitude of

interacting endogenous and exogenous factors. A growing body of literature

demonstrates that, although periods of the annual cycle are often temporally

and/or geographically separate, they are inextricably linked [4]. Events occurring

during one period often continue to influence individuals and populations during

subsequent periods, profoundly influencing both ecological and evolutionary

processes. These effects are termed ‘seasonal interactions’ and can occur at two

scales—the individual and population levels. At the individual level, non-fatal

effects, such as poor physical condition or delayed phenology, carry-over from

one season to the next to influence vital rates such as reproductive success or sur-

vival. At the population level, numerical changes between seasons can drive a

density-dependent effect such as reduced winter survival altering densities and
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Figure 1. Proportion of studies on four vertebrate orders conducted (a) during each period of the annual cycle: breeding, in transit (i.e. migration or a similar
seasonal movement between breeding and non-breeding), or stationary non-breeding, (b) during one annual cycle period, more than one, or year-round, and
(c) examining a seasonal interaction.

rsbl.royalsocietypublishing.org
Biol.Lett.11:20150552

2

recruitment in the breeding period [5]. Both individual- and

population-level effects can influence animals simultaneously

and are not necessarily mutually exclusive.

Although this terminology is relatively new, the notion

of seasonal interactions has been in the literature for a long

time. Darwin noted that events prior to breeding can influence

female fecundity in migratory birds [6]. Fretwell [5] argued

that population dynamics of organisms living in seasonal

environments result from events occurring between seasons

[5]. He presented a theoretical case that breeding densities are

determined in part by overwinter survival, which in turn, is

related to events occurring during the preceding breeding

season. Seasonal interactions can also result from interspecific

relationships, such as in predator–prey dynamics when high

survival in a prey species in one season influences predator

dynamics in a subsequent season [7]. Collectively, several studies

illustrate how full annual cycle research is necessary to under-

stand fundamental biology across multiple species groups

(e.g. amphibians [8], reptiles [9], birds [10], mammals [11]).

Research not incorporating prior seasons may misclassify mech-

anisms underlying individual variation in the season under

consideration and numerical changes in populations. Further-

more, full annual cycle approaches are essential for interpreting

potential effects of major stressors like climate change [12,13].
2. Methods: has research been biased towards
breeding studies?

We conducted a literature review to quantitatively assess

when during the annual cycle ecological research has been

conducted and if seasonal interactions have been considered.

We asked: (i) are there seasonal biases in vertebrate ecology

research?, (ii) to what degree has research incorporated

more than one period of the annual cycle?, (iii) to what

degree has research looked for seasonal interactions? and

(iv) have any observed biases changed over time?
The focus of our literature survey was ecological studies

of amphibians, reptiles, birds and mammals. We carefully

reviewed all articles published during 1994, 2000, 2006 and

2012 in five high impact (more than 3.0 IF) ecology journals

(Ecology, Conservation Biology, Oecologia, Journal of Animal
Ecology, Behavioral Ecology) and four taxa-specific journals

(Herpetologia, The Auk, Journal of Avian Biology, Journal of Mam-
malogy). We excluded papers that had no new data collection

(e.g. commentaries, reviews).

Periods of the annual cycle were categorized as (i) breed-

ing, (ii) in transit (i.e. migration, dispersal) or (iii) stationary

non-breeding. For papers that did not explicitly state the

period studied, we used the seasonal information reported

(e.g. months or seasons of inquiry). If a paper focused on

multiple species of the same taxon, it was recorded once

but if it focused on more than one taxonomic group we

recorded separate entries for each taxon.

To test for seasonal biases, we used Pearson x2-tests with

expected values being equal proportions to represent the null

hypothesis that no bias exists. This conservative assumption

is that seasons are equally important or that the importance

is relative to the length of the season in their contribution

to fitness variation. We recognize the simplicity of this under-

lying assumption and future research should test its validity.

Seasons vary in length and in the number and importance of

life-history events. For example, the stationary non-breeding

period is often longer but typified by foraging, resting and

survival, whereas migration can be quick, stressful and indi-

viduals can experience high mortality. The breeding period

can be short, is characterized by reproduction, offspring

rearing and other physiologically demanding processes.
3. Results: research in animal ecology is severely
biased towards the breeding period

Across all taxa, we found a strong seasonal bias (x2 ¼ 96.5,

N ¼ 2015, p , 0.0001; figure 1a), with 61% of research
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conducted during breeding. Seasonal biases towards breed-

ing were significant for all orders: amphibians (x2 ¼ 85.5,

N¼ 121, p , 0.0001), reptiles (x2 ¼ 36.8, N¼ 131, p , 0.0001),

birds (x2 ¼ 629.9, N ¼ 980, p , 0.0001) and mammals

(x2 ¼ 72.4, N ¼ 783, p , 0.0001).

Few studies incorporated multiple periods. Across all

taxa, 73% (N ¼ 1022) of studies were conducted during

only one period of the annual cycle, 9% (N ¼ 33) incorporated

more than one period and 17% (N ¼ 60) were year-round

(x2 ¼ 1015.8, n ¼ 1394, p , 0.0001; figure 1b). Differences were

significant for: amphibians, (x2 ¼ 93.7, n ¼ 93, p , 0.0001),

reptiles (x2 ¼ 34.1, n ¼ 82, p , 0.0001), birds (x2 ¼ 995.1,

n ¼ 808, p , 0.0001) and mammals (x2 ¼ 95.1, n ¼ 411,

p , 0.0001).

Few studies (5.5%; x2 ¼ 1107.6, N ¼ 1394, p , 0.0001;

figure 1c) have looked for seasonal interactions (amphibians:

x2 ¼ 68.1, N ¼ 93, p , 0.0001; reptiles: x2 ¼ 66.8, N ¼ 82,

p , 0.0001; birds: x2 ¼ 634.5, N ¼ 808, p , 0.0001; mammals:

x2 ¼ 338.5, N ¼ 411, p , 0.0001). In addition, there has been

little change in when research is conducted, and the proportion

of year-round studies has remained constant (figure 2). While

the number of studies incorporating seasonal interactions

doubled from 1994 to 2012, the overall proportion in 2012

was only 5% of all studies.
4. Moving forward – reversing the bias
Such biases likely occurred because of the: (i) longstanding

belief that events during the breeding season are paramount

to other periods of the annual cycle [14], (ii) logistical complex-

ities of collecting annual or full life cycle data, including cost,

time and an academic calendar, and (iii) technical obstacles

associated with following individual animals and mass

movements of populations across vast distances, or to inaccess-

ible places (e.g. marine mammals at sea). Individual tracking
devices have been too expensive, unreliable or large for

the vast majority of species, making it challenging to follow

animals as they move throughout the annual cycle.

Fortunately, limitations that once hindered our ability to

track individuals and populations throughout the year,

or even over lifetimes, are disappearing. New analytical,

computing and technological tools are advancing the pace

and magnitude of data collection, analysis and modelling of

animal movements. Satellite and cell phone transmitters,

geolocators [15], stable isotope analyses [16] and genomics

[17] are advancing our ability to track animals for longer

periods and at higher resolutions. When combined with

complementary demographic data, quantification of habitat

quality and/or measures of physiology, these advancements

are revolutionizing our understanding of movement ecology

and fundamental biology. For instance, in birds they have

revealed how interactions between stages of the annual

cycle can limit fitness [18], seasonal variation in mortality

[19] and previously unknown distributions [20]. Many of

these approaches involve large, expensive equipment or

lack precision, so it remains essential that we continue to

push for improvements to reduce costs, improve accuracy

and precision, and increase utility for animals of all sizes.

Finally, the refinement of remote sensing tools (e.g. weather

radar) [21] and citizen science approaches (e.g. eBird) [22]

are recent advances allowing observations of mass move-

ments of populations over large spatial scales and across

periods of the annual cycle.

The increase in seasonal interaction studies is a positive

development but is still far from where we need to be. Such

information is vital for management and conservation, as

these fields rely on detailed understanding of limitation and

regulation of populations, particularly those in decline. For

example, full annual cycle approaches are necessary to estab-

lish whether mortality factors induce compensatory or

additive mortality [23] and large-scale perspectives quantify-

ing mass movements of animals across the annual cycle will

be essential for understanding large-scale land-use patterns

[24]. Clearly, full annual cycle approaches, at the individual

and population level, are required for a vast array of conser-

vation questions and are an essential step to implementing

effective approaches to reverse population declines and

keep common species common.

If we as scientists and conservation biologists are to

reverse the alarming declines of many vertebrate populations

[25], in a rapidly changing world, then we need to develop

and implement more strategic, effective and efficient conser-

vation strategies. These strategies must involve a full annual

cycle perspective and improved technologies for the remote,

dynamic and continuous assessments of the biology of

animals for longer periods and over larger spatial scales.
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