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Fossil evidence for a herbaceous
diversification of early eudicot
angiosperms during the Early Cretaceous

Nathan A. Jud

Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA

Eudicot flowering plants comprise roughly 70% of land plant species diversity

today, but their early evolution is not well understood. Fossil evidence has been

largely restricted to their distinctive tricolpate pollen grains and this has limited

our understanding of the ecological strategies that characterized their primary

radiation. I describe megafossils of an Early Cretaceous eudicot from the Poto-

mac Group in Maryland and Virginia, USA that are complete enough to allow

reconstruction of important life-history traits. I draw on quantitative and quali-

tative analysis of functional traits, phylogenetic analysis and sedimentological

evidence to reconstruct the biology of this extinct species. These plants were

small and locally rare but widespread, fast-growing herbs. They had complex

leaves and they were colonizers of bright, wet, disturbance-prone habitats.

Other early eudicot megafossils appear to be herbaceous rather than woody,

suggesting that this habit was characteristic of their primary radiation. A

mostly herbaceous initial diversification of eudicots could simultaneously

explain the heretofore sparse megafossil record as well as their rapid diversifi-

cation during the Early Cretaceous because the angiosperm capacity for fast

reproduction and fast evolution is best expressed in herbs.
1. Introduction
Molecular phylogenetic studies have converged on a robust model of angiosperm

phylogeny that recognizes eudicots as the largest subgroup of angiosperms, com-

prising approximately 75% of their current diversity and dominating most

broadleaf forests [1]. This relatively new model of angiosperm relationships had

important implications for palaeobotany and has re-framed hypotheses of early

angiosperm evolution (e.g. [2]). The oldest fossil angiosperms are monaperturate

and inaperturate pollen grains from Hauterivian (134–130 Ma) deposits in Eurasia

[3–5]. Some of these early pollen grains have a reticulate tectum, a synapomorphy

of Austrobaileyales þmesangiosperms, indicating that the diversification of

crown-group angiosperms was underway by this time [6]. Tricolpate pollen, a

synapomorphy of eudicots, first occurs in low-latitude deposits of the latest Barre-

mian (approx. 125 Ma) [4,7–15], giving a minimum age for the origin of the group.

Surprisingly, few eudicot megafossils are known from deposits spanning approxi-

mately 20 Ma following the first tricolpate pollen; they did not become common

until the late Albian (approx. 105 Ma). This has limited our ability to test hypoth-

eses regarding the origin and early evolution of this ecologically important and

extraordinarily species-rich group.

Phylogenetic methods reconstruct early eudicots as woody trees or shrubs

because extant species in early diverging lineages are woody [16]; and because

woody species are common in living outgroups such as magnoliids, Austrobai-

leyales and Amborella. However, there is reason to suspect that early eudicots

were herbaceous. Herbs occur in several ‘basal’ eudicot lineages (e.g. Ranuncu-

lales, Proteales, Buxales), and the handful of putative eudicot mesofossils and

megafossils [17–19] described from Aptian-mid Albian deposits appear herbac-

eous (electronic supplementary material, S1). Further, angiosperm wood is

exceedingly rare in the Lower Cretaceous despite abundant gymnosperm wood

in the same deposits [20,21].
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Figure 1. Map of the Lower Cretaceous Potomac Group outcrop in Virginia
and Maryland, USA showing the sites from which the fossil specimens
described here were collected. (1) Entrance to Trent’s Reach, (2) banks of
Dutch Gap Canal, (3) base of the bluff at Dutch Gap (LJH JAD 71-117),
(4) Fish Hut above Dutch Gap, (5) Fredericksburg, Virginia, (6) roadside
near Potomac Run; near Lorton, Virginia, (7) Fairlington, Virginia (USGS
9030), and (8) south of Federal Hill Park in Baltimore, Maryland, USA.
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Figure 2. Age of the lower part of the Potomac Group [8,33,75]. Some of the
sites where the fossils were collected are in the lower part of Zone I and
some are in the upper part of Zone I.
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Here, I describe a common herbaceous angiosperm from

the Lower Cretaceous of eastern North America based on

specimens collected from at least eight different localities

(figure 1) in the lower part of the Potomac Group (figure 2).

Comparative morphology, age and phylogenetic analysis

suggests that this plant belongs near the base of the eudicot

phylogeny. I use functional traits and sedimentological context

to draw conclusions about its autecology. Finally, I evaluate the

early fossil record of eudicots and argue that the evolution of

the herbaceous habit was key to their rapid diversification.
2. Material and methods
The fossils are curated in the Department of Paleobiology at the

National Museum of Natural History, Smithsonian Institution in

Washington DC; the Yale Peabody Museum in New Haven, CT

and the Florida Museum of Natural History in Gainesville, FL.

They are preserved as carbonaceous compressions, but cuticular

details were not apparent under epiflorescence microscopy.

Some of the fossils were prepared by degauging. I photographed

the fossils using a Canon EOS digital camera with a 100 mm EF

macro lens and a Nikon D70 digital camera with a Macro-Nikkor

65 mm lens and processed the images using whole-image manipu-

lations in ADOBE PHOTOSHOP (San Jose, CA, USA) to improve contrast

between the matrix and the fossils. The leaf architecture character

definitions are based on those outlined in the Manual of Leaf Archi-
tecture [22] with some of the modifications developed by Jud &

Hickey [23] (electronic supplementary material, S2). I measured

leaf area and petiole width from photos of seven complete or

nearly complete leaves for which the total area of the blade could

be estimated using IMAGEJ [24].

I used the molecular scaffold approach to determine the most

parsimonious position of the fossil plant, because the number of

taxa included in the analysis is greater than the number of mor-

phological characters [25]. The tree search was constrained by the

relationships among the ANA-grade angiosperms, magnoliids
incl. Chloranthales, monocots excl. Commelinidae (the ‘basal

monocots’), Ceratophyllum and Eudicotyledonae excl. Pentape-

talae (the ‘basal eudicots’) [1,26–28]. The sampled genera were

chosen deliberately to capture the range of leaf architectural com-

plexity in early diverging angiosperm orders. Sapindopsis is

included as a stem-genus along the branch leading to modern

Platanus [29], and Exnelumbites is included as a stem-genus

along the branch leading to modern Nelumbo [30]. I did not

include taxa from more derived groups that radiated in the

Late Cretaceous and Cenozoic, because many taxa in these

groups have characters and character states that are highly diver-

gent from those present in the fossils, making it difficult or

impossible to assess homology. I performed parsimony analysis

using PAUP* v. 4.0b [31]. I scored 15 characters for 58 genera. If

multiple character states are present for a single character within

a genus, all were recorded in the matrix. All characters were

unweighted and unpolarized, and multistate characters were

treated as polymorphic. Selaginella served as the outgroup, and

the position of the fossil plant was free to vary.
3. Results
Angiosperms (Flowering plants)

unranked – Eudicot clade (Tricolpates)

Order – unknown, cf. Ranunculales, Proteales

Family – unknown

Genus – Fairlingtonia gen. nov.

Species – Fairlingtonia thyrsopteroides (Fontaine) comb.

nov. figures 3 and 4 [32]

Basionym – Sphenopteris thyrsopteroides [32, p. 89 pl. 25

fig. 3 and pl. 58 fig. 5]

Synonymy – Sphenopteris spatulata [32, p. 93 pl. 50 fig. 3]

Sphenopteris pachyphylla [32, p. 93 pl. 50 fig. 5]

Thyrsopteris pachyphylla [32, p. 135 pl. 50 fig. 3]

(See the electronic supplementary material, S1 for a

discussion of the history of these names.)

Generic diagnosis – small, stoloniferous herbs with axil-

lary branching and fibrous adventitious roots produced

in pairs at nodes. Leaves alternate, resting buds sometimes
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Figure 3. Morphology of the Early Cretaceous eudicot Fairlingtonia thyrsopteroides (Fontaine) Jud. (a) Lobed leaves attached to a stem with a bud in the axil of a leaf
(arrow). USNM specimen 597570. (b) Variation in leaf morphology from nearly symmetrical (right arrow) to asymmetrical (left arrow). USNM 597571. (c) Branches with
subtending leaves (arrow). USNM 597572 ¼ WCB specimen 5975 (see the illustration in the electronic supplementary material, S3). (Online version in colour.)

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20151045

3

present. Leaf attachment petiolate, petioles short (less than or

equal to 5 mm), petiole base without stipules and decurrent

to stem. Petiole width narrows towards blade of leaf. Blade

attachment marginal. Leaf size leptophyll, blade ovate and

deeply dissected. Apex obtuse, rounded, often slightly

asymmetrical. Base obtuse, but not reflex, often slightly asym-

metrical. Leaf dissection varies from palmately trilobed and

pinnately lobed to twice pinnately lobed. Sinuses rounded.

Lobe size and sinus depth both decrease acropetally. Alternate

secondary lobes develop acropetally. First and basal most sec-

ondary lobe along acroscopic margin of lateral primary lobe or

lateral leaflet (analogous to anadromous of pteridology).

Major veins (i.e. primary, secondary and minor secondary)
craspedodomous. Perimarginal secondary vein present. Ter-

tiary veins fine, irregular reticulate, areolation poorly

developed, freely ending veinlets not present. Margin lobed

and smooth, but glandular papillate teeth occur at apices of

lobes and are supplied by a medial principle vein and laterally

by thickened intra-marginal veins.

Emended specific diagnosis – stems approximately

1–3 mm in diameter, stoloniferous and much-branched.

Internodes generally less than or equal to 5 mm. Petioles

approximately 2–5 mm long. Blade up to 10 mm long, by

up to approximately 13 mm across (but usually much less);

leaf area less than 70 mm2. Petiole width 0.40–0.70 mm at

insertion.
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Figure 4. Morphology of the Early Cretaceous eudicot Fairlingtonia thyrsopter-
oides. (a) Leafy shoot with fibrous adventitious roots attached at node (arrow).
USNM specimen 597573. (b) Leafy shoot showing sheathing leaf bases (arrow).
Composite image of YPM 60054a and 60054b. (c) Close up of the leaf in (b),
showing the irregular minor veins and glandular, hydathodal teeth at the
lobe apices (arrow). (Online version in colour.)
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Holotype – USNM 597566, Department of Paleobiology,

Smithsonian National Museum of Natural History, Washington

DC. This specimen was illustrated by Fontaine in 1889 (plate

XXV fig. 3, LVIII fig. 3C); however, the specimen is severely

faded and original illustrations convey the interpretation of

this plant as a fragment of a fern frond, rather than a
branching leafy shoot. Other specimens were found in the strati-

graphic collections.

Paratypes – USNM 597567, shoot; USNM 597568, shoot;

USNM 597569, leaf; USNM 597570, shoot (figure 3a); USNM

597571, shoot (figure 3b); USNM 597572, shoots of Fairlingto-
nia thyrsopteroides mixed with fragments of Acrostichopteris sp.

(figure 3c); USNM 597573, shoot with attached fibrous

adventitious roots (figure 4a); YPM 60054a&b, shoot showing

venation of leaves (figure 4b,c).

Etymology – the new generic name Fairlingtonia comes

from the neighbourhood of Fairlington, VA, USA, where

many well-preserved specimens were collected by

R. W. Brown in 1944.

Stratigraphic position and age – lower part of the Potomac

Group (Patuxent Formation equivalent) and Arundel Clay;

pollen Zone I; Aptian-earliest Albian, Early Cretaceous [33].

The fossils occur in collections from both upper and lower

Zone I (electronic supplementary material, S1). These two

zones are distinguished in part on the presence of tricolpate

(eudicot) pollen in upper Zone I and its extreme rarity in

lower Zone I [8,10,33].

Description – F. thyrsopteroides plants were small, her-

baceous, stoloniferous and much-branched. The young

stems were flexuous (figure 4a,b), but the older and thicker

stems appear generally straight and more robust (figure 3d,

at right). Attached branches and buds occur in the leaf axils

(figure 3a,c). Fibrous adventitious root systems attached to

the stems in pairs at some nodes (figure 4a). The leaves

are helically arranged (alternate) along the stem (figure 3b)

and comprise a deeply dissected blade, marginal petiole

and a decurrent clasping leaf base without stipules

(figures 3b and 4b). The petioles are short (less than or

equal to 5 mm) and the leaf blade is small (leptophyll).

The organization of the dissected leaf blade varies from

simple and twice pinnately lobed, to palmately compound

(trifoliate) with pinnately lobed leaflets (figure 3b). The

size of the lobes and depth of the sinuses decreases

smoothly towards the apex. The secondary lobes are alter-

nate but not pedate (figure 3a,b). The laminar length :

width ratio is 1–1.25 : 1; the overall shape is ovate, but the

lobes are obovate. The apex is obtuse and rounded; and

the base is obtuse and concave to decurrent. The insertion

of the petiole to the blade is often asymmetrical. The pri-

mary venation is either pinnate or palmate with three

primary veins. The major secondary veins are craspedodro-

mous; secondary vein spacing decreases distally and the

secondary vein angle smoothly decreases proximally

(figure 4c). The minor secondary veins are craspedodro-

mous. A perimarginal vein is visible in the distal parts of

the lobes (figure 4c). The tertiary vein framework is irregu-

lar reticulate, forming irregular aureoles without freely

ending veinlets (figure 4c). Vein density is unknown

because the minor veins are rarely preserved. Glandular

teeth are present at the apices of the lobes. The teeth termi-

nate in papillate that resemble hydathodes of some extant

herbs. The teeth are vascularized by a medial principal

vein that terminates at the apex and thickened lateral acces-

sory veins that are continuous with the perimarginal vein

(figures 3a and 4c). Figure 5 provides a generalized diagram

of the leaf architecture. I measured petiole width and leaf

area on five complete leaves (electronic supplementary

material, S1) and estimated leaf mass per unit area (LMA)

at 75.4 g �mm22 with a prediction interval of 49.2–



Figure 5. Line drawing of a leaf of Fairlingtonia based on several specimens.
Major veins run to lobe apices and are shown thicker than minor veins. The
dots at the apices of the lobes represent glandular teeth. (Online version in
colour.)
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115.4 g �mm22 using the equation of Royer et al. [34] for

angiosperm herbs.
eudicots
Proteoideae

eaeGlaucium
Stylomecon
Trochodendron
Tetracentron
Sabia
Exnelumbites
Nelumbites
Sapindopsis
Platanus
Bellendena
Placospermum
Hakea
Stenocarpus
Sympheonema
Synaphea
Isopogon
Petrophile
Carnarvonia
Knightia
Sphalmium
Musgravea
Austromuellera

Figure 6. Adam’s consensus of 10 best trees showing the position of Fair-
lingtonia as part of a polytomy the base of the eudicot clade (arrow).
Angiosperm groups are marked by shaded bars (mono ¼ Monocotyledonous
angiosperms). The most parsimonious positions of the fossil are nested either
among the Papaveroideae or the Proteoideae.
4. Discussion
(a) Phylogenetic implications
Fairlingtonia thyrsopteroides can be confidently assigned to the

seed plant clade based on its axillary branching [35,36].

Attached leaves subtend branches (figure 3c) and resting buds

occur in the leaf axils (figure 3a). It is not a fern, as originally

described [36]. The combination of five other vegetative charac-

ters: (i) herbaceous habit, (ii) petiole base that at least partially

encircles the stem, (iii) hierarchical reticulate venation,

(iv) glandular (hydathodal) teeth, and (v) the mode of complex

leaf dissection, allow for more precise identification and indicate

that this plant is a eudicot angiosperm.

Eudicot megafossils are expected to co-occur with tricolpate

pollen grains. In the Potomac Group, tricolpate pollen grains

occur in upper Zone I, but they are exceedingly rare in lower

Zone I [8]. They have not been documented from any of the

lower Zone I localities where Fairlingtonia was collected. This pat-

tern raises three possibilities. First, tricolpate pollen might be

present at the lower Zone I sites with Fairlingtonia, but so rare

that it has not been detected [23]. Second, Fairlingtonia may

belong to a eudicot stem lineage that predates the evolution of tri-

colpate pollen, but post-dates the origin of eudicot-like leaves [6].

Finally, Fairlingtonia might belong to an entirely extinct group of

plants unrelated to eudicots but with convergent morphology. I

suggest that the first possibility is the most likely.

The most parsimonious positions for Fairlingtonia were all

within the eudicot clade, either nested among the Proteoideae

(Proteaceae) or near the base of Papaveroideae (Papavera-

ceae) (figure 6). These two subfamilies share the herbaceous

habit, hydathodal teeth, perimarginal veins, and simple

leaves that are deeply dissected. The two positions for

Fairlingtonia were favoured by different characters. Successive
apical fusion of the veins at the apex of the leaf is seen in

some herbaceous Papaveraceae, but not in Proteaceae. By

contrast, the arrangement and relative size of the lobes in

Fairlingtonia leaves serve as a developmental fingerprint for

a mode of leaf dissection that today is restricted to Proteaceae

(e.g. Isopogon, Petrophile, Grevillea), though it also occurs

rarely in more derived lineages (e.g. Bidens, Asteraceae (N.

A. Jud 2014, personal observation)). It is not known in Papa-

veraceae or other Ranunculales. Given the age of the

Fairlingtonia fossils, the similarities with Papaveroideae and
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Proteoideae probably reflect ecological similarity and the

retention of ancestral features in the modern groups rather

than membership in the extant subfamilies.

The placement of Fairlingtonia near the base of the eudicot

phylogeny, below Eupteleaceae, suggests that eudicot angios-

perms were ancestrally herbaceous even though they are

reconstructed as woody when extant plants alone are considered

[16]. Other previously described Aptian-mid Albian eudicot fos-

sils also have features of herbs rather than of trees and shrubs

(electronic supplementary material, S1), despite the taphonomic

megabias against herbs and in favour of woody plants [37].

Extant eudicots may not fairly represent the initial habit of the

group [38], and this provides a new framework for thinking

about the ecological role of the earliest eudicots generally.

(b) Ecological implications
Some of the same features used to assess the phylogenetic

position of Fairlingtonia also provide information about its eco-

logical strategy. The slender and flexuous stems of Fairlingtonia
show that it was herbaceous (figures 3b and 4a,b). The presence

of lobed leaves with glandular teeth and short marginal petioles,

rather than cordate, peltate or filiform leaves with long petioles

and entire margins, support the conclusion that Fairlingtonia
was a terrestrial herb rather than an aquatic one [39,40]. Further-

more, the small size, adventitious roots (figure 4a) and

abundance of resting buds (figure 3a) suggests a potential for vig-

orous opportunistic growth, typical of creeping or scrambling

herbs adapted to colonizing freshly disturbed substrates [41–43].

Fairlingtonia has flexible stems, very short petioles and

small, dissected leaves. This combination of features indicates

that it was able to photosynthesize under bright conditions.

Short petioles and small leaves are more common in herbs

that colonize freshly disturbed substrates where competition

for light is not a factor. This is because structural petiole

tissue provides no advantage for plants that could otherwise

invest in photosynthetic area and reproduction [44]. Lobed

leaves are generally associated with adaptation to shade [45];

however, in very small leaves lobes are associated with high

density of major veins that maintain equable water potential

across the leaf under bright conditions [46,47]. Small dissected

leaves also enable rapid convective cooling, protecting the

leaves from overheating in high light and still air [46,48–50].

Furthermore, the relatively low inferred LMA of Fairlingtonia
(electronic supplementary material, S1) is a value typical of her-

baceous plants in riparian habitats [34]. Plants with rapid

resource acquisition typically have high mass-based photosyn-

thetic and respiration rates, short leaf lifespans, fast growth

rates and low LMA; whereas plants with slower resource acqui-

sition typically have a low mass-based photosynthetic rate,

longer leaf lifespans, slow growth rates and high LMA [51,52].

Glandular hydathodal teeth like those in Fairlingtonia
(figures 3a and 4c) are common among plants that grow in

wet soils and periodically experience high humidity, indicating

that Fairlingtonia was adapted to wet substrates. Teeth of this

type are sites of guttation; the loss of water at tooth apices pre-

vents flooding of the leaf mesophyll under conditions of high

soil moisture, high humidity and low evaporative demand

[53–55]. Environments such as forest understory and riparian

corridors in tropical and temperate climates typically host

plants with hydathodal teeth [49,56–61]; but hydathodal teeth

also occur in some marginally or semi-aquatic ranunculalean

herbs that grow under bright, subareal conditions [39].
The fossils discussed here were collected from massive

to poorly laminated beds of mudstone and siltstone that

typically alternate with poorly sorted, cross-laminated,

coarse-grained beds [36]. This pattern of sedimentation is

typical of variable flow regimes and rapid, near-channel

deposition associated with crevasse-splay events [62,63]. The

preservation of Fairlingtonia with leaves and roots attached to

slender stems suggests minimal transport, and therefore that

its depositional environment also represents its environment

of growth. Fairlingtonia was a riparian herb.

The distribution, morphology and sedimentological context

of the fossils suggest that Fairlingtonia was a widespread

fast-growing eudicot (or stem-eudicot) herb that colonized

bright, wet, riparian habitats in subtropical eastern North

America during the Aptian-earliest Albian (approx. 113 Ma).

Many of the features that support this conclusion are typical of

putative Lower Cretaceous eudicot megafossils in general (elec-

tronic supplementary material, S1). Rather than being woody

plants restricted to under-sampled regions, or to ‘upland’

environments not represented in the fossil record [64,65], early

eudicots were generally small herbaceous plants that grew

near depositional settings; their fossils may be widespread but

small and locally rare in fine-grained, low-energy deposits

with minimally transported plant fossils. This finding could

explain the paucity of eudicot megafossils in existing Aptian

to middle Albian collections, but also suggests that new early

eudicots will emerge with sufficient sample sizes and the

proper search image.
5. Conclusion
Fairlingtonia thyrsopteroides was an herbaceous angiosperm that

belongs near the base of the eudicot phylogeny. This plant was

capable of fast growth under bright conditions and was a colo-

nizer of disturbed microsites in wet, riparian habitats. This

discovery contributes to an emerging pattern of early eudicots

and eudicot-like plants as small herbs rather than woody

plants as previously thought. An initially herbaceous radiation

of eudicots that included the origin of the crown-group makes

sense in the context of angiosperm reproductive innovations

that promote short seed-to-seed time [66–68], because herbs

tend to reach reproductive maturity earlier, have higher nucleo-

tide substitution rates and have faster rates of climate niche

evolution compared to their woody counterparts [69–74].

Therefore, the herbaceous habit may have been a key trait

allowing eudicots to diversify in Early Cretaceous communities

that were still dominated by gymnosperms and ferns.
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