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Phenotypic differences among individuals can arise during any stage of

life. Although several distinct processes underlying individual differences

have been defined and studied (e.g. parental effects, senescence), we lack an

explicit, unified perspective for understanding how these processes contribute

separately and synergistically to observed variation in functional traits. We

propose a conceptual framework based on a developmental view of life-

history variation, linking each ontogenetic stage with the types of individual

differences originating during that period. In our view, the salient differences

among these types are encapsulated by three key criteria: timing of onset,

when fitness consequences are realized, and potential for reversibility. To fill

a critical gap in this framework, we formulate a new term to refer to

individual differences generated during adulthood—reversible state effects.

We define these as ‘reversible changes in a functional trait resulting from

life-history trade-offs during adulthood that affect fitness’, highlighting how

the adult phenotype can be repeatedly altered in response to environmental

variation. Defining individual differences in terms of trade-offs allows explicit

predictions regarding when and where fitness consequences should be

expected. Moreover, viewing individual differences in a developmental con-

text highlights how different processes can work in concert to shape

phenotype and fitness, and lays a foundation for research linking individual

differences to ecological and evolutionary theory.

1. Introduction
Phenotypic differences among individuals constitute the variation on which natu-

ral selection can act and are the focus of most studies in ecology, behaviour and

evolution. This variation arises from various sources—genetic, parental and

environmental—and may result in long-term or ephemeral inter-individual differ-

ences [1–6]. The life-history stage during which such differences originate

influences both the period of time over which they are maintained and their like-

lihood of affecting individual fitness [7–9]. As a result, individual differences

arising in different ontogenetic stages have unique qualities; we thus refer to

each as a ‘type’ of individual difference (see table 1). While our ability to identify

these types of individual differences and determine their consequences has

increased in recent decades, we still lack a general understanding of the mechan-

isms underlying their generation and maintenance, or of their larger ecological and

evolutionary implications [10].

Interpreting individual variation, particularly in short-term studies, can be dif-

ficult because of the simultaneous and apparently similar outcomes of different

processes. For example, a study of heterothermic mammals might find that indi-

viduals with low fat loads prior to hibernation have fewer and shorter bouts of

euthermia during hibernation, negatively affecting their fitness (e.g. [11]). This

observation could hypothetically arise for a number of different reasons. For

instance, an individual’s inherent genetic quality (sensu [1]) could largely deter-

mine its pre-hibernation fat load over the course of its life [12]. However,

different pre-hibernation foraging strategies [13], resulting from parental [14] or

environmental effects on development [15], could also cause individuals to repeat-

edly carry low fat loads. Meanwhile, experienced habitat quality [16], masting
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Figure 1. The contribution of an individual’s experience to observed population variation at a single time point. Time is indicated on the x-axis, starting with
conception (C); A1 ¼ the cessation of development, followed by successive points in adulthood (A2 – A4). The y-axis indicates variation in a single functional
trait. At conception (C), the trait varies by virtue of a number of genotypes in the population. Coloured lines represent 10 individuals with the same genotype,
and subsequent intra-individual changes in the trait. By adulthood (A1), trait variation has increased through different experiences in development, which is further
influenced by experiences in adulthood. Other genotypes (C) result in similar diversification with regard to the trait (not shown). Thus, interpretation of population
variation at a given point (frequency distribution at A3) requires consideration of individual histories and all possible sources of individual differences. Note that the
pattern of trait diversification in previous and later cohorts will temporally overlap with the cohort shown.
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conditions [17] or climatic events [18] might cause an individual

to do so temporarily. Additionally, an individual’s phenotype is

always the summation of its past experiences. Therefore, the

range of variation among individuals at any time is the cumu-

lative outcome of a suite of genetic, parental and environmental

factors that have affected each individual differently (figure 1).

Because different processes affect fitness and population

dynamics in unique ways [19,20], disentangling the particu-

lar processes underlying individual differences is crucial to

understanding their consequences.

Many types of individual variation have been intensively

studied, but frequently in isolation from other potentially inter-

acting processes [2,3]. Consequently, we still lack a common

framework with which to refer to, and make sense of, individual

differences. This has meant that some terms are used inter-

changeably to refer to fundamentally separate phenomena. For

instance, ‘carry-over effects’ were previously defined specifically

in relation to individual differences arising during adulthood

[21,22], yet are frequently used to refer to differences initiated

during early development [23]. Different currencies have also

been used to define the expected outcomes of different types

of individual variation, with ‘fitness’, ‘performance’ and ‘pheno-

typic differences’ all in concurrent use [2,3,22]. Finally, a number

of theoretical frameworks commonly used in evolutionary ecol-

ogy were designed for population-level optimality solutions and

are thus difficult to apply to individual-level processes [24,25].

We, therefore, endeavour to outline a conceptual frame-

work to help understand the causes and consequences

of individual differences based on a developmental view of

life-history variation [5]. In this view, each ontogenetic stage

is linked with the types of individual variation arising during

that stage. This framework allows us to define key character-

istics of each type of individual difference and begin to

articulate how they can work separately, and in concert, to

affect ecological and evolutionary dynamics.
2. A conceptual framework for understanding
individual differences

To allow individual differences to be integrated into other

theoretical frameworks, we must adopt common terminology

that explicitly links individuals with populations via fitness.

We therefore follow the ‘performance paradigm’ put forth

for animals by Arnold [26] and for plants by Violle et al. [27].

Within this paradigm, the currency for inter-individual

comparisons are traits, which, sensu Violle et al. [27, p. 884],

can be defined as, ‘any morphological, physiological or pheno-

logical feature measurable at the individual level, from the cell

to the whole-organism level, without reference to the environ-

ment or any other level of organisation’. We also include

behavioural traits to recognize their contribution to an individ-

ual’s phenotype [28]. Following this, individual differences

refer to any within-population variation among individuals

with respect to a trait and they arise when extrinsic factors

affect individuals differentially [28]. Many of these individual

differences may result from trade-offs among traits [2,3,5,6].

We adopt a broad definition of ‘trade-off’ such that it refers

to any instance when resource allocation to one trait occurs

at the expense of another; this means we include both classic

strategic allocation trade-offs and those initiated by stochastic

events (e.g. diversion of energy to somatic recovery following

an accident or severe weather event).

Although individuals can potentially differ in an almost

infinite number of ways, many differences are essentially

neutral in terms of fitness [29]. Because we are interested

in the ecological and evolutionary consequences of individ-

ual differences, we are only concerned with differences

among traits that affect fitness, or ‘functional traits’ (sensu
[27]). Differences in functional traits can most easily be asses-

sed by determining their effect on an individual’s ‘state’

(sensu [30]) at specific junctures when their potential



Table 1. Classification of types of individual differences. (Numbers refer to citations in text.)

extrinsic source
of variation onset definition outcome (type)

potential carry-
over effect? reversible?

genetic conception breeding value for total fitness [1] inherent individual

quality

no no

parental prenatal and

juvenile

the influence of parental

genotype or phenotype

on development [2]

parental effects on

development

yes context

dependent

environmental prenatal and

juvenile

the influence of environmental

conditions on development [3]

environmental effects

on development

yes context

dependent

environmental juvenile the adaptive narrowing of variation

in the annual routine [4]

development of annual

routine

yes plasticity varies

among species

environmental adulthood reversible changes resulting from

life-history trade-offs during

adulthood

reversible state effects yes yes

environmental adulthood a decrease in physiological function

with age [7]

senescence yes no
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contributions to fitness are realized; the phenological litera-

ture refers to these points as ‘life-history events’ (e.g. [31]).

In our view, a life-history event is any discrete phenologi-

cal event—e.g. lay date, hatch date or fledging date—with

a potential direct effect on a component of fitness—

e.g. growth, fecundity or survival. Finally, fitness represents

an individual’s realized contribution to the population

growth rate during the proximate time-step, such as the

following season, year or generation [32,33].

Using this terminology, we distinguish among types of

individual differences using three main criteria (table 1):

(i) the life-history stage when the differences originate;

(ii) the duration of time between the initiation of the differ-

ences and their fitness consequences; and (iii) the length of

time over which the differences are maintained. We outline

briefly here how these criteria were employed in the construc-

tion of our framework and then use them to identify gaps in

our current understanding of individual differences.

(a) When are individual differences initiated?
There is increasing recognition that certain traits are deter-

mined at discrete points during development. For instance,

phenotypically plastic differences in jaw morphology in the

cichlid fish Astatoreochromis alluaudi are determined by envir-

onmentally induced expression changes in a network of

co-regulated genes beginning three months into development

[34]. The existence of a ‘window’ after which a trait is no

longer plastic reinforces our general understanding of devel-

opment from conception to adulthood as a linear process

punctuated by changes in an individual’s experienced

environment (e.g. birth) that act as borders between ontogen-

etic stages [7,8]. Determining precisely when an individual

difference arises is fundamental to identifying its source, as

well as predicting its consequences (figure 1).

(b) When are the fitness consequences realized?
Fitness is a metric that can only be calculated in hindsight.

Nonetheless, it is useful to consider the precise junctures at
which fitness components (i.e. growth, fecundity and survival)

are affected. Accordingly, an individual difference can affect

fitness either immediately or in the future. For instance, the

initiation of an individual difference can directly cause mor-

tality (i.e. immediate fitness consequence), or cause poor

performance during a future life-history event, leading to

reduced reproductive success (i.e. delayed fitness consequence).

Delayed fitness effects for individuals can have cascad-

ing consequences for populations. Experimental work with

Drosophila has shown that in seasonal environments, individual

differences resulting in delayed fitness consequences help to

structure populations by linking an individual’s experienced

environment in one season with its reproductive output in the

next [35]. Individuals experiencing high population densities

in the non-breeding season have reduced reproductive output

during the subsequent breeding season regardless of their

breeding environment’s population density. As a result, the

lag between the initiation of an individual difference and its fit-

ness consequence helps to dampen oscillations in the population

by reducing per capita growth rates at small population sizes.

Individual differences with delayed fitness consequences

have been termed ‘carry-over effects’. O’Connor et al. [36,

p. 2] recently put forth a useful redefinition of this term,

such that it now refers to circumstances occurring during

any life-history stage when ‘an individual’s previous history

and experience explains their current performance in a given

situation’. Most types of individual differences can result in

immediate fitness effects, delayed fitness effects or both

[37], meaning that they can all initiate carry-over effects.

The term should, therefore, be used to indicate any individ-

ual difference that results in a delayed fitness consequence

rather than an immediate one.
(c) Are the individual differences permanent?
For those processes that initiate carry-over effects and not

immediate fitness consequences, the longer an individual

difference is maintained, the more pervasive its potential

effects on fitness. Because most life-history stages progress
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Figure 2. An ontogenetic perspective on individual variation. Types of indi-
vidual differences (on right) are specific to the life-history stage (in blue) in
which they originate. Most types of individual differences can cause either
immediate fitness effects or delayed fitness effects (e.g. carry-over effects).
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linearly, each life-history event in these stages only occurs once

(adulthood in iteroparous organisms is the exception and will

be discussed later). This dictates that each individual difference

that arises will probably affect the outcome of the next develop-

mental step, codifying and potentially exacerbating its

downstream phenotypic effects (figure 1) [2,7,8,38]. Most, but

not all [39], individual differences originating during develop-

ment are therefore permanent and can result in altered

reproductive success throughout an individual’s life [8].

Placing each type of individual difference within the con-

text of an individual’s development highlights how each can

play a role in the creation of an individual’s phenotype at a

given time point (figure 2). However, previous definitions

[1–6] have not adequately described individual differences

arising in one crucial life-history stage—adulthood.
3. Adulthood and reversible state effects
The adult phenotype is both stable and flexible [5]. This means

that the adult phenotype does not progress linearly towards

a predetermined endpoint as in earlier life-history stages;

instead, it may change adaptively and repeatedly in response

to environmental conditions throughout adulthood [40]. In

iteroparous organisms, for whom each life-history event may

occur repeatedly throughout life, this dictates that each occur-

rence of an event will be coupled with predictable phenotypic

changes [41]. For example, migratory preparation in birds

involves mass gain, hypertrophy of flight muscles and atrophy

of digestive organs [42,43]. Importantly, birds do not maintain

their migratory phenotypes throughout adulthood, but instead

cycle through successively different phenotypes during each

annual cycle [40].

Despite this stability and flexibility, abnormal envi-

ronmental conditions can initiate fitness-affecting individual

differences during adulthood [22]. Each repeated occurrence

of a life-history event, however, provides an opportunity to

alter resource allocation to the relevant functional traits.
Individual differences initiated in adulthood are therefore the

least likely to result in permanent changes to an individual’s

phenotype or sustained effects on fitness. For instance, bar-

tailed godwits, Limosa lapponica baueri, forced to undergo

rapid flight feather moult because of a migratory delay do not

repeatedly perform an accelerated moult in subsequent years

[44]. Even in semelparous organisms, the reversal of induced

phenotypic changes is possible because of the relatively stable

nature of the adult phenotype [45]. Adulthood is thus a

unique life-history stage requiring its own unique terminology.

Individual differences initiated in adulthood have been

studied from a number of different perspectives, yet there

has been no attempt to comprehensively define what qualities

distinguish them from differences arising in other life-history

stages. For example, life-history trade-offs are a major focus

of evolutionary ecology and frequently studied in adults,

but have never been formally defined in relation to any one

life-history stage [46]. Early definitions of carry-over effects

referred specifically to differences arising in adulthood, but

focused solely on those with delayed fitness effects [21,22].

Additionally, following their redefinition by O’Connor et al.
[36], the term carry-over effect has become generic and now

refers to differences arising in any life-history stage. Phenotypic

flexibility refers to the capacity of individuals to adaptively alter

their phenotypes as adults, but is specific to intra-individual

changes, as opposed to the generation of inter-individual

variation [41].

Nonetheless, the groundwork for discussing individual

differences originating during adulthood has already been

laid. The performance paradigm and its focus on traits pro-

vides a basis for identifying when changes in an individual’s

phenotype have occurred [26,27]. Phenotypic flexibility is

framed in terms of trade-offs as a way to explain the extent to

which phenotypes may vary in response to the environment

[41]. Finally, state-dependent life-history theory enables a

comparison of an individual’s condition across time [30].

Building on this groundwork, we formulate a new term,

reversible state effect, to describe those individual differences

initiated during adulthood. We define reversible state effects,

simply, as: ‘reversible changes in a functional trait resulting

from life-history trade-offs during adulthood that affect fit-

ness’. The key elements of a reversible state effect are: (i) an

extrinsic environmental factor initiates a trade-off between

(at least) two functional traits; (ii) this trade-off results in a

change in an individual’s state during a life-history event

relative to its expected state during that event; (iii) this

state change has fitness consequences; and (iv) the induced

individual difference is potentially reversible.

As an example, pink-footed geese, Anser brachyrhynchus,
breeding on Svalbard display significant flexibility in their

responses to conditions experienced during northward

migration [47]. Individual geese display five separate

migration strategies involving the differential use of a suite of

stopover sites. Fitness outcomes among these five strategies

are not equal because of the implementation of a systematic

disturbance regime at some stopover sites. Disturbance limits

foraging and initiates a trade-off between survival and mass

gain preceding migratory departure from these sites. In turn,

departure body mass is a good predictor of subsequent repro-

ductive success. However, regardless of age, sex, social status

or pre-migratory condition, individuals departing from their

final migratory stopover in poor condition in one year change

migration strategies the following spring and are therefore
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Figure 3. The cost of reproduction and its potential consequences for high-
and low-quality individuals. Br, breeding season; NB, non-breeding season.
The y-axis indicates individual state, in terms of condition relevant to breeding
and survival. The unshaded area indicates condition sufficient for successful
breeding. The light blue area indicates condition insufficient for breeding.
The darker blue area indicates condition insufficient for survival. A high-quality
individual (purple line) may experience energetic costs of a breeding attempt,
but retain or regain sufficient condition during the non-breeding season, and
thus incur no reversible state effect. A low-quality individual, however, may
experience similar breeding costs (Br1) but fail to return to sufficient breeding
condition the following year (Br2). This individual may skip the following
breeding opportunity (green line) but return to breeding condition in the
third year (Br3); in this case, the reversible state effect is a missed breeding
opportunity (Br2). Alternatively, a low-quality individual may attempt to breed
in insufficient condition (blue line) and suffer a reduced chance of survival; in
this case, the reversible state effect is poor breeding condition, leading to
death during the subsequent non-breeding season (NB2).
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unlikely to repeatedly exhibit poor condition at departure in the

future. Reversible state effects have thus mediated a dynamic

system in which conditions experienced by individual geese

cause fluctuations in their responses to the environment

across years. This flexibility has allowed pink-footed geese to

respond to additional anthropogenic changes altering stopover

site quality by appropriately shifting the balance among

competing life-history strategies [48].

By contrast, consider Icelandic black-tailed godwits, Limosa
limosa islandica. In this population, individuals that spend the

non-breeding season in poor-quality habitats arrive late to

the breeding grounds and also disproportionately occupy

poor-quality breeding sites, leading to reduced fitness [49,50].

Individuals, however, remain faithful to both their breeding

and non-breeding habitats throughout their lives, indicating

that the situation is not reversible. Instead, their behaviour

appears to be determined by the timing of hatch and is thus

probably constrained by carry-over effects initiated during

development, rather than reversible state effects originating

during adulthood [51].

As defined here, reversible state effects represent the culmi-

nation of a flexible process that can repeatedly mediate an

individual’s response to its environment and rapidly influence

population dynamics. This differs starkly from the deter-

minism of other types of individual differences [8]. Our

formulation of reversible state effects not only fills a gap in

our conceptual framework, but also promotes a more unified

approach to life-history trade-offs that enables us to link

individual differences with eco-evolutionary processes [52].
4. Re-imagining an old problem: the cost
of reproduction

By taking a developmental approach to life-history variation

and delineating among types of individual differences, we

can begin to better understand how these various types of

differences can work synergistically to affect an individual’s

fitness and influence evolution. One long-standing problem

in evolutionary ecology—the cost of reproduction—lends

itself particularly well to reassessment in this light.

Life-history theory holds that the costs of reproduction

should entail trade-offs among current reproduction, future

reproduction and survival [52]. Individuals should thus delay

the age of first reproduction, reduce the frequency of reproduc-

tion or reduce the effort put into each reproductive attempt to

avoid costs that limit future reproduction and survival [53].

While empirical evidence documenting long-term costs of

reproduction is mounting [54], it is not universal [55] and theor-

etical studies have only provided a limited framework with

which to explain cases when trade-offs among these three fit-

ness components are not apparent [56]. This conundrum may,

in part, stem from the fact that many studies traditionally did

not explicitly consider that strategies may vary among, or

even within, individuals [24]. Using a population-level

approach, it is possible to identify an optimal resource allo-

cation strategy, but difficult to predict how any one

individual should handle the costs of reproduction [30].

Taking an individual-level approach and restating the costs

of reproduction as a potential reversible state effect can,

therefore, help reconcile population-level models of optimal

resource allocation with empirical work demonstrating the
existence of interactions between individual and environmental

heterogeneity [36].

This approach requires first that reproduction be broken

down into its component parts—meaning that multiple

events occur within one reproductive period [57]. Second, the

costs of each event must be viewed as part of potential trade-

offs among not just current reproduction, future reproduction

and survival, but also among events within the current repro-

ductive cycle. Organisms should therefore attempt to mitigate

the cost of each event [58] because the occurrence of elevated

costs during one part of the reproductive cycle can affect per-

formance in subsequent parts [59]. Third, a trade-off between

current reproduction and either future reproduction or survi-

val should be observed only when an individual is unable to

dissipate the costs of one or more portions of the current repro-

ductive cycle [60]. Thus, while inherent trade-offs between

resource allocation to reproductive and somatic pathways

may exist [61], these trade-offs need not be expected a priori
to affect an individual’s fitness.

When considering the cost of reproduction as a potential

reversible state effect, we must take into account an individ-

ual’s expected fitness based on its inherent quality and

previous experiences in order to assess its ability to cope

with the costs of reproduction in any given year and predict

its residual reproductive value (figure 3). For example, a demo-

graphic study of three ungulate species found that individuals

within a population could be sub-divided into different quality

categories based on a combination of life-history traits [62].

Longer-term costs of reproduction did appear, but only

among low-quality individuals and only in certain years.

Other studies have found similar relationships and addition-

ally connected them to environmental fluctuations [20]. Thus,

while long-term costs of reproduction exist, they may be
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strongly mediated by individual quality and environmental

conditions, suggesting they are experienced as reversible

state effects working in combination with early-life processes,

and not as an inescapable common fate [63].

We therefore predict that individuals in populations with

highly stratified individual quality spectra [20], highly fluctuat-

ing resource availability during and after the breeding season

[60], or high variability in the habitat quality experienced

among individuals [64] will be less capable of dissipating the

costs of reproduction and more likely to display trade-offs

between reproduction and survival. Support for these predic-

tions is already present in theoretical work showing that

individuals living in environments with generally low resource

availability, high variability and low predictability should allo-

cate resources predominantly towards reproduction, leading to

the development of terminal investment strategies [65].
82:20151050
5. Individual differences and evolutionary
processes

Our understanding of how different types of individual

differences influence evolution is still in its infancy [66]. None-

theless, there is growing evidence that each of the types of

individual differences discussed here can directly cause evol-

utionary change and even alter eco-evolutionary dynamics.

In an effort to lay the groundwork for future research in this

arena, we briefly describe here examples linking each type of

individual difference with evolutionary change.

There is an increasing recognition that conditions occurring

early in life can not only induce phenotypic changes that last the

duration of an individual’s life, but also generate differences

that can be passed on to the next generation [8,67]. Recent

work in marine three-spined sticklebacks, Gasterosteus aculeatus,
suggests that these effects can even be transmitted across

multiple generations [68]. Such trans-generational plasticity is

hypothesized to lead to rapid genetic evolution by reducing

the dimensionality of gene networks underlying complex

traits and canalizing these networks for rapid selection [69].

Previous research focused on individual differences

initiated in adulthood provides evidence that reversible

state effects also probably influence evolution. For example,

in Russian-breeding barnacle geese, Branta leucopsis, popu-

lation growth and environmental regime change initiated

trade-offs that led to the development of new life-history

strategies [70]. All geese formerly bred in one area of western

Siberia and used the same suite of migratory stopover sites,

but some individuals now breed in Sweden and use a new

suite of stopover sites, while others are resident in The Neth-

erlands. This diversification of strategies has subsequently led

to genetic divergence among breeding areas over the past

three decades, suggesting that reversible state effects com-

bined with the cultural transmission of information may be

able to drive rapid evolution [71].

Individuals experiencing senescence-related physical

declines can drive evolutionary change through increased

mutation load and decreased quality in ageing germlines

[72,73]. The development of an individual’s annual schedule

during ontogeny has also been linked with phenotypic diver-

gence and evolutionary change. In the Icelandic black-tailed

godwit example [51], an individual’s annual schedule becomes

canalized early in life, affecting both its lifelong arrival timing

on the breeding grounds and choice of breeding habitat. Habitat
choice then results in assortative mating among individuals of

different size classes, leading to the spatial segregation of differ-

ent size-classed individuals across the landscape and driving

directional selection for smaller males [74].

Individual differences originating in adulthood can even

drive different eco-evolutionary dynamics depending on

whether fitness consequences are immediate or delayed. In Yel-

lowstone National Park, for instance, different environmental

changes are predicted to result in different eco-evolutionary

dynamics for grey wolves, Canis lupus, depending upon

whether the changes more directly affect body weight or survi-

val: altering body weight strongly affects population size via its

delayed effects on fecundity, while altering survival directly

affects generation length [19]. Wolf population dynamics, in

turn, have far-reaching impacts on both ungulate population

trends and the extent of woody vegetation within the region

[75]. These community-level dynamics then feedback to

affect wolf population dynamics and evolution by causing

differences in prey availability that influence growth rate,

body weight and fertility [19].
6. The way forward
Our framework for understanding individual differences and

their downstream consequences raises a number of questions

with rich research potential.

(a) What mechanisms enable organisms to reverse
and dissipate reversible state effects?

While much recent work has focused on elucidating the gen-

etic and physiological mechanisms underlying phenotypic

flexibility, the mechanisms enabling individuals to reverse

the individual differences caused by unexpected environ-

mental variation are less well established [76]. Empirical

work in long-distance migratory birds suggests that, ecologi-

cally, periods of time with super-abundant resources may be

necessary for the dissipation of the stresses associated with

migration and reproduction [77]. Physiologically, recent

work exploring the ‘anti-oxidant system’ and the mitigation

of oxidative stress outlines a potential avenue for future

research [7].

(b) To what extent does each of these sources help
create and maintain variation in populations?

The generation of phenotypic variation can increase the adap-

tive capacity, or ‘evolvability’, of a population [78]. While the

types of individual variation described here are obviously

capable of generating and maintaining phenotypic variation,

it is less clear if they are also capable of generating and main-

taining genetic variation. Phenotypic plasticity is thought to

shield genetic variation from selection and thus those types

of individual differences acting during development, at

least, may be strong mediators of the quantity of standing

genetic variation in a population [79].

(c) Does the pace of evolution differ depending on the
type of individual difference involved?

Theory predicts that processes canalizing the genome by link-

ing otherwise disparate alleles can help drive rapid evolution
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[69]. Trans-generational passage of epigenetic information—

as may result from parental effects on development—is

thought to be one such process. The duration of the lag

between an event and its fitness consequence may also affect

how rapidly evolution occurs, but this hypothesis has not

been explored empirically.

(d) How do different types of individual differences
work in concert to affect ecological and
evolutionary dynamics?

Few previous studies have simultaneously considered multiple

types of individual variation [80]. It is thus difficult to predict

the expected outcomes of different processes working in con-

cert. The Yellowstone National Park’s wolf example [19]

suggests that the outcomes of such synergies may depend

on the particular processes involved, but also that slight

changes in environmental conditions may feedback to have

unpredictable consequences for the processes themselves.

Properly tackling these questions will involve a combi-

nation of observational, experimental and theoretical studies.

For example, experimental work has shown it is possible to

induce reversible state effects [81], but we must now strive to

identify mechanistically how physiological stress is realized

and subsequently dissipated [77]. These efforts should be

paired with observational studies focused on bottlenecks in

an organism’s annual cycle [82], or following severe events

that induce reversible state effects [83], to determine how
such processes progress naturally. Parental effects can also be

experimentally induced [2]; coupling the induction of parental

effects and reversible state effects should help to pinpoint the

mechanisms connecting an individual’s experienced environ-

ment with its allocation of parental resources [84], as well as

how ecological and physiological constraints can lead to evol-

utionary change via parental effects [85]. Theoretical studies

can complement this empirical work and make testable pre-

dictions concerning the expected pace of evolution driven by

different types of individual differences [86]. Finally, long-

term studies are needed to monitor how different types of

individual variation alter the frequency of phenotypes in popu-

lations and test predictions about the resulting pace of

evolution [19].
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