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Apex predators perform important functions that regulate ecosystems world-

wide. However, little is known about how ecosystem regulation by predators

is influenced by human activities. In particular, how important are top-down

effects of predators relative to direct and indirect human-mediated bottom-up

and top-down processes? Combining data on species’ occurrence from camera

traps and hunting records, we aimed to quantify the relative effects of top-

down and bottom-up processes in shaping predator and prey distributions

in a human-dominated landscape in Transylvania, Romania. By global

standards this system is diverse, including apex predators (brown bear and

wolf), mesopredators (red fox) and large herbivores (roe and red deer).

Humans and free-ranging dogs represent additional predators in the system.

Using structural equation modelling, we found that apex predators suppress

lower trophic levels, especially herbivores. However, direct and indirect top-

down effects of humans affected the ecosystem more strongly, influencing

species at all trophic levels. Our study highlights the need to explicitly

embed humans and their influences within trophic cascade theory. This will

greatly expand our understanding of species interactions in human-modified

landscapes, which compose the majority of the Earth’s terrestrial surface.
1. Introduction
There is increasing recognition of the role apex predators play in structuring eco-

systems globally [1,2]. They do so by killing or instilling fear in competitors and

prey [3,4], thereby inducing trophic cascades that flow through entire ecosystems

[5]. Despite 40% of the Earth’s terrestrial surface being dominated by agriculture

[6] and human effects permeating into more natural areas [7], much research on

trophic cascades has focused on relatively intact conservation reserves. However,

top-down processes (i.e. the structuring of the ecosystem by high trophic levels)

and bottom-up processes (i.e. control through productivity and low trophic

levels) may differ in human-dominated landscapes. Thus, a key question remains:

what role do humans play in the trophic networks of modified ecosystems [8]?

Answering this question is important for a number of reasons. First, many

large carnivore populations exist outside protected areas and are embedded

within human-dominated landscapes [9–11]. Second, there is increased focus

on using large carnivores in the context of ecosystem restoration [12]. Finally, in

parts of the world such as Europe and North America, large carnivores are return-

ing to modified landscapes [13–15]. Together, this highlights the urgent need to

better understand relationships between apex predators, people and ecosystem

components in human-dominated landscapes.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2015.1602&domain=pdf&date_stamp=2015-09-02
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Figure 1. Study area in southern Transylvania, Romania, camera trap
locations and wolf densities ( per km2) for each hunting ground. The
white areas indicate hunting grounds for which no data were available.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20151602

2
In terrestrial ecosystems, apex predators have been linked

to two major trophic cascades. First, apex predators limit

herbivores through predation and behaviourally mediated

changes in habitat use, thereby promoting vegetation growth

(i.e. tri-trophic cascades [16–18]). Second, apex predators limit

mesopredators through interference competition, including in

its most extreme form, intraguild predation [19–21]. Mesopre-

dator suppression by apex predators can thereby increase the

abundance of small mammals and birds (i.e. mesopredator

cascades [4,22]).

Such cascading effects could differ in human-dominated

landscapes in at least two main ways. Humans influence

species abundances through bottom-up processes such as

land use, agriculture and forestry, which may translate into

a wide range of changes in ecosystem properties and func-

tions [6], including ecosystem productivity [23], or food and

habitat availability [24]. Such changes in productivity can

significantly modify predator–prey relationships (i.e. the eco-

system exploitation hypothesis [25]). Also, humans directly

(e.g. harvesting of both predators and prey [26]) or indirectly

(e.g. by creating an anthropogenic landscape of fear [27])

affect top-down processes, and it remains unclear if apex pre-

dators can achieve high enough densities outside wilderness

areas and protected areas to be ‘ecologically effective’ [27–30].

Useful insights into the role of humans could be gained

by studying ecosystems in which both humans and carni-

vores have coexisted for extended periods. Traditional

farming regions in Romania form an ideal system in this

respect. The forests surrounding the villages cover a third

of the area and are well connected [31]. The heterogeneous

landscape harbours cervid herbivores and mesopredators,

and relatively high densities of brown bears (Ursus arctos)

and lower densities of the grey wolf (Canis lupus). The use

of free-ranging large-bodied livestock guard dogs (Canis
familiaris) to protect livestock against carnivores adds a

third large, non-human predator.

Wolves are the most important cervid predator in the

Northern Hemisphere [32], and are involved in both tri-trophic

and mesopredator cascades [17,33]. Bears are omnivorous and

may not be able to limit herbivore populations alone [34],

and their effects on mesopredators remain unclear. However,

bears can limit cervid densities in combination with wolves,

and their predation on cervid calves may affect the recruitment

of juveniles [34–36]. Dogs are the most common predator

of wildlife worldwide [37]; nevertheless, their effects on

structuring ecosystems remain largely unknown [38,39].

Here, we aimed to understand (i) the relative top-down

effects of apex predators on mesopredators and herbivores

relative to the indirect effects of humans via their land use,

and (ii) the direct and indirect effects of human presence

throughout the landscape on the interactions between apex

predators, mesopredators and herbivores. We tested specific

a priori expectations within a conceptual framework using

piecewise structural equation modelling as outlined below.
2. Material and methods
(a) Study area and design
Our study area covered 4900 km2 in the foothills of the Carpathian

Mountains in southern Transylvania, Romania (figure 1). The

region contains 28% forest, 24% pasture and 37% arable land. The

remaining land cover includes villages, water bodies and
permanent crops. Forests are dominated by hornbeam (Carpinus
betulus), oak (Quercus sp.) and beech (Fagus sylvatica). Pastures

occupy the hills and are grazed by sheep (dominant livestock),

goats and cattle, which are guarded by shepherds and guard

dogs. Small semi-subsistence farming villages of up to several hun-

dred inhabitants are scattered throughout the study area (figure 1).

Wild mammal populations and hunting activities are managed

within hunting grounds, mostly by public hunting organizations

or the State Forest Administration. The size of the hunting grounds

in the study area ranged between 71 and 212 km2. Data on

animal populations, hunting quotas and harvested animals are

publicly available (www.mmediu.ro/beta/domenii/paduri/

vanatoare/). For more details on hunting grounds, see the

electronic supplementary material.

We surveyed wild mammal, human and dog presence in forests

using remote, heat and motion, passive infrared Bushnell Trophy

Cam HD Max cameras between May and August 2013. Camera

locations were selected according to two considerations. First, we

divided the study area into grid cells of 5 � 5 km, and excluded

all grid cells with less than 20% forest cover (n ¼ 120). We placed

one camera in the middle of each grid or in the nearest forest

patch if no forest was present (figure 1). Cameras were rotated in

four rounds with grid cells randomly allocated to each round.

Second, an additional set of cameras in rounds 3 and 4 were

placed within 24 of the 35 hunting grounds with known lowest

and highest wolf densities (n ¼ 59; figure 1). Camera locations

were chosen randomly but in proportion to forest cover within

each hunting ground (one camera per 5–7 km2 forest). For both

designs, cameras were spaced more than 1.5 km apart to increase

spatial independence.

We used 179 camera locations in total, with individual cam-

eras operating between 15 and 29 days. However, only 138

locations were used for modelling because we excluded all cam-

eras that operated for less than 20 days (n ¼ 28 [40]) or were

located in hunting grounds for which no predator density data

could be obtained (n ¼ 12). In addition, seven cameras were

stolen, and one camera recorded 26 bear presences and was

removed as a statistical outlier because it was 23 standard

deviations away from the mean.

http://www.mmediu.ro/beta/domenii/paduri/vanatoare/
http://www.mmediu.ro/beta/domenii/paduri/vanatoare/
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To increase the chance of predator detection, we placed cam-

eras alongside animal and human paths, and used a lure of

honey and wolf urine to attract bears and wolves, respectively.

Lures were deployed at 75% of the locations (selected randomly),

while the other 25% served as controls to assess whether wolf

urine deterred herbivores. Since the presence of lures did not

affect species occurrence of predator or prey (electronic sup-

plementary material, figure S1), we did not consider lures in

further analyses.

(b) Variables used for modelling
We modelled the occurrence of five species in relation to top-

down and bottom-up variables: bears and dogs (apex predators),

foxes (mesopredator; Vulpes vulpes), and red and roe deer

(herbivores; Cervus elaphus and Capreolus capreolus, respectively).

Species occurrence was derived from data collected by the cam-

eras. Each species’s encounter rate was calculated by summing

all records for each species at each camera location, corrected

for camera days during modelling (see below). Owing to insuffi-

cient wolf records (two presences), wolves were not included as a

response variable.

Explanatory variables included (i) top-down variables, which

were represented by apex predators (wolves, bears and dogs) and

humans, and (ii) bottom-up variables, which were represented by

land cover variables (forest and pasture cover). Bear and dog vari-

ables were calculated from the camera data as the number of

presences per camera day. Because wolves were not regularly

encountered by the cameras, we obtained additional information

on wolf densities for the 35 hunting grounds from 2010. Bear den-

sities were available from the same source and, because of a lack of

a priori reasons to select one predictor over the other, they were con-

sidered as an alternative measure of occurrence to the camera data.

These data provided a useful general indicator for regional-scale

differences in predator density. Notably, reported predator den-

sities had been largely stable between 2006 and 2010 (electronic

supplementary material, figures S2 and S3), suggesting that the

2010 data were likely to be indicative of bear and wolf densities,

despite not being from the same year as our camera data. We

tested which bear variable (local records from camera traps or

hunting-ground-wide presence) provided the better fit for a

given response (species) variable according to lower Akaike infor-

mation criterion (AIC) values, and included this variable in the

final model.

The local density of humans was calculated as the number of

presences per camera day. As an additional approximation of

human pressure, we calculated the number of people within the

three nearest villages to each camera location. As with the data

on bears, we had no a priori expectations whether local (records

from camera traps) or broader-scale measures of human occur-

rence (average size of three nearest settlements) would influence

encounter rates of other species. Therefore, we again compared

the fit of both variables to the data before including the better

one in the final model.

Pasture cover (range 0–50%; median: 13%) and forest cover

(range 15–100%; median: 59.5%) were derived from the Corine

Land Cover map (2006) within a radius of 1000 m around

camera locations.

(c) Modelling
We used piecewise structural equation modelling (SEM) to

model the importance of top-down and bottom-up effects for

the five target species. SEMs are used to analyse both direct

and indirect relationships in ecosystem processes, where a priori
knowledge of relationships between components is available

[41]. In contrast to classical SEM, a piecewise approach does

not calculate global estimates for the entire network of relation-

ships, but calculates local estimates for each ‘node’ or response
variable [42]. This approach has been applied in recent studies

of trophic cascades [43,44]. The SEM used here provides evidence

for the causal pathways proposed, but further experimental work

is required to confirm the underlying mechanisms.

To assemble the SEM, we first built generalized linear mixed-

effect models with a Poisson error distribution for each species.

Mixed models were required for two reasons: first, because

sites were spatially clustered within hunting grounds, which

could lead to spatial autocorrelation in model residuals if not

accounted for, and second, because sites were sampled during

one of four survey rounds, which could again result in corre-

lations within model residuals. Thus, ‘hunting ground’ and

‘survey round’ were included as random effects. We used

spline correlograms to test for any remaining spatial autocorrela-

tion in the residuals of the generalized linear mixed models

(i.e. after accounting for hunting ground). The spline correlograms,

which estimate spatial dependence as a continuous function of

distance, indicated little evidence of spatial autocorrelation (elec-

tronic supplementary material, figure S4a–e). In instances where

overdispersion was evident in model residuals (i.e. w . 1.5), indi-

vidual site identity was included as an observational level random

effect to account for additional variance [45].

Depending on the species, fixed effects included human vari-

ables, predators and competitors, and bottom-up variables (see

‘Model description’ below). Because we could not make reliable

assumptions as to the form of the relationship between predictor

and response variables, we tested whether a linear or logarithmic

function explained the data better. Predictor variables were then

log-transformed where transformation led to a better explanation

of the response (species) variable (based on AIC). We included

camera days as an offset in all models to account for differences

in exposure time for response variables. An overview of all fixed

and random effects included in each model is provided in the

electronic supplementary material, table S1.

Using the final generalized mixed-effect models, we then

derived standardized path coefficients following the ‘relevant

range’ method of Grace & Bollen [46]. This involved calculating

the predicted change in a response variable as a proportion of its

range, as a given predictor variable is changed across its range

(i.e. from its minimum to its maximum), holding all other predic-

tors at their mean (e.g. [43]). We also calculated marginal R2 for

each model to assess the variance explained by the fixed factors

[47]. Finally, composite graphs of all paths were generated to visu-

alize the relative importance of relationships between ecosystem

components. All statistical analyses were performed in R using

the packages lme4 and MuMIn [48].
(d) Model description
The pathways between top-down and bottom-up variables were

determined by a priori knowledge on trophic cascade theory and

included the following assumptions (figure 2). Apex predators

(brown bear, wolf and dog) were assumed to limit the mesopre-

dator (the red fox) through interference competition or intraguild

predation [4,49], as well as to limit red deer and roe deer through

direct predation or fear [32,34]. Bottom-up factors were assumed

to be strong for the brown bear with an expected positive effect

of forest cover and a negative effect of pasture cover [31]. We did

not assume a relationship between dogs and forest cover, but

expected a strong positive link with pasture cover because

dogs are commonly used for shepherding in our study area.

We assumed bottom-up factors would play a role in mesopreda-

tor and herbivore encounter rate, but that top-down effects

would be stronger than bottom-up effects—as expected for pro-

ductive ecosystems (ecosystem exploitation hypothesis [25]). We

expected fox encounter rates to be negatively affected by forest

cover and positively affected by pasture cover since this species

prefers fragmented and open farmland [50,51]. Herbivores
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Figure 2. A priori piecewise structural equation model describing hypoth-
esized predator – prey interactions in a human-dominated rural landscape.
Positive links are indicated by solid lines and negative links are indicated
by dashed lines. (Online version in colour.)
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were expected to be positively affected by both forest and pasture

cover [52,53]. We assumed that there would be no intraguild

competition between wolves and bears due to different diets,

but that wolves would positively affect bear encounter rate

through increasing carrion [54]. By contrast, we assumed that

wolves and bears potentially limit dog encounter rate through

interference competition. We expected that roe deer would be

limited by red deer through interspecific competition [55].

Humans were expected to limit all other species, except dogs,

through habitat modification and disturbance (including instil-

ling fear), or direct killing by hunting or poaching. Humans

were expected to indirectly limit red fox and herbivore encounter

rate through their positive effects on dogs. We did not include a

link between humans and wolves because of too few camera

records of wolves. We did not attempt to explain wolf or bear

densities obtained for hunting grounds, because these were at

a much larger scale than species encounter rates obtained from

cameras or human population size in nearby villages.
3. Results
Across 3042 camera days at 138 locations, we obtained 2197

detections of roe deer, 388 of red foxes, 275 of humans, 120

of dogs, 94 of red deer, 76 of bears and 2 of wolves.

(a) Top-down and bottom-up effects on species
encounter rates

In accordance with our a priori SEM, wolves and bears had a

negative effect on foxes (figure 3a). However, the bottom-up

negative effect of forest cover was stronger than top-down

effects on fox encounter rates (figure 3a). Nevertheless, both

top-down and bottom-up effects were fairly weak, with confi-

dence intervals indicating a high degree of uncertainty

(figure 3a; electronic supplementary material, table S2), and

explained less variance when compared with all other species
(figure 3a). Positive bottom-up effects of forest cover and nega-

tive effects of pasture cover were relatively strong determinants

of bear encounter rates (figure 3a). Within the apex predator

guild, bears were negatively related to wolves (figure 3a).

For herbivores, we found a negative effect of wolves on red

deer and of bears on roe deer. A positive effect was found for

wolves on roe deer and bears on red deer (figure 3b). Top-

down effects were stronger compared with bottom-up effects,

with only weak effects of land cover types on red deer species

(figure 3b). For example, the effect of wolves on red deer was

almost three times larger than the positive effect of pasture

cover. Roe deer appeared limited through competition with

red deer. The negative effect of roe deer on red deer was only

slightly weaker than that of top-down predator effects

(figure 3b). As for the red fox, although some effects were rela-

tively large, there was considerable uncertainty for explaining

roe deer encounters and a relatively small amount of variance

was explained.
(b) Top-down control by humans and their dogs
As predicted, the SEM found that humans limited all other

species, except the dog (figure 3a,b). While the effect was neg-

ligible for foxes, the effects of human top-down control on

bears and herbivores were strong, and much stronger than

bottom-up effects for bears and herbivores (figure 3a,b). For

example, the path coefficient describing the effect of humans

on bears was almost three times larger than the coefficients

of the bottom-up effects. Human top-down effects on red

deer were also larger by a factor of 4.6 than the top-down pred-

ator effects of wolves, while human top-down effect on roe

deer were similarly strong as top-down effects of bears.

Humans had indirect effects on species’ encounter rates

due to a strong positive effect on dogs and their subsequent

flow-on effects (figure 3a). The top-down limiting effects of

dogs on red deer and roe deer were approximately half as

strong as effects of natural predators. Dog effects, although

variable, were still stronger than bottom-up processes

(figure 3b). Dogs were positively associated with foxes; but

there was a negative effect of wolves on both dogs and foxes

(figure 3a). All model estimates and confidence intervals are

available in the electronic supplementary material, table S2.
4. Discussion
Despite growing interest in using apex predators for ecological

restoration [12], and although agriculture covers 40% of the

world’s ice-free land surface [6], few studies have examined

and quantified the ecological role of apex predators in

human-dominated landscapes. Our study addressed (i) the

relative contributions of top-down limitation by apex predators,

and (ii) direct and indirect human bottom-up and top-down

processes on mesopredator and herbivore encounter rates in a

multiple-predator, human-dominated landscape. In accordance

with trophic cascade theory, apex predators appeared to be

important in structuring the ecosystem, particularly through

the suppression of herbivores. However, the extent of human

direct and indirect top-down effects at multiple trophic levels

had a notably stronger effect on the ecosystem than other

apex predators. Our results suggest that human factors need

far greater consideration in trophic ecology research.
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Figure 3. Final structural equation models showing top-down and bottom-up pathways for encounter rates of (a) predators and (b) herbivores. Positive links are
indicated by solid lines and negative links are indicated by dashed lines. Line thicknesses of arrows correspond to their standardized path coefficients as calculated by
the ‘relevant range’ method. These indicate the relative strengths of effects and are comparable across the entire model. Marginal R2 is given for all response
variables (i.e. brown bear, domestic dog, red fox, red deer and roe deer). Asterisk indicates where 95% CIs around the estimates from the global models do
not include zero (electronic supplementary material, table S2). (Online version in colour.)

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20151602

5

(a) Mesopredator limitation by apex predators and
human-mediated bottom-up effects

The mesopredator release hypothesis predicts top-down control

of mesopredators by apex predators [22,56]. We found limited

evidence of suppression of foxes by wolves and bears in our

study, therefore questioning the mesopredator release hypothesis

in this human-dominated landscape. The suppressive effects

of apex predators, although present, were generally weak, and

weaker than the bottom-up effect of forest cover. There are

large differences in bodysize and diet between foxes, omnivorous

bears and large wolves, which may dampen the interactions

between wolves and bears and foxes [4,57]. In general, foxes are

suppressed by predators closer to their own body size. For

example, in other places in Europe, foxes are not suppressed by

wolves [44], but by lynxes, Lynx lynx [44,56], while they are sup-

pressed by dingoes, Canis dingo, in Australia [58]. An alternative

explanation is that, at currently low apex predator densities,

mesopredators may not be significantly suppressed.

Human-mediated bottom-up effects were apparent

through foxes’ preference for less forested, more fragmented

areas (see also [50]). Nevertheless, this effect was also weak,

probably because generalist foxes can thrive in both forested

and open landscapes [51,59]. Our gradients in land use

may not have been strong enough to capture fox habitat

preferences, or fox distribution may be more affected by

other human-mediated bottom-up effects such as the presence

of anthropogenic food sources [51]. Furthermore, increased
spatial heterogeneity in more complex habitats could have

reduced interference competition and dampened top-down

suppression of foxes [4,60]. More importantly, bottom-up

effects influenced foxes and bears, and most likely wolves

[61], in opposite ways, and thus human-mediated bottom-up

processes could further reduce interference competition

between foxes and apex predators through increasing forest

loss and fragmentation in Romania [62,63].

(b) Herbivore limitation by apex predators and human-
mediated bottom-up effects

Despite human presence, apex predators still exerted top-down

effects on herbivores. This is consistent with the ecosystem

exploitation hypothesis for systems with tri-trophic cascades,

where herbivores should be top-down limited and apex preda-

tors bottom-up limited [25]. Top-down control by wolves and

bears on red deer and roe deer showed varying patterns. The

observed negative effect on red deer and not on the roe deer

encounter rate by wolves can be explained by wolves’ prefer-

ence for red deer over roe deer when both species are present

[64]. Wolf extirpation caused eruptions of deer populations in

European and American national parks [17,65], and our results

suggest that similar wolf reductions and extirpations could have

led to increased red deer populations elsewhere in Europe [66].

By contrast, roe deer populations were only suppressed by apex

predators in unproductive landscapes, and were more affected

by foraging needs and competition for food in Europe [67,68].
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Bears had a relatively large (but variable) negative effect

on roe deer and not on red deer. Bears are known to prey

upon young cervids [35,69], and may have preferentially

preyed on fawns of roe deer over those of red deer. Alterna-

tively, the positive relationship between bears and red deer

may be an indirect effect of the strong negative impact of

humans on both species. However, since the diet of bears

in our region does not include a lot of meat [70], roe deer

could alternatively have been suppressed by apex predators

through a landscape of fear where deer alter their behaviour

in response to predation risk [3,71].

Although our results confirm theoretical predictions of

weak bottom-up effects on deer species, they contrast with

a recent study where human mediation of forage quality

influenced herbivores more strongly than top-down predator

effects [24]. A lack of bottom-up effects may be due to the

present land cover composition, which features forest and

pasture cover close to the 30% threshold below which frag-

mentation effects become severe [72]. Alternatively, the

resolution of the Corine Land Cover (25 ha minimum mapping

unit) may have been too coarse to pick up deer habitat pre-

ferences. Although human-mediated processes through land

use may not determine deer encounter rates in our study

area, other human-mediated bottom-up processes such as sup-

plemental feeding of deer may affect their populations [73].

Moreover, similar to mesopredators, an increase in deforesta-

tion in the area would reduce apex predator presence and

ultimately reduce top-down control of deer.
(c) Humans as apex predators in the system
Direct and indirect human top-down impacts were more

important in shaping patterns of species encounter rates com-

pared with the effects of apex predators and human-

mediated bottom-up effects, which was especially evident

for the red deer. Thus, our study shows that humans them-

selves are an apex predator in the system, indicating that

they should not be ignored in predator–prey studies [8], par-

ticularly given the pervasive impacts of humans across the

globe [74,75]. Humans are perhaps unique among apex pre-

dators in their ability to influence ecosystems through

simultaneously directly reducing large carnivore, mesopreda-

tor and herbivore populations, and by creating a landscape of

fear for all three trophic levels [27].

Direct human effects on foxes were negligible in our study.

This is consistent with the study of Baker & Harris [76], who

showed that fox culling through hunting does not necessarily

reduce fox numbers. By contrast, direct negative effects of

humans on deer were relatively large. Hunting of deer could

have directly reduced deer populations (e.g. [64]); however,

the observed pattern could also be a response to an anthropo-

genic landscape of fear where deer avoid areas where hunting

and other human activities are prevalent [77]. In addition,

humans also suppressed deer through the use of livestock

guard dogs, which are kept on the pasture and thus in proximity

to preferred deer foraging areas. Although the effects of dogs on

wildlife are relatively unknown, they can reduce herbivore

populations through the same mechanisms of direct predation

and behaviourally induced changes as other apex predators [37].

Indirectly, human suppression of bears, and possibly

wolves [61,78], could lift top-down control and lead to

increased herbivore populations, and possibly further meso-

predator release. Herbivore and mesopredator population
increases after anthropogenic extirpations of apex predators

are widely documented [79]. For example, the loss of lynx

due to a combination of anthropogenic pressures [80] caused

large-scale mesopredator release in Europe [56], perhaps

even in our study area. However, here we found that in a

system where both humans and other apex predators are

present, top-down control by humans and predators and indir-

ect release due to human suppression of apex predators act

simultaneously, particularly on herbivore populations. Further

studies that disentangle the effects of humans and predators on

lower trophic levels will be key to advancing our understand-

ing of the drivers and dynamics of ecosystems, trophic cascade

theory, and ultimately how these affect biodiversity conserva-

tion. This is especially important since humans may not

replicate the exact nature of indirect effects caused by other

apex predators, highlighting that the ecological roles of apex

predators are not always interchangeable [27]. This may

explain in part why humans are often unsuccessful at prevent-

ing or reversing negative impacts such as overgrazing, reduced

vegetation recruitment and biodiversity loss caused by altered

predator–herbivore–plant trophic cascades or mesopredator

release (e.g. [1,81–83]).
5. Conclusion
To date, ecological theory on trophic cascades has not explicitly

included human effects, despite humanity’s pervasive impacts

on the globe [7]. Our study adds to a growing recognition that

humans play vital roles in influencing ecosystems through

mediating and altering trophic cascades, as well as through

direct landscape modification. Apex predators maintained

their ecological role by suppressing lower trophic levels in a

human-dominated landscape, but the combined direct and

indirect anthropogenic top-down effects dominated over natu-

ral processes. Improving our understanding of human impacts

on trophic cascades in human-dominated landscapes is

especially important because apex predators are declining

rapidly in much of the world, but, just as importantly, they

are also being encouraged to recover and are being reintro-

duced to other areas. There are ample possibilities for

restoring ecosystems through rewilding efforts or carnivore

reintroduction programmes, but, especially in this context, it

is important to anticipate the implications of simultaneous

effects of humans and apex predators on multiple trophic

levels. Given the extent and speed of global anthropogenic

environmental change, elucidating how humans directly and

indirectly alter bottom-up and top-down processes should

receive increased consideration by future studies.
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